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Abstract
Purpose Cancer cells with stem cell-like properties may contribute to cancer development and therapy resistance. The 
advancement of multi-omics technology has sparked interest in exploring cancer stemness from a multi-omics perspective. 
However, there is a limited number of studies that have attempted to subtype cancer by combining different types of stem 
cell signatures.
Methods In this study, 10,323 cancer specimens from 33 TCGA cancer types were clustered based on the enrichment scores 
of six stemness gene sets, representing two types of stem cell backgrounds: embryonic stem cells (ESCs) and hematopoietic 
stem cells (HSCs).
Results We identified four subtypes of pan-cancer, termed StC1, StC2, StC3 and StC4, which displayed distinct molecular 
and clinical features, including stemness, genome integrity, intratumor heterogeneity, methylation levels, tumor microen-
vironment, tumor progression, responses to chemotherapy and immunotherapy, and survival prognosis. Importantly, this 
subtyping method for pan-cancer is reproducible at the protein level.
Conclusion Our findings indicate that the ESC signature is an adverse prognostic factor in cancer, while the HSC signature 
and ratio of HSC/ESC signatures are positive prognostic factors. The subtyping of cancer based on ESC and HSC signatures 
may provide insights into cancer biology and clinical implications of cancer.
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1 Introduction

Stem cells, characterized by two critical abilities: self-
renewal and differentiation, are the foundation for various 
organs and tissues [1]. There are different types of stem 
cells, including embryonic stem cells (ESCs), adult stem 
cells (ASCs), and induced pluripotent stem cells (iPSCs). 
ESCs originate from early embryos known as blastocysts 
and exhibit pluripotency. In contrast, ASCs, also known as 

tissue-specific stem cells or somatic stem cells, generate 
specific cell types for specific tissues or organs and are not 
pluripotent [1]. ASCs encompass various subtypes, such as 
hematopoietic stem cells (HSCs), mesenchymal stem cells 
(MSCs), neural stem cells (NSCs), epithelial stem cells, and 
skin stem cells. Among these, HSCs are the most representa-
tive ASCs and serve as a standard model for studying tissue-
specific stem cells [1]. HSCs play a crucial role in generat-
ing all types of blood cells, including red blood cells, white 
blood cells, and platelets. White blood cells, also known 
as leukocytes, constitute a vital part of the body’s immune 
system, including lymphocytes, monocytes, neutrophils, 
eosinophils, basophils, and macrophages.

Cancer stem cells (CSCs) refer to cancer cells with stem 
cells-like characteristics. CSCs were initially discovered 
in hematopoietic malignancies [2] and later were found in 
various solid tumors, such as pancreatic cancer [3], mela-
noma [4], breast cancer [5], and head and neck cancer [6]. 
These CSCs typically constitute a small fraction of the total 
cancer cell population and are characterized by their ability 
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to continuously self-renew, proliferate, undergo dedifferen-
tiation, promote cancer progression, and confer resistance 
to therapy [7]. CSCs are often endowed with dysregulated 
proliferative pathways or oncogenic mutations to maintain 
tumor growth [8]. Furthermore, different levels of stemness 
of cancer cells contribute to the intratumor heterogeneity 
(ITH) [9]. This heterogeneity allows drugs to target a portion 
but not all of the cancer cells, which is a key factor contribut-
ing to therapy resistance and cancer relapse. CSCs express 
many genes in common with early ESCs, such as OCT4, 
NANOG, and SOX2 [10]. Many of these genes are transcrip-
tional regulators of ESCs and may synergistically regulate 
tumor cell self-renewal and proliferation [11]. Furthermore, 
since HSCs are the origin of all lymphocytes and myeloid 
cells [12], they play important roles in the immune regula-
tion of various diseases, including cancer [13]. A previous 
study has suggested that both hematopoietic malignancies 
and solid tumors may utilize the hematopoietic stem cell 
niche of the bone marrow to promote tumor growth and sup-
press antitumor immunity [14]. Another study has shown 
that hematopoietic stem and progenitor cells (HSPCs) are 
involved in tumor progression [15]. Considering that uncon-
trolled cell proliferation and immunosuppression are hall-
marks of cancer [16], both ESCs and HSCs-like signatures 
are significant in cancer biology. However, the majority of 
previous investigations primarily focused on ESCs, with 
only limited investigations into cancer stemness through 
simultaneous analysis of ESC and HSC signatures. To fill 
the knowledge gap, this study explored both ESCs and 
HSCs-like signatures in pan-cancer.

With the recent advancement of multi-omics technol-
ogy, abundant cancer-associated genomics, epigenomics, 
transcriptomics, and proteomics data have emerged, such 
as The Cancer Genome Atlas (TCGA, https:// cance rgeno 
me. nih. gov/) and The International Cancer Genome Con-
sortium (ICGC, https:// dcc. icgc. org/). These data have 
been widely utilized to explore various aspects of tumor 
characteristics across diverse cancer types, such as tumor 
immunity [17], tumor stemness [18], tumor metabolism 
[19], and ITH [20]. For example, Thorsson et al. identi-
fied six immune-specific subtypes of the pan-cancer of 33 
TCGA cancer types based on a transcriptomic analysis [21]. 
Another pan-cancer analysis of transcriptomes in these 33 
cancer types unveiled three metabolic expression subtypes 
with distinct clinical outcomes [19]. Additionally, Hoadley 
et al. performed clustering of around 10,000 cancer sam-
ples from the same 33 TCGA cancer types based on data of 
aneuploidy, DNA hypermethylation, mRNA, miRNA, and 
protein expression levels. Their work identified 28 clusters 
significantly related to histology, tissue type, or anatomic 
origin [22]. The multi-omics-based exploration of tumor 
stemness has attracted certain interests. For example, multi-
omics analyses have shown that tumor stemness is associated 

with dedifferentiated oncogenic phenotype, immunosuppres-
sion, ITH, metastasis, and drug resistance [7, 18]. Transcrip-
tomes-based stemness scores have been utilized to classify 
cancers, including bladder urothelial carcinoma (BLCA) 
[23], lung adenocarcinoma (LUAD) [9], and glioblastoma 
multiforme (GBM) [24]. Despite these previous studies, the 
omics-based investigation of different stem cell backgrounds 
in pan-cancer or individual cancer types remains lacking. 
Furthermore, the omics-based exploration of tumor stemness 
at the single-cell level remains inadequate, although there is 
already an abundance of single-cell omics data available for 
various cancers [25–29].

In this study, we conducted a clustering analysis of 10,323 
specimens representing the 33 TCGA cancer types based on 
transcriptomes-based scores of six stemness gene sets, which 
represent two types of stem cell backgrounds, namely ESCs 
and HSCs. This analysis identified four distinct stemness 
subtypes of pan-cancer. We further comprehensively com-
pared the molecular and clinical features among these sub-
types, as well as their associations with the response to 
immunotherapy and chemotherapy.

2  Materials and methods

2.1  Data acquisition

We downloaded data of gene expression profiles (RSEM 
normalized and batch effects adjusted), somatic mutation 
profiles (level 3) and clinical features for the TCGA Pan-
Cancer (PANCAN) cohort consisting of 33 TCGA cancer 
types from UCSC Xena (https:// xenab rowser. net/ datap 
ages/). The 33 cancer types included adrenocortical carci-
noma (ACC), BLCA, breast invasive carcinoma (BRCA), 
cervical squamous cell carcinoma and endocervical adeno-
carcinoma (CESC), cholangiocarcinoma (CHOL), colon 
adenocarcinoma (COAD), lymphoid neoplasm diffuse large 
B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), 
GBM, head and neck squamous cell carcinoma (HNSC), 
kidney chromophobe (KICH), kidney renal clear cell carci-
noma (KIRC), kidney renal papillary cell carcinoma (KIRP), 
acute myeloid leukemia (LAML), brain lower grade glioma 
(LGG), liver hepatocellular carcinoma (LIHC), LUAD, 
lung squamous cell carcinoma (LUSC), mesothelioma 
(MESO), ovarian serous cystadenocarcinoma (OV), pan-
creatic adenocarcinoma (PAAD), pheochromocytoma and 
paraganglioma (PCPG), prostate adenocarcinoma (PRAD), 
rectum adenocarcinoma (READ), sarcoma (SARC), skin 
cutaneous melanoma (SKCM), stomach adenocarcinoma 
(STAD), testicular germ cell tumors (TGCT), thyroid car-
cinoma (THCA), thymoma (THYM), uterine corpus endo-
metrial carcinoma (UCEC), uterine carcinosarcoma (UCS), 
and uveal melanoma (UVM). In addition, we downloaded 
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15 normalized protein expression profiles in 12 cancer types 
(TCGA-BRCA, TCGA-COAD, TCGA-OV, BRCA, COAD, 
OV, GBM, HNSC, LUAD, LUSC, PAAD, KIRC, UCEC, 
STAD, LIHC) from the Clinical Proteomic Tumor Analysis 
Consortium (CPTAC, https:// prote omics. cancer. gov/ progr 
ams/ cptac/) and the International Cancer Proteogenome 
Consortium (ICPC, https:// icpc. cancer. gov/ portal/). We also 
downloaded three single-cell RNA sequencing (scRNA-seq) 
datasets, namely GSE75688 for BRCA [29], GSE131309 for 
SARC [30], and GSE89567 for GBM [25], from the NCBI 
gene expression omnibus (GEO) (https:// www. ncbi. nlm. nih. 
gov/ geo/). Besides, we downloaded a scRNA-seq dataset 
for renal cell carcinoma (RCC) from a recent publication 
[31]. We obtained eight immunotherapy-related datasets for 
eight cancer types (READ, non-small cell lung carcinoma 
(NSCLC), LIHC, ESCA, urothelial cancer (UC), triple-
negative breast cancer (TNBC), STAD, SKCM) from GEO 
and recent publications [32–39]. The immunotherapy-related 
datasets included gene expression profiles and clinical infor-
mation pertaining to immune checkpoint blockade (ICB) 
treatment in cancer patients. A summary of these datasets is 
shown in Supplementary Table S1.

2.2  Data processing and quality control

The gene expression values were preprocessed and normal-
ized in the single cell transcriptomes, except the BRCA 
scRNA-seq dataset, in which they were raw transcripts per 
million (TPM). For the BRCA scRNA-seq dataset, we per-
formed data preprocessing and quality control prior to subse-
quent analyses. First, we replaced the TPM values less than 
one with zero. Second, all TPM values (x) were transformed 
by  log2(x + 1). Third, we removed the genes with expression 
values of zero across all single cancer cells. For the other 
three scRNA-seq datasets, we also preprocessed them fol-
lowing the third step.

Proteomics data were processed by the publication [40] 
at the gene level rather than at the protein isoform level. The 
names of rows in the protein expression matrix refer to the 
protein-coding genes. For the pan-caner analysis, we merged 
the data from 15 protein expression profiles into an expres-
sion matrix with the function “merge ()” in the R package 
“base.” Subsequently, we adjusted for batch effects and nor-
malized combined data using the ‘‘normalizeBetweenAr-
rays” function in the R package “limma”.

2.3  Collection of stemness signatures

We collected six stemness signatures (or gene sets) from 
the StemChecker webserver (http:// stemc hecker. sysbi olab. 
eu). Among these stemness signatures, three are markers of 
ESCs, including Hs_ESC_Assou, Hs_ESC_Bhattacharya, 
and Hs_ESC_Wong; the other three are markers of HSCs, 

including Hs_HSC_Huang, Hs_HSC_Novershtern, and 
Hs_HSC_Toren. These stemness gene sets are presented in 
Supplementary Table S2.

2.4  Single‑sample gene‑set enrichment analysis

To determine the enrichment score of a given gene set, 
which represents a stemness signature, biological process, 
pathway, or phenotypic feature, within a tumor bulk or single 
cancer cell, we employed the single-sample gene-set enrich-
ment analysis (ssGSEA) method [41]. The ssGSEA algo-
rithm calculates a gene set’s enrichment score in a sample 
based on its expression profile. We implemented this analy-
sis with the “GSVA” R package. The gene sets analyzed are 
presented in Supplementary Table S2.

2.5  Clustering analysis

We used hierarchical clustering to identify stemness sub-
types of cancers based on their enrichment scores of the six 
stemness signatures. This analysis was conducted using the 
R package “hclust” with the parameters: method = “ward.
D2” and members = NULL. Prior to clustering, the data of 
ssGSEA scores were transformed by z-score and translated 
into distance matrices by the “dist()” function with the 
parameter: method = “Euclidean”.

2.6  Survival analysis

We utilized the Kaplan-Meier (K-M) model to compare 
overall survival (OS), disease-specific survival (DSS), 
disease-free interval (DFI), and progression-free interval 
(PFI) among different subgroups of cancer patients. Log-
rank tests were employed to assess the significance of their 
differences. These analyses were implemented with the func-
tion “survfit()” in the R package “survival.” Furthermore, 
we performed multivariate survival analysis by the Cox 
proportional hazards model to explore the correlations of 
the signatures of ESCs and HSCs, and the ratio of HSCs/
ESCs with survival prognosis in pan-cancer after correcting 
for confounding variables, including age, sex, and tumor 
stage. The “age”, “ESCs”, “HSCs”, and “ratio of HSCs/
ESCs” were continuous variables, and the “sex” (male ver-
sus female) and “tumor stage” (early (stage I-П) versus late 
(stage III-IV)) were binary variables. The multivariate sur-
vival analysis was conducted using the function “coxph()” 
in the R package “survival”.

2.7  Evaluation of genomic instability, ITH, 
and immune scores

Somatic mutations and copy number alterations (CNAs) 
reflect genomic instability. The tumor mutation burden 
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(TMB) was defined as the total number of somatic mutations 
in the tumor. We obtained CNA scores in TCGA pan-cancer 
from the publication by Knijnenburg et al. [42]. We used 
GISTIC2 [43] to calculate G-scores in tumors with the input 
of “SNP6” files. The G-score reflects the amplitude of the 
somatic CNA and the frequency of its occurrence across a 
group of samples [43]. Besides, we evaluated ITH in tumors 
utilizing the DEPTH algorithm [20], which measures ITH at 
mRNA level based on the heterogeneity of gene expression 
perturbations. In addition, we employed the ABSOLUTE 
algorithm [44] to evaluate tumor aneuploidy, namely ploidy 
scores, with the input of “SNP6” files. To gauge immune 
infiltration levels within tumors, we calculated immune 
scores using the ESTIMATE algorithm [45] with the input 
of gene expression matrix.

2.8  Identification of marker genes for subtypes

To identify marker genes for a stemness subtype, we first 
identified the upregulated genes in the subtype versus each 
of the other subtypes using the threshold of Student’s t test 
adjusted P value < 0.01 and mean expression fold change > 2. 

The marker genes for the stemness subtype were the com-
mon genes among the sets of upregulated genes.

2.9  Identification of upregulated proteins 
for subtypes

To identify upregulated proteins in a stemness subtype, we 
compared the protein expression profiling in a stemness sub-
type with that in each of the other subtypes. The upregulated 
proteins for the stemness subtype were the common proteins 
identified as upregulated in the stemness subtype compared 
to each of the other subtypes, with the threshold of Stu-
dent’s t test adjusted P value < 0.05 and mean expression 
fold change > 1.

2.10  Logistic regression analysis

We employed logistic regression models to predict tumors 
with higher immune scores (> median) versus those with 
lower immune scores (< median) with four predictors (ESC 
score, HSC score, CNA score, and TMB). In logistic regres-
sion analyses, all predictors’ values were normalized by 
z-score; the R function “glm” was utilized to fit the binary 
model with the parameter “family” as “binomial” and other 
parameters as their default values; the standardized regres-
sion coefficients (β values) were obtained with the function 
“lm.beta” in the R package “QuantPsyc”.

2.11  Statistical analysis

In class comparisons, for non-normally distributed data, 
we utilized Mann–Whitney U tests (for two classes) or 
Kruskal–Wallis (K–W) tests (for more than two classes); 
for normally distributed data, we used Student’s t tests (for 
two classes) or ANOVA tests (for more than two classes). In 
the analysis of contingency tables, we utilized Fisher’s exact 
tests or Chi-square tests. For evaluating the correlations 
between the enrichment of molecular features and stemness 
scores, we employed the Spearman method. To adjust P val-
ues in multiple tests, we utilized the Benjamini-Hochberg 
method [46] to calculate the false discovery rate (FDR). All 
of these statistical analyses were conducted within the R 
programming environment (version 4.2.2).

3  Results

3.1  Stemness signatures‑based clustering analysis 
identifies four subtypes of pan‑cancer

Based on the enrichment scores (ssGSEA scores) of the 
six stemness signatures, we identified four subtypes of 

Fig. 1  Identifying subtypes of pan-cancer based on stemness signa-
tures. A Hierarchical clustering identifies four stemness subtypes of 
TCGA pan-cancer: StC1, StC2, StC3 and StC4 based on the enrich-
ment scores of six stemness gene sets, representing two types of stem 
cell backgrounds: embryonic stem cells (ESCs) and hematopoietic 
stem cells (HSCs). HPV: human papillomavirus, HBV: hepatitis B 
virus, EBV: Epstein–Barr virus, Ad: adenocarcinomas, GI: gastroin-
testinal, GYN: gynecological, NA: not available. B  Comparisons of 
HSC scores, ESC scores and ratios of HSC/ESC signatures among 
the four stemness subtypes of TCGA pan-cancer. The HSC score in 
a tumor is the average enrichment scores of the three HSC signatures. 
The ESC score in a tumor is the average enrichment scores of the 
three ESC signatures. The ratio of HSC/ESC signatures in a tumor 
is the ratio of HSC score over ESC score. C  Kaplan–Meier curves 
show that StC3 and StC2 likely have the best and worst 10-year OS, 
and that StC4 and StC2 likely have the best and worst 10-year DSS, 
DFI and PFI in pan-cancer. The log-rank test P values are shown. OS: 
overall survival, DSS: disease-specific survival, PFI: progression-free 
interval, DFI: disease-free interval. D Kaplan–Meier curves show that 
the tumors with high ESC scores (> median) have significantly worse 
prognosis than the tumors with low ESC scores (< median) in all four 
10-year endpoints (OS, DSS, DFI and PFI) in pan-cancer; In contrast, 
the tumors with high HSC scores or ratios of HSC/ESC signatures 
(> median) have significantly better prognosis than the tumors with 
low HSC scores or ratios of HSC/ESC signatures (< median) in all 
four 10-year endpoints in pan-cancer. The log-rank test P values are 
shown. E Multivariate Cox proportional hazards regression analysis 
show that ESC scores have a significant inverse correlation with OS, 
and that HSC scores and the ratios of HSC/ESC signatures have a sig-
nificant positive correlation with OS in pan-cancer. The “age”, “ESC 
score”, “HSC score”, and “ratio of HSC/ESC” are continuous vari-
ables, and the “sex” (male versus female) and “tumor stage” (early 
(stage I-П) versus late (stage III-IV)) are binary variables

◂
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Fig. 2  Distribution of the stemness subtypes across individual cancer 
types.  A  Proportions of tumor samples belonging to each stemness 
subtype in each of the 33 TCGA cancer types. Only the proportions 
over 10% are shown in the bars. B  The Sankey diagram shows the 

stemness-subtype composition of pan-kidney and pan-squamous cell 
cancers. C Comparisons of the enrichment scores of ESC and HSC 
signatures and their ratios across the 33 TCGA cancer types, ordered 
by the median value
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pan-cancer by hierarchical clustering (Fig. 1A). We termed 
the four subtypes StC1, StC2, StC3, and StC4, respectively. 
StC1 displayed high enrichment of both ESC and HSC 
signatures. StC2 showed high enrichment of ESC but low 
enrichment of HSC signatures. In contrast to StC2, StC3 
had low enrichment of ESC but high enrichment of HSC 
signatures. StC4 displayed the lowest enrichment of both 
ESC and HSC signatures. We defined the enrichment score 
of the ESC signature in a tumor as the average enrichment 
scores of the three ESC signatures in the tumor, denoted as 
the ESC score. Similarly, the enrichment score of the HSC 
signature was calculated as the average enrichment scores 
of the three HSC signatures, termed the HSC score. As 
expected, ESC and HSC scores were significantly different 

among the four subtypes: StC1 > StC2 > StC3 > StC4 for 
ESC and StC3 > StC1 > StC2 > StC4 for HSC (K–W test, 
P = 0) (Fig. 1B). Additionally, the ratios of HSC to ESC 
signatures, defined as HSC score divided by ESC score, 
were also significantly different among the four subtypes: 
StC3 > StC1 > StC2 > StC4 (P = 0) (Fig. 1B).

We compared four 10-year endpoints (OS, DSS, DFI, 
and PFI) among the four subtypes, revealing a nearly con-
sistent pattern: StC3 > StC4 > StC1 > StC2 for OS, and 
StC4 > StC3 > StC1 > StC2 for the other three endpoints 
(Fig. 1C). This pattern underscores significant prognostic 
disparities among these stemness subtypes. Specifically, 
StC3 exhibited the most favorable OS; StC4 displayed the 
best PFI outcome. In contrast, StC2 displayed the poorest 

Fig. 3  Comparisons of clinicopathologic features among the stemness 
subtypes of pan-cancer. A The proportions of early-stage (stage I-II) 
tumors and low-grade (G1-2) tumors, and the response (complete 
or partial response) rates to chemotherapy among the four stemness 
subtypes in TCGA pan-cancer. Chi-square test, P < 0.001. B  Com-

parisons of the ratios of HSC/ESC signatures between early-stage and 
late-stage cancer cells in BRCA, low-grade and high-grade cancer 
cells in GBM, and primary and metastatic cancer cells in SARC. The 
one-tailed Mann–Whitney U test P values are shown
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OS, DSS, DFI, and PFI, with StC1 likely following as the 
second poorest in these endpoints. Intriguingly, StC2 and 
StC3 exhibited opposite patterns in the expression of both 
ESC and HSC signatures, yet StC2 had the worst progno-
sis compared to StC3, which had the best OS prognosis. 
These findings indicate that the expression of ESC signa-
tures may serve as an adverse prognostic factor, whereas 
the expression of HSC signatures appears to be a positive 
prognostic indicator. Indeed, the tumors with high ESC 
scores (> median) displayed significantly worse outcomes 
than those with low ESC scores (< median) across all four 
endpoints (P < 0.001) (Fig. 1D). Conversely, tumors with 
high expression of HSC signatures demonstrated signifi-
cantly improved outcomes in all four endpoints compared 
to those with low HSC signature expression (P < 0.001) 
(Fig. 1D). Similarly, tumors with high ratios of HSC/ESC 
signatures exhibited markedly better prognosis than those 
with low ratios across all four endpoints (P = 0) (Fig. 1D).

To explore whether the significant correlation between 
the enrichment of ESC and HSC signatures, or the ratio 
of HSC/ESC signatures, and prognosis was confounded 
by other variables, such as age, sex, and tumor stage, we 
conducted multivariate survival analyses using the multi-
variate Cox proportional hazards model. These analyses 
confirmed that the ESC signature remained a significant 
risk factor, while the HSC signature and ratio of HSC/
ESC signatures served as protective factors in pan-cancer 
(Fig. 1E and Supplementary Fig. S1).

Furthermore, we compared the enrichment levels of ESC 
and HSC signatures between tumor and normal samples. 
This analysis revealed that tumor samples exhibited higher 
enrichment levels of ESC signatures than normal samples, 
while the enrichment levels of HSC signatures in tumor 
samples were lower than those in normal samples (Supple-
mentary Fig. S2).

3.2  Distribution of the stemness subtypes 
across individual cancer types

For individual cancer types, there were the highest propor-
tions of BLCA, BRCA, CESC, COAD, HNSC, LUAD, 
LUSC, READ, TGCT, THYM, and UCS in StC1, the 

highest proportions of DLBC, ESCA, LIHC, OV, SKCM, 
STAD, and UVM in StC2, the highest proportions of 
ACC, CHOL, GBM, KICH, KIRC, KIRP, LGG, MESO, 
LUAD, PAAD, PCPG, PRAD, SARC, and THCA in StC3, 
and the highest proportions of LAML and UCEC in StC4 
(Fig. 2A). Notably, most CESC (84.7%), LUSC (86.7%), 
TGCT (93.0%) and UCS (91.2%) tumors belonged to StC1, 
indicating the high enrichment of both ESC and HSC sig-
natures in these cancer types. StC2 harbored all DLBC and 
most of ESCA (85.4%), LIHC (81.2%), OV (94.5%), and 
UVM (97.5%) tumors, suggesting the high enrichment of 
ESC but low enrichment of HSC signatures displayed in 
these cancer types. In contrast, StC3 was dominated by 
most of KICH (97.0%), KIRC (97.0%), KIRP (94.5%), LGG 
(95.1%), PAAD (82.7%), PCPG (98.9%), PRAD (93.2%), 
and THCA (98.8%) tumors, suggesting the low enrichment 
of ESC but high enrichment of HSC signatures shown in 
these cancer types. Finally, StC4 contained all LAML cases, 
indicating the low enrichment of both ESC and HSC signa-
tures in this cancer type. Interestingly, approximately 70% 
of squamous cell carcinomas, such as CESC, HNSC, and 
LUSC, were classified into StC1 (Fig. 2B), highlighting their 
high stemness. Moreover, a majority (96.2%) of kidney can-
cers, including KIRC, KICH, and KIRP, were grouped into 
StC3 (Fig. 2B). It suggests that kidney cancers have high 
enrichment of HSC signatures but low enrichment of ESC 
signatures.

We further compared the enrichment scores of ESC and 
HSC signatures and their ratios across the 33 TCGA can-
cer types (Fig. 2C). The analysis demonstrated that LAML, 
UCEC, PCPG, KICH, LGG, KIRP, and KIRC had the 
lowest median ESC scores, as compared to TGCT, UCS, 
CESC, LUSC, COAD, HNSC, and BLCA having the high-
est median ESC scores. Meanwhile, LAML, UCEC, DLBC, 
ESCA, STAD, and OV had the lowest median HSC scores, 
while UCS, KIRC, KICH, PRAD, PAAD, KIRP, and THCA 
had the highest median HSC scores. The ratios of HSC/ESC 
signatures exhibited similar trend to HSC scores. This analy-
sis indicated that the cancer types with more favorable prog-
noses like kidney cancer, prostate cancer, thyroid cancer, and 
low-grade gliomas, showed a high enrichment of the HSC 
signature as well as a high ratio of HSC/ESC signatures. 
Contrastively, upper gastrointestinal cancer (such as esopha-
geal, gastric, and liver cancer) and several gynecologic can-
cer (such as endometrial and ovarian cancer) displayed low 
enrichment of the HSC signature and a low ratio of HSC/
ESC signatures.

3.3  Correlates of the stemness subtypes 
with clinicopathologic features in pan‑cancer

Among the four stemness subtypes, the proportion of 
early-stage (stage I-II) tumors followed the pattern: StC3 

Fig. 4  Comparisons of genome instability and intratumor heteroge-
neity among the stemness subtypes of pan-cancer. Comparisons of 
TMB (A), CNA scores (B), G-scores (C), and ITH scores (E) among 
the four stemness subtypes. The G-scores were calculated by GIS-
TIC2 [43]. Heatmap (D) and scatter plots (F) show that ESC scores 
have significant positive correlations with MSI (D), TMB (D), CNA 
(D), and ITH scores (F), while HSC scores have significant nega-
tive correlations with MSI, TMB, CNA, and ITH scores in pan-can-
cer. TMB: tumor mutation burden, CNA: copy number alterations, 
ITH: intratumor heterogeneity, MSI: microsatellite instability. The 
Kruskal–Wallis test P values (A, B, E) and the Spearman correlation 
coefficients (ρ) and P values (D, F) are shown
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(74.0%) > StC4 (73.0%) > StC1 (52.4%) > StC2 (29.2%) 
(Chi-square test, P = 3.0 ×  10−59) (Fig. 3A). Additionally, a 
similar trend was observed in the proportion of low-grade 
tumors (G1-2) (Fig. 3A). These results conform to the prog-
nostic difference among these subtypes. We further explored 
the association of the stemness subtypes with therapeutic 
responses in pan-cancer. Notably, StC4 exhibited the high-
est response rate (94.4%) to chemotherapy (P = 3.0 ×  10−16) 
(Fig. 3A). It is justified since StC4 has the lowest stemness 
signatures to facilitate chemotherapy response [47].

We further explored the association between stemness 
and clinicopathologic features in several cancer single-cell 
datasets. We observed that the ratios of HSC/ESC signatures 
were elevated in cancer cells of early-stage tumors compared 
to those in late-stage tumors in BRCA (P = 0.05) (Fig. 3B). 
In another dataset for GBM, the ratios of HSC/ESC sig-
natures were markedly higher in cancer cells of low-grade 
tumors than in those of high-grade tumors (P = 3.6 ×  10−5) 
(Fig. 3B). Furthermore, in SARC, the ratios of HSC/ESC 
signatures were significantly higher in cancer cells of 
primary tumors compared to those of metastatic tumors 
(P = 1.8 ×  10−4) (Fig. 3B). These findings substantiate the 
notion of the ratio of HSC/ESC signatures being a positive 
prognostic factor in tumors.

3.4  Correlates of the stemness subtypes 
with molecular features in pan‑cancer

Both increased TMB and CNAs reflect genomic instabil-
ity [48]. We found TMB of the four stemness subtypes 
following the pattern: StC2 > StC1 > StC3 > StC4 (K–W 
test, P = 2.0 ×  10−279) (Fig. 4A), and CNA scores follow-
ing the pattern: StC2 > StC1 > StC4 > StC3 (K–W test, 

P = 6.3 ×  10−215) (Fig. 4B). Additionally, G-scores of copy 
number amplifications and deletions followed the same pat-
tern as CNA scores (Fig. 4C). Furthermore, ESC scores 
showed significant positive correlations with both TMB 
and CNA scores in pan-cancer, whereas HSC scores dem-
onstrated significant negative correlations with both TMB 
and CNA scores (Fig. 4D). Moreover, ESC and HSC scores 
were observed to have significant positive and negative cor-
relations, respectively, with microsatellite instability (MSI) 
scores evaluated by MSIsensor [49] in pan-cancer(P < 0.001) 
(Fig. 4D). Collectively, these results indicate that the enrich-
ment of ESC and HSC signatures positively and negatively 
correlates with genomic instability, respectively. Notably, 
The ITH scores by DEPTH [20] were the highest in StC2 
and the lowest in StC3, suggesting that the enrichment of 
ESC and HSC signatures positively and negatively corre-
lates with ITH, respectively (P = 0) (Fig. 4E). Indeed, ESC 
scores displayed a positive correlation with ITH scores in 
pan-cancer (Spearman correlation, ρ = 0.13; P = 3.8 ×  10−33), 
while HSC scores showed a negative correlation with ITH 
scores (ρ = -0.44; P = 0) (Fig. 4F).

Furthermore, we compared the somatic mutation profiles 
among the four stemness subtypes. Figure 5 A displayed 
top ten genes with the highest mutation rates in each sub-
type. TP53 showed the highest mutation rate (52%) in StC1 
and the lowest mutation rate (20%) in StC3, despite being 
the most frequently mutated gene in StC3. PTEN, PIK3CA, 
ARID1A, APC, KRAS, and FAT4 exhibited the highest muta-
tion rates in StC4 among the four subtypes.

Transcriptome analysis demonstrated that the enrich-
ment scores of the mismatch repair, homologous recom-
bination, and cell cycle signatures followed the pattern: 
StC1 > StC2 > StC3 > StC4 (P = 0) (Fig. 5B), aligning with 
the pattern of the enrichment scores of the ESC signature. 
It is rationalized as increased tumor stemness is linked to 
heightened genomic instability and cell proliferation poten-
tial in cancer [7]. In contrast, the enrichment scores of the 
epithelial-mesenchymal transition (EMT) and angiogenesis 
signatures followed the pattern: StC3 > StC1 > StC2 > StC4 
(P = 0) (Fig. 5B), consistent with the enrichment pattern of 
the HSC signature. The positive association between the 
EMT and angiogenesis signatures and the HSC signature 
is imaginable since the HSC signature tends to be enriched 
in the tumor stromal microenvironment. Additionally, tran-
scriptome analysis identified marker genes for each stemness 
subtype (Fig. 5C and Supplementary Table S3). Based on 
these markers, we determined biological processes enriched 
in the subtypes using the GO database by g: Profiler [50]. 
StC1 showed enrichment in developmental process, embry-
onic morphogenesis, embryo development, and tissue 
homeostasis, in line with the high enrichment of both ESC 
and HSC signatures in this subtype. StC2 was enriched for 

Fig. 5  Comparisons of molecular features among the stemness 
subtypes of pan-cancer.  A  Comparisons of somatic mutation pro-
files among the four stemness subtypes in pan-cancer. The onco-
plot displays top ten genes having the highest mutation rates in 
each subtype. B  Comparisons of the enrichment scores of mis-
match repair, homologous recombination, cell cycle, epithelial-
mesenchymal transition (EMT) and angiogenesis signatures among 
the four stemness subtypes. The Kruskal–Wallis test P values are 
shown. C Heatmap shows the expression levels of marker genes for 
each of the four stemness subtypes in pan-cancer (two-tailed Stu-
dent’s t test, FDR < 0.01). The gene ontology (GO) biological pro-
cess (BP) enriched in the stemness subtypes are shown on the right 
(FDR < 0.05). D  Left: comparisons of global methylation levels 
among the four stemness subtypes in pan-cancer. The mean global 
methylation level and error bar of each subtype are shown. Right: the 
scatter plots show that HSC scores have significant positive correla-
tions with global methylation levels, while ESC scores have signifi-
cant negative correlations with global methylation levels in pan-can-
cer. The one-tailed Mann–Whitney U test P values and the Spearman 
correlation coefficients (ρ) and P values are shown. * P < 0.05, *** 
P < 0.001, ns not significant
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metabolic process, inflammatory response, regulation of 
blood coagulation, and humoral immune response. StC3 
displayed enrichment in nervous system development, blood 
circulation, blood vessel development, angiogenesis, regula-
tion of transporter activity, and extracellular matrix organi-
zation. StC4 was enriched for immune system process, and 
embryonic skeletal system development (Fig. 5C).

DNA methylation analysis demonstrated that global 
methylation levels [51] were the highest in StC3 and the 
lowest in StC2 (P < 0.001) (Fig. 5D). It suggests that the 
HSC and ESC signatures correlate positively and negatively 
with global methylation levels, respectively. We further con-
firmed this conclusion by Spearman rank correlation tests 
(Fig. 5D).

3.5  Correlates of the ESC and HSC signatures 
with antitumor immune responses 
and immunotherapy responses

We found that HSC scores and ratios of HSC/ESC signa-
tures correlated negatively with immune scores in pan-
cancer (Spearman correlation test, P = 9.2 ×  10−124 and 
1.3 ×  10−119, respectively) (Fig.  6A). Furthermore, the 
ratios of immunostimulatory to immunosuppressive signa-
tures (pro-inflammatory/anti-inflammatory cytokines and 
M1/M2 macrophages) showed negative correlations with 
HSC scores and ratios of HSC/ESC signatures, while they 
displayed positive correlations with ESC scores (Fig. 6A). 
These results suggest that heightened enrichment of HSC 
and ESC signatures is associated with decreased and 
increased antitumor immune responses, respectively. Previ-
ous results have demonstrated that the enrichment of HSC 
and ESC signatures has significant correlations with ane-
uploidy and TMB, which have been revealed to correlate 
significantly with antitumor immune responses [17]. Hence, 
the significant correlations between HSC and ESC signa-
tures and antitumor immune responses could be associated 
their associations with aneuploidy and TMB. To explore 
this conjecture, we respectively predicted immune scores, 
ratios of pro-inflammatory/anti-inflammatory cytokines and 
ratios of M1/M2 macrophages (high (> median) versus low 
(< median)) using four variables: ESC score, HSC score, 
CNA score, and TMB, by logistic regression analyses. These 
analyses showed that ESC score and HSC score were sig-
nificant positive and negative predictors of the two ratios 
of immunostimulatory to immunosuppressive signatures, 
respectively. HSC score was a significant negative predic-
tor of immune scores (β = -1.05; P = 1.4 ×  10−46), while 
ESC score showed a positive trend in predicting immune 
scores, albeit not significant (β = 0.13; P = 0.06) (Fig. 6B). 
These findings imply that the correlations of HSC and ESC 

signatures with antitumor immune responses are likely inde-
pendent of their associations with aneuploidy and TMB.

We further analyzed correlations of HSC and ESC sig-
natures with anti-PD-1/PD-L1 immunotherapy responses in 
several cancer cohorts. In six cancer cohorts, HSC scores 
appeared higher in non-responsive than in responsive 
cancers (P < 0.1) (Fig. 6C). Likewise, ratios of HSC/ESC 
signatures showed the same trend in five cancer cohorts 
(P < 0.1) (Fig. 6C). However, ESC scores were likely higher 
in responsive than in non-responsive cancers in four cancer 
cohorts (P < 0.1) (Fig. 6C). In a single-cell transcriptome 
dataset for RCC [31], we also observed higher ESC scores 
in cancer cells from ICB-responsive tumors than in those 
from ICB-non-responsive tumors (P < 0.001) (Fig. 6D). 
Conversely, ratios of HSC/ESC signatures were markedly 
lower in cancer cells from ICB-non-responsive tumors than 
in those from ICB-responsive tumors (P < 0.001). However, 
there was no significant difference of HSC scores between 
these two groups (P = 0.29) (Fig. 6D). In summary, these 
results suggest that the enrichment of HSC and ESC signa-
tures is negatively and positively associated with immuno-
therapy responses, respectively.

3.6  Correlates of the ESC and HSC signatures 
with clinicopathologic and etiological factors 
in pan‑cancer

We found ESC scores to be higher in late-stage than in 
early-stage cancers (P = 0.02). In contrast, HSC scores and 
ratios of HSC/ESC signatures were significantly lower in 
late-stage than in early-stage cancers (P = 2.8 ×  10−10 and 
4.0 ×  10−9, respectively) (Fig. 7A). In addition, ESC scores 
were notably higher in high-grade compared to low-grade 
cancers (P = 2.9 ×  10−13), while the ratios of HSC/ESC 
signatures were significantly lower in high-grade than in 
low-grade cancers (P = 2.9 ×  10−4) (Fig. 7B). These results 
further support that the ESC signature, HSC signature, and 
ratio of HSC/ESC signatures is a negative, positive, and 
positive prognostic factor in cancer, respectively.

Aging, tobacco, and viral infection [52–54] are common 
cancer risk factors. Interestingly, ESC and HSC scores 
exhibited significant, albeit opposing, correlations with 
ages in pan-cancer (Spearman correlation test, P < 0.001) 
(Fig. 7C). The ratios of HSC/ESC signatures showed a 
marked negative correlation with ages in pan-cancer 
(P = 6.8 ×  10−58). Smokers displayed notably higher ESC 
scores than non-smokers in pan-cancer (P = 4.5 ×  10−24), 
while the ratios of HSC/ESC signatures were signifi-
cantly higher in non-smoker than in smoker cancers 
(P = 3.0 ×  10−5) (Fig. 7D). Viral infections are important 
etiological factors for several cancers, such as human 
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papillomavirus (HPV) for HNSC and CESC, hepatitis 
B virus (HBV) for LIHC, and Epstein–Barr virus (EBV) 
for lymphoma and nasopharyngeal cancers. Remarkably, 
HPV/HBV/EBV-positive cancers had higher ESC scores 

than negative cancers in pan-cancer, while the former 
group showed lower HSC scores and ratios of HSC/ESC 
signatures than the latter group (P < 0.1) (Fig. 7E). In 
addition, females demonstrated significantly higher ESC 

Fig. 6  Correlations of ESC and HSC signatures with antitumor 
immune responses and immunotherapy responses. A The bar charts 
show the correlations of ESC scores, HSC scores and ratios of HSC/
ESC signatures with immune scores, M1/M2 macrophages and pro-
inflammatory/anti-inflammatory cytokines in pan-cancer. The Spear-
man correlation P values are shown. B  Logistic regression analysis 
show that ESC score and HSC score are a positive and negative pre-
dictor of ratios of pro-inflammatory/anti-inflammatory cytokines, 
ratios of M1/M2 macrophages, and immune scores, respectively, after 

correcting for TMB and CNA. The standardized regression coeffi-
cients (β) and P values are shown. C  The correlations of HSC and 
ESC signatures and their ratios with anti-PD-1/PD-L1 immunother-
apy responses in several cancer cohorts. NSCLC: non-small cell lung 
carcinoma, UC: urothelial cancer, TNBC: triple-negative breast can-
cer. The one-tailed Mann–Whitney U test P values are shown. D The 
correlations of HSC and ESC signatures and their ratios with ICB 
responses in a scRNA-seq dataset for RCC. ICB: immune checkpoint 
blockade. The one-tailed Mann–Whitney U test P values are shown
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scores but lower HSC scores and ratios of HSC/ESC sig-
natures than males in pan-cancer (P = 0.01, 1.3 ×  10−6 and 
1.6 ×  10−14, respectively) (Fig. 7F).

Hypoxia, a fundamental trait of cancer, significantly 
influences cancer development [55]. Of note, hypoxia 
scores showed a significant positive, negative, and nega-
tive correlation with ESC scores, HSC scores, and ratios of 
HSC/ESC signatures, respectively (Fig. 7G). The expres-
sion of TERT (telomerase reverse transcriptase), vital for 
telomere structure and length maintenance [56], displayed 
a significant positive, negative, and negative correlation 
with ESC scores, HSC scores, and ratios of HSC/ESC 
signatures, respectively (P < 0.001; ρ = 0.35, -0.32 and 
− 0.50, respectively) (Fig. 7H). It indicates that the ESC-
like signatures are associated with telomere lengthening in 
cancer cells, while the HSC-like signatures are related to 
telomere shortening. Additionally, the expression of ESR1 
(estrogen receptor 1) and AR (androgen receptor) were 
positively correlated with HSC scores and ratios of HSC/
ESC signatures, while AR expression levels were nega-
tively correlated with ESC scores (Fig. 7I). Furthermore, 
the ratios of ESR1/AR displayed a notable positive correla-
tion with ESC scores and negative correlations with HSC 
scores and ratios of HSC/ESC signatures. These findings 
align with the previous observation that females tend to 
have higher ESC scores and lower HSC scores and ratios 
of HSC/ESC signatures than males in pan-cancer.

3.7  Validation of the stemness signatures‑based 
subtyping method in proteomics data

Furthermore, we performed a hierarchical clustering 
analysis of pan-cancer based on the enrichment scores 
of the six stemness signatures in proteomics data [40]. 
Consistent with the result from transcriptomics data, we 
identified four subtypes of pan-cancer, also termed StC1, 
StC2, StC3, and StC4, respectively (Fig. 8A). Likewise, 
we identified the marker proteins for each stemness sub-
types (Supplementary Table S4). We also identified bio-
logical processes enriched in the subtypes based on the 

marker proteins using the R package “clusterProfiler” [57] 
(Fig. 8B). Specifically, StC1 was enriched for the biologi-
cal processes representing active molecular activities and 
DNA repair, such as DNA replication, regulation of DNA 
repair, RNA splicing, RNA catabolic process, regulation 
of translation, and protein folding. It aligns with StC1 hav-
ing high enrichment of both ESC and HSC signatures. 
StC2 showed enrichment in immune activities, including 
positive regulation of innate immune response, lympho-
cyte proliferation, antigen processing and presentation. It 
is consistent with the transcriptomics analysis indicating 
an enrichment of immune signatures in StC2. StC3 was 
enriched for processes involving regulation of angiogen-
esis, extracellular matrix organization, and regulation of 
wound healing, in accordance with the transcriptomics 
analysis result. StC4 exhibited enrichment in regulation 
of autophagy, and endosomal transport, similar to the find-
ing from transcriptomics data.

Taken together, these analyses suggest that the stemness 
signatures-based subtyping method for pan-cancer is repro-
ducible at the protein level.

4  Discussion

This study has identified four distinct subtypes of TCGA 
pan-cancer based on the enrichment of six stemness signa-
tures associated with ESCs and HSCs. Each subtype dis-
plays unique molecular and clinical features. The subtype 
StC3, characterized by low enrichment of ESC but high 
enrichment of HSC signatures, has the best OS, the lowest 
aneuploidy level, ITH and TP53 mutation rate, the highest 
enrichment of the EMT and angiogenesis signatures, and 
the highest global methylation levels. This subtype con-
tains a majority of kidney, pancreatic, prostate, thyroid, and 
lower grade glioma tumors. In contrast, the subtype StC2, 
characterized by high enrichment of ESC but low enrich-
ment of HSC signatures, has the worst prognosis, the high-
est aneuploidy level, tumor mutation loads and ITH, and 
the lowest global methylation levels. This subtype involves 
all DLBC and most of esophageal, liver, ovarian, and uveal 
melanoma tumors. StC1, characterized by high enrichment 
of both ESCs and HSCs signatures, has the second worst 
prognosis, the highest TP53 mutation rate (52%), the highest 
enrichment of DNA mismatch repair, homologous recom-
bination, and cell cycle signatures, and the second highest 
levels of genomic instability. StC1 harbors most squamous 
cell cancers, testicular germ cell tumors, and uterine car-
cinosarcomas. StC4 is characterized by the lowest enrich-
ment of both ESC and HSC signatures; this subtype has 
the best progression-free survival, the highest response 
rate to chemotherapy, the lowest tumor mutation loads, the 

Fig. 7  Correlations of ESC and HSC signatures with clinicopatho-
logic and etiological factors in pan-cancer. Comparisons of HSC 
scores, ESC scores and ratios of HSC/ESC signatures between early-
stage and late-stage (A), low-grade and high-grade (B), smoker and 
non-smoker (D), HPV/HBV/EBV-positive and -negative (E), and 
female and male (F) cancers, respectively. Correlations of HSC and 
ESC signatures and their ratios with age (C), hypoxia scores (G), 
TERT mRNA abundance (H), and the expression levels of ESR1, AR 
and their ratios (I). ESR1: estrogen receptor 1, AR: androgen receptor. 
The one-tailed Mann–Whitney U test P values are shown in (A, B, D, 
E, F), and the Spearman correlation coefficients (ρ) and P values are 
shown in (C, G, H). *** P < 0.001, ns not significant
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most frequent mutations in PTEN, PIK3CA, ARID1A, APC, 
KRAS, and FAT4, and the lowest enrichment of DNA mis-
match repair, homologous recombination, cell cycle, EMT, 
and angiogenesis signatures. StC4 contains all acute myeloid 
leukemia cases.

This analysis further demonstrated that the ESC signa-
ture is a risk factor, while the HSC signature and ratio of 
HSC/ESC signatures are protective factors in cancer. Factors 

such as aging, smoking and viral infections appear to be 
associated with an increased enrichment of ESC signatures 
but a decreased enrichment of HSC signatures and the ratio 
of HSC/ESC signatures in cancer. A significant distinc-
tion between ESCs and HSCs is their different properties 
of cell divisions. ESCs expand themselves by symmetrical 
cell divisions [58], while HSCs maintain a balance between 
self-renewal and differentiation by asymmetric cell divisions 

Fig. 8  Validation of the stemness signatures-based subtyping method 
in proteomics data. A Hierarchical clustering identifies four stemness 
subtypes (StC1, StC2, StC3 and StC4) based on protein expression 
profiles in pan-cancer. B  Enrichment plots show the biological pro-

cesses enriched in the four subtypes using GO database by the R 
package “clusterProfiler.” Each protein-coding gene is shown as gray 
pie. The biological processes were identified using a threshold of 
FDR < 0.05
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[59]. Disruption of asymmetric cell divisions of stem cells 
may facilitate neoplastic transformation of stem cells [60]. 
Hence, the differences in prognostic associations between 
the ESC and HSC signatures could be attributed to their 
distinct properties of cell divisions. It has been reported 
that several proteins play key roles in maintaining asym-
metric cell divisions, including Par3, Par6, aPKC, NUMA, 
LGN, Gαi, and Prospero [61]. Notably, we found that the 
expression levels of the genes encoding these proteins likely 
had negative correlations with ESC scores but significant 
positive correlations with HSC scores and ratios of HSC/
ESC signatures in TCGA pan-cancer. In addition, p53 dys-
function can promote a shift from asymmetric to symmetric 
cell divisions [62]. We observed that TP53-mutated tumors 
had significantly higher ESC scores but significantly lower 
HSC scores and ratios of HSC/ESC signatures compared 
to TP53-wildtype tumors in TCGA pan-cancer. These data 
support that the ESC and HSC signatures are associated with 
increased and reduced symmetric cell divisions in cancer. 
Indeed, MKI67, a marker for proliferation, showed a sig-
nificant positive expression correlation with ESC scores and 
negative expression correlations with HSC scores and ratios 
of HSC/ESC signatures in TCGA pan-cancer (ρ = 0.50, 
-0.39, and − 0.66, respectively).

Indeed, in addition to HSCs, MSCs and NSCs are tissue-
specific stem cell types. MSCs have been reported to induce 
EMT in cancer cells [63–65]. We found that the enrichment 
levels of MSC signatures were positively correlated with 
the degree of stemness in the four subtypes, indicating that 
higher stemness might promote EMT in cancer. NSCs are 
primarily associated with brain tumors, and our findings 
showed that the enrichment levels of NSC signatures were 
the highest in StC3, aligning with the distribution of LGG 
and GBM primarily in StC3. Furthermore, we incorporated 
MSC and NSC signatures into clustering analysis, but could 
not identify stemness-related subtypes clearly. We further 
explored the impact of MSC and NSC signatures on cancer 
patients’ prognosis. It was observed that the patients with 
high MSC scores exhibited poorer survival outcomes com-
pared to those with low MSC scores, while the opposite 
result was shown for NSC signatures. Nevertheless, the asso-
ciation between MSC or NSC signatures and survival was 
not as significant as those between HSC and ESC signatures 
and survival in pan-cancer (Supplementary Fig. S3).

An interesting finding is the negative correlation between 
HSC scores and tumor immune infiltration levels, while 
ESC scores exhibit a positive correlation with them. This 
finding appears inconsistent with reports from previous 
studies [7, 18, 24]. However, a previous report [14] has 
demonstrated that solid tumors accumulate immunosup-
pressive hematopoietic lineages within the tumor micro-
environment. Another study has suggested that activation 
of HSC signatures can promote immunosuppression within 

the pre-metastatic niche of tumors [66]. Additionally, we 
utilized the CIBERSORT algorithm [67] to calculate the 
proportions of tumor immune cell infiltrations. We found 
that HSC scores and the ratios of HSC/ESC signatures were 
negatively correlated with the proportions of CD8 T cells, 
activated memory CD4 T cells, T follicular helper cells, 
M0 macrophages, M1 macrophages, and activated dendritic 
cells. However, ESC scores were positively correlated with 
the proportions of these immune cells. These data to some 
extent support our finding that high HSC scores or ratios of 
HSC/ESC signatures are associated with enhanced resist-
ance to immunotherapy in tumors.

To conclude, this study performed a novel classification 
of pan-cancer in the context of HSC and ESC signatures 
and identified four stemness subtypes. Besides stemness 
features, these subtypes display different molecular and 
clinical characteristics, including genome integrity, ITH, 
methylation levels, tumor microenvironment, tumor pro-
gression phenotypes, chemotherapy and immunotherapy 
responses, and survival prognosis. The ESC signature is an 
adverse prognostic factor in cancer, while the HSC signature 
and ratio of HSC/ESC signatures are favorable prognostic 
factors. The HSC and ESC signatures-based subtyping of 
cancer provides new insights into tumor biology and has 
potential clinical implications for diagnosis, prognosis, and 
treatment of cancers.
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