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Abstract
Background  In addition to their pivotal roles in coagulation and thrombosis, platelets are crucial in tumor progression, 
with plenty of clinical and experimental data demonstrating that the interplay of platelets and tumor cells is essential for 
hematogenous tumor metastasis. After detach from primary sites, tumor cells intravasate into the blood circulation becom-
ing circulating tumor cells and induce platelet activation, aggregation and encasement around tumor cells to form micro 
tumor thrombi, which create a permissive tumor microenvironment for metastasis. Platelets in micro tumor thrombi protect 
tumor cells from immune surveillance and anoikis (detachment-triggered apoptosis) through various pathways, which are 
significant for tumor cell survival in the bloodstream. Moreover, platelets can facilitate tumor metastasis by expediting 
epithelial-mesenchymal transition (EMT), adhesion to the endothelium, angiogenesis, tumor proliferation processes and 
platelet-derived microvesicle (PMV) formation.
Conclusions  Here, we provide a synopsis of the current understanding of the formation of micro tumor thrombi and the role 
of micro tumor thrombi in tumor hematogenous metastasis based on the tumor-platelet interplay. We also highlight potential 
therapeutic strategies targeting platelets for tumor treatment, including cancer-associated platelet-targeted nanomedicines.
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1  Introduction

The prognosis of tumor patients has substantially improved 
due to standardized therapy, including surgical excision, 
chemotherapy and radiotherapy. However, the develop-
ment of metastasis, which represents advanced disease, has 
become the major cause of cancer-related death [1]. There-
fore, unraveling the mechanism of tumor metastasis is of 
great importance to improve the prognosis of patients with 
advanced tumors. Hematogenous tumor metastasis com-
monly involves the following events: (i) invasion of tumor 
cells into the extracellular matrix (ECM) of primary sites 
and intravasation; (ii) escape from immune surveillance and 
acquisition of anoikis resistance, which are vital for circu-
lating tumor cells (CTCs) survival in blood circulation; and 

(iii) adhesion to blood vascular endothelium, extravasation 
and invasion of metastatic sites, in which tumor cells adapt 
to the new microenvironment and proliferate (Fig. 1).

Generated from megakaryocytes in bone marrow, plate-
lets are small enucleated cells circulating in the bloodstream. 
Physiologically, platelets are essential in coagulation and 
thrombosis processes, maintaining the integrity of vascular 
walls. Upon vascular injury, platelets adhere to disrupted 
vascular endothelium through the interaction of (GP)Ibα 
and von Willebrand factor (vWF). Platelet surface integrins 
could bind to collagen on disrupted endothelium surface, 
thus leading to platelet activation and thereafter release of 
ADP, TXA2 and serotonin that facilitate platelet aggrega-
tion. Recently, platelet-derived microvesicles (PMVs) have 
attracted much attention due to their participation in many 
physiological and pathological conditions. In fact, PMVs 
are the major part of microvesicles in blood circulation [2]. 
PMVs are derived from inversion of the plasma membrane 
and carry cytosolic components to the outer space. Due to 
their origin, PMVs contain platelet-derived components 
encapsulated with a lipid bilayer mirroring the platelet mem-
branes. Thus, PMVs could be deemed mediators of platelet 
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functions and play their roles through both internal bioactive 
components and external surface ligands [3].

Patients with tumor thrombi have much higher met-
astatic rates and poorer prognoses than other patients 
[4]. During intravasation, cells within the tumor mass 
can secrete microvesicles that induce tumor-derived 
signatures in platelets [5]. Moreover, those cells could 
detach and intravasate, becoming CTCs. After contact 
with platelets, CTCs can be activated and encased by 
platelets, thus forming a micro tumor thrombi [6, 7]. 
The storage of a plethora of cytokines and platelets has 
recently been indicated to participate in the regulation 
of inflammatory responses, including tumor progres-
sion [8]. During tumor-induced inflammation, platelets 
are the first responding cells because they are small, 
abundant and store numerous bioactive molecules [9]. 
Activated platelets can aid in tumor progression and 
metastasis via various pathways: (i) platelets are able 
to secrete immunosuppressive cytokines and transfer 
inhibitive ligands to the CTC surface to protect CTCs 
from immune surveillance; (ii) platelet derived growth 
factors can facilitate tumor proliferation and EMT; and 
(iii) by regulating immune cells, including neutrophils, 

monocytes and macrophages, platelets create a permis-
sive microenvironment for CTC metastasis.

2 � Micro tumor thrombi formation

During hematogenous metastasis, CTCs in the blood-
stream have to survive in high shear forces and bypass 
immune surveillance to form metastatic foci [10]. To 
escape from shear forces and immune surveillance, tumor 
cells trigger abnormal platelet activation and aggregation 
(tumor cell-induced platelet aggregation, TCIPA), which 
leads to tumor thrombi formation [6, 7]. CTCs achieve this 
via direct cell interaction and secretion of tumor-derived 
releasates (Fig. 2). Podoplanin (PDPN), a membrane pro-
tein expressed on some tumor cells, including osteosar-
coma, squamous cell carcinoma and brain tumors, is the 
ligand of C-type lectin receptor type 2 (CLEC-2), which 
is expressed almost exclusively on platelets [11–13]. 
Through such direct binding, tumor cells can stimulate 
platelets, induce TCIPA, and expedite hematogenous 
tumor metastasis [11, 14, 15]. Studies have shown that 
abrogation of either PDPN or CLEC-2 function could 

Fig. 1   Overview of the tumor hematogenous metastasis process. 
Tumor cells migrate from primary sites and undergo intravasation 
by breaking through the extracellular matrix (ECM) and vascular 
endothelium. In circulation, circulating tumor cells (CTCs) induce 
platelet activation and aggregation. Activated platelets encase CTCs 
to form micro tumor thrombi and protect CTCs from immune surveil-

lance mediated by NK cells. In addition, platelets trigger CTCs to 
undergo the epithelial-mesenchymal transition (EMT) process, during 
which tumor cells obtain mesenchymal traits and enhanced invasive-
ness. Platelets facilitate CTC adhesion to the vascular endothelium 
and extravasation to distal organs, in which tumor cells adapt to the 
local microenvironment and proliferate into metastatic foci



523The role of tumor‑platelet interplay and micro tumor thrombi during hematogenous tumor…

1 3

significantly impede tumor hematogenous metastasis in 
mouse models [12, 16, 17]. Disruption of the PDPN and 
CLEC-2 interaction leads to blockade of platelet and CTC 
adhesion, which is detrimental for CTC survival in the cir-
culation. After direct contact, stimulated platelets secrete 
the chemokines CXCL5 and CXCL7, leading to neutrophil 
recruitment and tumor microenvironment formation [18].

Aside from their direct interactions with cells, tumor 
cells can release numerous mediators (e.g., tissue factor 
(TF) [19], thrombin [20], ADP [21], TXA2 [22], matrix 
metalloproteinases (MMPs) [23], high-mobility group 
box1 (HMGB1) [24], CD97 [25], cancer cell-derived 
IgG [26], and mucins [27]) to initiate platelet activation 
and subsequent micro tumor thrombi formation. In fact, 
patients with tumors are more prone to thrombocytosis 
and elevated biomarkers of platelet activation, and the 
risk of venous thromboembolism in tumor patients is 
much higher than that in the general population (5–15% 
for tumor patients vs. 1–2 cases per 1000 people per year 
in the general population) [11, 28, 29]. Tumor patients 
exhibit overexpression of TF and coagulation factor VII, 
which are critical in the extrinsic coagulation pathway 
[30]. TF expressed on tumor cell membranes and secreted 
as tumor-derived microparticles can initiate the extrinsic 
coagulation pathway by interacting with coagulation factor 
VII and coagulation factor X [19, 31]. Thrombin generated 
from the extrinsic coagulation cascade and some types of 
tumor cells (e.g., pancreatic and lung cancer cell lines) 

can activate platelets and accelerate tumor thrombosis 
[20, 32]. Moreover, a study indicated that platelets could 
upregulate TF expression in ovarian cancer [33], impli-
cating the interplay between tumor cells and platelets 
via TF.

ADP and TXA2 are classical platelet agonists that par-
ticipate in the coagulation cascade and induce thrombosis 
[34]. ADP expressed by tumor cells can interact with platelet 
receptors P2Y12 and P2Y1, which contributes to TCIPA and 
the release of ADP and TXA2, which are stored in platelet 
granules [28]. Increased ADP and TXA2 expression in the 
tumor anoxic microenvironment leads to positive feedback 
in the platelet activation cascade, which is conducive to the 
generation of metastatic foci [21, 22, 32].

MMPs are proteolytic enzymes that participate in ECM 
degradation and remodeling, which are crucial in the pro-
cesses of tumor invasion and metastasis [35]. Interest-
ingly, MMPs derived from tumor cells are indicated to 
elicit platelet activation and TCIPA [36]. MMP-1 released 
from breast cancer cells could foster ADP release, trig-
gering TIPCA through a positive feedback pathway [28]. 
Tumor cell derived MMP-2 can induce TCIPA by binding 
to platelet integrin αIIbβ3 [37, 38]. In turn, activated plate-
lets can release factors that upregulate MMP expression in 
melanoma cells [23]. Moreover, MMPs restored in plate-
let α-granules are released upon platelet activation and can 
degrade the basement membrane, thus supporting tumor 
metastasis [39].

Fig. 2   Schematic diagram of micro tumor thrombi formation. Circu-
lating tumor cells (CTCs) induce platelet activation via direct contact 
and tumor-derived mediators (TF, thrombin and ADP, etc.). Activated 

platelets are capable of encasing CTCs, leading to the formation of 
micro tumor thrombi and the tumor microenvironment
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Some tumor cells can release high-mobility group box 1 
(HMGB1), which binds to platelet toll-like receptor 4 
(TLR4), leading to platelet activation and tumor extravasa-
tion [24]. Both primary and metastatic tumors have been 
suggested to express CD97, which can activate platelets and 
enhance lysophosphatidic acid release, leading to increased 
tumor invasiveness and transendothelial migration [25, 40]. 
In contrast to B lymphocytes, tumor cells have been reported 
to produce immunoglobin G (IgG), which can bind to plate-
let FcgRIIa, thus initiating platelet activation [26, 41]. Shao 
et al. demonstrated that cancer mucins bind to both platelets 
and neutrophils and trigger their mutual activation [27, 42].

Among all the mediators listed above, some could serve 
as biomarkers for cancer-associated thrombosis and are 
related to tumor prognosis. Circulating TF-positive micro-
particles are related to venous thromboembolism in many 
tumor types (including pancreatic cancer, colorectal cancer 
and glioma) [43–45]. High expression of PDPN is associ-
ated with worse prognosis in glioma [46]. Moreover, PDPN 
expression in glioma patients has a positive correlation with 
the D-dimer level [47], which is a classical marker reflecting 
coagulation function.

Overall, tumor cells are capable of inducing platelet acti-
vation by various pathways. Activated platelets surround 
tumor cells and form micro tumor thrombi that are condu-
cive to tumor cell survival in the blood circulation. Rele-
asates from activated platelets recruit leukocytes and form 
tumor niches facilitating tumor development and metastasis.

3 � Role of micro tumor thrombi 
during hematogenous metastasis

3.1 � Immune evasion

Tumor cells entering the blood circulation as CTCs are 
prone to be recognized and eliminated by cytotoxic immune 
cells (e.g., natural killer (NK) and CD8+ T cells) [48]. This 
process is called immune surveillance. CTCs are capable of 
inducing platelet activation and aggregation via direct inter-
action and release of various mediators. Activated platelets 
can encase CTCs via integrins, fibrin, and P-selectin, shield-
ing them physically and immunologically from immune 
surveillance and leading to distant metastasis [14, 42, 49, 
50]. It has been demonstrated that platelets protect CTCs 
from both NK and CD8+ T cells. Nieswandt et al. first used 
thrombocytopenic mice to indicate that platelets impede 
NK-cell-mediated cytolysis of tumor cells [51]. Palumbo 
et al. further substantiated this hypothesis using mice lack-
ing Gαq (a G protein vital for platelet activation) and fibrin 
[52]. Deficiency in any of them resulted in diminished tumor 
cell survival. Moreover, the diminution of tumor cell sur-
vival was obliterated in mice with NK-cell depletion [53]. 

Platelets impede NK-cell-mediated cytolysis via cell contact 
and cytokine interactions [54]. Platelets can transfer ligands 
that are suppressive for NK-cell function to the CTC surface, 
such as MHC class I [55], glucocorticoid-induced TNF-
related protein ligand (GITRL) [56], receptor activator of 
NF-kB ligand (RANKL) [57], and PD-L1 [58]. Placke et al. 
revealed that platelets encasing CTCs could transfer MHC 
class I molecules onto the tumor cell surface, thus disrupting 
immune recognition and immune surveillance by NK cells 
[55]. Recently, Zaslavsky et al. reported that PD-L1-negative 
tumors could escape immune surveillance with the help of 
platelet-derived PD-L1 [59]. In addition to direct contact 
with tumor cells, platelets activated by CTCs can secrete 
transforming growth factor-β (TGF-β), which is capable of 
downregulating NKG2D on NK cells and suppressing antitu-
mor immunity [60]. In fact, it has been reported that platelets 
are the major source of TGF-β in both the tumor microen-
vironment and human body [61–63]. Furthermore, platelets 
express TGF-β-docking receptor glycoprotein A repetitions 
predominant (GARP), which can activate latent TGF-β in 
nearby platelets [61]. In addition to inhibiting NK-cell activ-
ity, TGF-β can convert CD4+ T cells into regulatory T cells 
that lead to immunosuppression in the tumor microenviron-
ment [64]. TGF-β and lactate are major platelet-derived 
mediators that dampen CD4+ and CD8+ T-cell activity [61]. 
Moreover, TGF-β has been proven to be capable of down-
regulating NK-cell function by impeding cytokine produc-
tion and degranulation [60, 65].

As regulators of inflammation, platelets can modulate not 
only NK cells and CD8+ T cells but also neutrophils, mono-
cytes and macrophages [66]. Neutrophils are recruited to 
inflammatory sites via L-selectin and PECAM-1 [66, 67]. 
Activated platelets can trigger neutrophil extracellular trap 
(NET) formation by binding to neutrophils, which is mediated 
by the binding of platelet P-selectin and neutrophil P-selec-
tin glycoprotein ligand-1 (PSGL-1) [68]. Platelet ICAM-
2, CD40L, GPIb and GPIIb/IIa can facilitate the binding 
between platelets and neutrophils [66]. GSF released by tumor 
cells can promote neutrophil production and NET formation 
[69]. Tumor cell-derived HMGB1 is capable of inducing NET 
formation through ligation with RAGE (receptor for advanced 
glycation end products) or TLR4 on neutrophils [70]. In 
addition, tumor-primed platelets could facilitate tumor cell-
induced NET formation [71]. Neutrophil extracellular traps 
(NETs) consist of nuclear or mitochondrial DNA decorated 
by histones and proteins secreted from activated neutrophils 
[72]. Conventionally, the major role of NETs is to assist neu-
trophils in eliminating pathogens [73]. In recent years, NETs 
have been indicated to be involved in tumor progression, dis-
semination and metastasis [74]. CTCs can be entrapped by 
NETs via β1-integrin-mediated interactions, thus preventing 
immune surveillance and promoting tumor thrombosis and 
metastasis [75]. NETs can augment tumor growth through 
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direct alteration of metabolic programming [76]. Recently, 
NETs were found to be engaged in tumor relapse, during 
which NETs could reinvigorate dormant tumor cells and 
lead to metastasis [77]. Monocytes adhered to platelets are 
activated by direct binding and release procoagulant and TF-
positive microvesicles [66]. TF-positive CTCs could activate 
procoagulant proteins and coat themselves with fibrin, which 
led to immune evasion and increased adherence to distant 
sites. Platelet-derived TGF-β suppresses macrophage proin-
flammatory function and may correlate with the polarization 
of the M2 phenotype, which exerts immunosuppressive and 
proangiogenic functions [78, 79]. In general, platelets induce 
CTC immune evasion by interacting with immunocytes in 
direct and indirect manners (Fig. 3).

3.2 � Anoikis resistance

Anokis is a form of programmed cell death due to the loss 
of interaction between the cell and ECM [80]. Platelets were 
indicated to induce CTC anokis resistance by several path-
ways (Fig. 3). Platelet-derived autotaxin converts lysophos-
phatidylcholine to lysophosphatidic acid, which can adhere 
to the CTC LPAR-1 receptor and initiate CTC anokis resist-
ance via the RhoA-Gα12/13-YAP-1 pathway [25, 81, 82]. 
Through initiating RhoA-MYPT1-PP1-mediated YAP1 

dephosphorylation as well as facilitating its nuclear trans-
location, platelets impede apoptosis in tumor cells and 
upregulate gene expression with a prosurvival trait [82]. Li 
et al. reported that plateletderived growth factorBB inhibited 
anoikis and promoted tumor progression via the Hippo/YAP 
signaling pathway [83]. PDGF, a growth factor secreted 
from platelets, has been reported to induce fibroblast apopto-
sis resistance through the Ras/PI3K/Akt pathway [84]. Cacic 
et al. found that platelet microparticles could protect acute 
myelogenous leukemia cells from daunorubicin-induced 
apoptosis via overexpression of miR-125a and miR-125b, 
thus leading to chemotherapy resistance [85].

3.3 � Promotion of proliferation

Platelets can release various mitogenic proteins and 
growth factors to boost tumor cell proliferation [14, 28, 
86], including TGF-β, PDGF, VEGF, platelet factor 4 
(PF4), insulin-like growth factor (IGF)-I, stromal cell-
derived factor-1 (SDF-1) and angiopoietin (Fig. 3). Plate-
let-derived TGF-β can foster tumor growth by binding to 
the tumor cell receptor TGFβR1 in ovarian cancer [62, 87]. 
PDGF receptor (PDGFR) is normally expressed on mes-
enchymal cells, while epithelial tumor cells can express 
PDGFR via the EMT process induced by TGF-β, thus 

Fig. 3   Role of micro tumor thrombi in hematogenous tumor metasta-
sis. Platelets in micro tumor thrombi could induce CTC anokis resist-
ance and immune evasion, allowing CTCs to survive in blood circu-

lation. In addition, platelets in micro tumor thrombi are indicated to 
enhance tumor progression and metastasis via several mechanisms, 
including EMT, tumor proliferation, angiogenesis and adhesion
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leading to a proliferation response to PDGF [88]. VEGF 
released by platelets was indicated to increase tumor cell 
proliferation in breast cancer via interplay with VEGFR-2 
and the integrin signaling pathway [89]. The role of PF4 
in tumor proliferation is controversial. Pucci et al. reported 
that PF4 is a cancer-enhancing endocrine signal and can 
accelerate tumor growth in lung cancer [90]. However, 
Wang et al. demonstrated that PF4 can be a potential anti-
tumor target due to its inhibitory role in tumor angiogen-
esis [91]. Platelet-derived SDF-1 can initiate intracellular 
signaling through several diverse pathways, leading to 
upregulated proliferation in ovarian cancer [92].

In addition to releasing of growth factors, platelets 
can expedite tumor growth by direct contact [39]. The 
interaction of platelet-expressed CLEC-2 and tumor cell-
expressed PDPN can stimulate proliferation in lung cancer 
[93]. Contact of ADP and the P2Y12 receptor expressed on 
platelets results in tumor growth via the ASK1-JNK/P38 
signaling pathway [94].

3.4 � Facilitation of EMT

EMT is a process during which epithelial cells lose their 
epithelial identity and obtain mesenchymal traits, which is 
associated with tumor invasiveness and metastasis [95]. A 
recent study suggested that retarding tumor-platelet cross-
talk using activated platelet-targeting nanoparticles could 
suppress the tumor EMT process and metastasis in breast 
cancer [96]. In fact, platelets were found promote EMT via 
several pathways (Fig. 3) [97]. TGF-β is the major cytokine 
mediating the acceleration of the EMT effect by platelets 
[97, 98]. In ovarian cancer, patients with higher TGF-β lev-
els were found to have elevated platelet counts [97]. Ovar-
ian cancer cells cocultured with platelets showed increased 
TGF-β levels and higher expression of mesenchymal 
markers [97]. The TGF-β type I receptor inhibitor A83-01 
inhibited EMT and platelet-mediated tumor progression 
in vitro and in vivo [97], indicating that platelets induce the 
EMT process via a TGF-β-dependent pathway. Moreover, 
direct platelet-tumor cell interactions were demonstrated 
to synergistically enhance the EMT process and metasta-
sis with platelet-derived TGF-β via the TGF-β/Smad and 
NF-kB pathways in colorectal cancer [98]. In line with this, 
PDPN-CLEC-2 and integrin α2β1 interactions could trig-
ger TGF-β release from platelets and accelerate the EMT 
process [99–101]. In addition to TGF-β, TANK-binding 
kinase 1 (TBK1) mediates the platelet-induced EMT pro-
cess [102]. TBK1 activation paralleled the platelet-induced 
EMT process in mammary carcinoma cells. The platelet-
induced EMT process and NF-kB activation were impeded 
via ablation of TBK1 expression, suggesting that TBK1 is 
involved in platelet-induced EMT and NF-kB signaling.

3.5 � Mediation of tumor cell adhesion

Platelet membranes express various adhesion molecules, 
including integrins (αIIbβIII, α2β1, α5β1, α6β1, αLβ2, αvβ3), 
glycoprotein (GP) Ib-IX-V, CLEC-2, GPVI and P-selectin 
[103–105]. These molecules mediate the adhesion of plate-
lets, endothelial cells, and CTCs [106]. Platelet αIIbβIII and 
P-selectin mediate tumor cell rolling, tethering and stable 
adhesion along the endothelium under dynamic flow con-
ditions [107]. P-selectin has been reported to exert a piv-
otal role in the interaction of platelets, endothelial cells, 
and CTCs [42]. In platelets, P-selectin is normally stored 
in α-granules and can be translocated to the platelet surface 
upon platelet activation, leading to the contact of platelets, 
endothelial cells, and CTCs [108]. In addition, P-selectin 
induces the interaction of platelets, endothelial cells and 
neutrophils by binding to mucins and PSGL-1 [109].

Integrin α6β1 expressed on platelets can bind to ADAM9 
expressed on tumor cells, which induces tumor metastasis 
[110]. Expressed on tumor cells, αvβ3 can facilitate the interac-
tion among tumor cells, platelets and vasculature [111]. When 
it colocalizes with αvβ3, nectin-like molecule 5 (NECL5) is 
capable of inducing tumor cell adhesion of the endothelium 
via contact with CD226 on the platelet surface [112].

As a key receptor for collagen, platelet GPVI can facili-
tate tumor cell adhesion to endothelial cells, promoting 
tumor cell arrest and metastasis [113]. Tumor cell-derived 
galectin-3 could interact with GPVI on platelets to promote 
tumor cell extravasation and metastasis [114].

3.6 � Induction of angiogenesis and modulation 
of endothelial cells

During tumor progression and metastasis, tumor cells 
require angiogenesis to generate new microvessels that pro-
vide sufficient nutrients and growth factors to support tumor 
growth [115]. Platelets have been found to participate in 
both early and advanced stages of cancer during angiogen-
esis and are pivotal in stabilizing neovascularization (Fig. 3) 
[116]. Platelet α-granules contain multiple molecules that 
can regulate angiogenesis and are released upon platelet 
activation [104, 117]. Molecules, including VEGF, PDGF, 
epidermal growth factor (EGF) and basic fibroblast growth 
factor (bFGF), are proangiogenic factors and can induce 
angiogenesis [118]. Moreover, platelet α-granules also con-
tain anti-angiogenic factors, including angiostatin, PF4, 
thrombospondin-1 (TSP1) and endostatin [117]. Platelets 
can release different kinds of angiogenic molecules accord-
ing to external stimuli [117, 119]. Platelets stimulated by 
ADP can expedite the release of proangiogenic factors such 
as VEGF via activation of the PAR1 receptor, while platelets 
stimulated by TXA2 induce the release of antiangiogenic fac-
tors such as endostatin through activation of PAR4 [117]. As 
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an agonist of platelet activation, thrombin also participates 
in angiogenesis by facilitating the release of proangiogenic 
factors as well as increasing the permeability of the endothe-
lial cell barrier [120]. Thrombin-, ADP- and TF-stimulated 
platelets are prone to secrete a plethora of VEGF, which is 
the most efficient proangiogenic factor [121]. PMVs con-
tain plentiful RNAs, receptors and proteins and were shown 
to exert proangiogenic effects just as strong as platelets in 
angiogenesis through the PI3-kinase, Src kinase and ERK 
signaling pathways [49, 122]. In addition to secreting angio-
genic molecules and PMVs, platelets were found to induce 
angiogenesis via direct contact with endothelial cells [123]. 
Integrin αIIbβIII and tetraspanin were reported to participate 
in the direct interaction of platelets and endothelial cells as 
well as in platelet-induced angiogenesis [124].

In addition to the induction of angiogenesis, platelets also 
modulate endothelial cells to facilitate the intravasation and 
extravasation of tumor cells during metastasis. Tumors in 
primary sites induce local angiogenesis to intravasate into 
the blood circulation, since new blood vessels have infirm 
tight junctions and are easy to cross [125]. During this pro-
cess, platelets secrete factors (e.g., VEGF and TGF-β) to 
coordinate angiogenesis and disrupt endothelial cell function 
[126]. After tumor cell intravasation into the bloodstream, 
platelets further promote the transendothelial migration of 
tumor cells, which is the process by which tumor cells cross 
the endothelial barrier. Ward et al. showed that platelet inter-
action with tumor cell CD97 led to bidirectional signaling 
that caused platelet release of ATP and tumor cell activa-
tion of CD97/LPAR dependent RHO signaling [25]. Plate-
let-derived ATP resulted in disruption of endothelial tight 
junction thus increasing vascular permeability [127], while 
RHO signaling activation made tumor cells more invasive. 
The bidirectional signaling mentioned above coordinated 
tumor cell transendothelial migration, which is crucial for 
tumor metastasis.

3.7 � Platelet‑derived microvesicle (PMVs)

Upon activation, platelets can release PMVs that contain 
mRNA, microRNA, DNA, proteins, cytokines, and second 
messengers [128, 129]. As extracellular membrane vesi-
cles, PMVs have been found to promote metastasis through 
multiple mechanisms: (i) delivery of membrane receptors 
to tumor cells and stromal cells; (ii) transfer of mRNA, pro-
tein and second messengers that lead to epigenetic alteration 
in recipient cells; and (iii) direct activation of target cells 
through PMV surface ligands [130]. Recent studies have 
shown that PMVs can transfer their membrane receptors, 
including CXCL4, CD41, CD61 and CD62, to tumor cells 
to increase tumor migration, metastasis and adhesion [128, 
131]. PMVs, which are rich in mRNAs and microRNAs, 
can regulate the gene expression of recipient cells. With a 

plethora of genetic material, PMVs can also regulate the 
gene expression of tumor cells. In an ovarian cancer cell 
line, PMVs induced the EMT process and increased tumor 
progression by delivering miR-939 [132]. In breast cancer 
cells, PMVs delivered TPM3 mRNA to tumor cells, thus 
augmenting tumor invasion [133]. However, another study 
pointed out that PMVs infiltrated solid tumors and trans-
ferred miRNAs to tumor cells to induce apoptosis and inhibit 
tumor growth [134]. In the tumor microenvironment, PMV 
surface phosphatidylserine can bind to the phosphatidylser-
ine receptor on immune cells, thus inhibiting the antitumor 
immune response and initiating an immunosuppressive 
environment [135]. In lung cancer, PMVs acted as a che-
moattractant for 4 of 5 lung cancer cell lines and promoted 
proliferation via the MAPK-p42/44 and PI-3 K-AKT signal-
ing pathways [136].

4 � Therapeutic strategies targeting platelets 
for tumor treatment

Current platelet-based antitumor therapeutic strategies can 
be classified into two major approaches. One method is 
directly abrogating platelet function via antiplatelet agents. 
The other method is delivering antitumor or antiplatelet 
drugs through cancer-associated platelet-targeted nano-
medicines [86, 137]. Antiplatelet agents including non-
steroidal anti-inflammatory drugs (NSAIDs) and antag-
onists targeting integrins, ADP, CLEC-2 and P-selectin 
have shown therapeutic potential for tumor treatment [138, 
139]. For example, the classical antiplatelet agent aspirin 
was found to have an antitumor effect in colorectal cancer 
as early as 1988 [140]. Since then, the antitumor effect 
of aspirin has gradually been extended to other types of 
tumors, including breast cancer, gastric cancer, liver can-
cer, and ovarian cancer [141–143]. Nevertheless, most 
studies focusing on these agents were in the early stage and 
could not reach a unified conclusion. In the ASPREE trial, 
McNeil et al. enrolled 19,114 community-dwelling persons 
with 70 years of age or older and randomly divided them 
into a low-dose aspirin group (100 mg of enteric-coated 
aspirin) and a placebo group [144–146]. The ASPREE 
trial results showed that use of low-dose aspirin caused 
higher risk of death from any cause and higher cancer-
related death compared to placebo, indicating the clini-
cal application of aspirin for primary prevention of tumor 
in patients older than 70 years old should be cautious. 
Moreover, the side effects of antiplatelet agents, includ-
ing hemorrhage and thrombocytopenia, limit their clinical 
application [147]. Strategies targeting downstream signal-
ing following platelet activation, such as TGF-β, PDGF, 
and VEGF signaling, have shown potential therapeutic 
value with better safety profiles [148–150]. Lenvatinib, an 
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inhibitor of VEGF and PDGF receptors, has shown activ-
ity with noninferior efficacy to sorafenib (a first-line treat-
ment for unresectable hepatocellular carcinoma) in terms 
of overall survival in advanced hepatocellular carcinoma 
[151]. Bintrafusp Alfa, a reprogrammed antibody that can 
simultaneously inhibit TGF-β and PD-L1, has been proven 
to exert antitumor effects by overcoming immune evasion 
both in vitro and in vivo [152, 153].

Another category of platelet-based therapy accom-
plishes targeted therapy using cancer-associated platelet-
targeted nanomedicines that could adhere to platelets via 
their platelet adhesion molecules [154]. With the design of 
nanoparticles with antibodies targeting platelet receptors, 
including P-selectin, GPIb and GPIIb/IIIa, tumors can be 
imaged and localized in vivo [155]. Similarly, the coating of 
antitumor agents with platelet membranes has been shown 
to exert tumoricidal effects and is not affected by tumor 
heterogeneity [156]. A P-selectin-targeting peptide was 
applied, and nanoparticles with PSN peptide modification 
exhibited increased accumulation at both the primary tumor 
site and metastases due to their ability to capture activated 
platelets [96]. Therefore, nanoparticles could inhibit tumor 
metastasis in nearly every crucial stage in a consecutive 
manner. Coating of drugs with platelet membranes by using 
mesoporous silica nanoparticles, vascular disruption agents 
and antiangiogenic drugs achieved significant vascular dis-
ruption and antiangiogenic efficacy because the platelet 
membrane could aggregate at the damaged vessel walls of 
the tumor through targeted adhesion [157]. Likewise, the 
TLR agonist R848 coated with platelet membranes initi-
ated a local immune response and caused tumor regres-
sion in colorectal and breast tumor models [158]. Plate-
lets conjugated with anti-programmed cell death-ligand 
1 (aPDL1) antibody could induce an immune response 
and inhibit tumor metastasis in breast tumors through the 
release of aPDL1-decorated PMVs [159]. A type of bioen-
gineered platelet composed of internal-loaded doxorubicin 
and external-loaded aPDL1 has been reported to decrease 
tumor recurrence and metastasis in a postsurgical melanoma 
model [160]. In summary, the major advantages of cancer-
associated platelet-targeted nanomedicines are as follows: 
(i) they protect nanoparticles from elimination in the circu-
lation; (ii) they have relatively high targetability due to the 
close interplay between platelets and CTCs; and (iii) they 
exhibit increased circulation period and loading capacity 
[161]. However, there are still limitations that need to be 
overcome before these cancer-associated platelet-targeted 
nanomedicines can be clinically applied. For example, all 
of these nanomedicines have more or less bleeding risk and 
some nanomedicines are found not only in tumor tissues 
but also in the liver, which may lead to liver toxicity [86]. 
Therefore, the design of more specific and tolerable agents 
is necessary for the clinical application of nanomedicines.

5 � Conclusion

As a critical process during tumor metastasis, tumor cells 
that undergo intravasation become CTCs with no tumor 
stroma component and have to cope with high shear force, 
immune surveillance and anokis to achieve distal metasta-
sis. To survive in the circulation, tumor cells interact with 
platelets to form micro tumor thrombi, during which pro-
cess platelets are activated and educated by direct contact as 
well as the action of tumor cell-derived bioactive molecules. 
Activated platelets then aggregate and encase tumor cells 
to form micro tumor thrombi, interact with tumor cells and 
immune cells to form a permissive tumor microenvironment, 
and foster tumor progression and metastasis through vari-
ous pathways. Therefore, therapies targeting platelets and 
their corresponding signaling pathways have encouraging 
therapeutic prospects for tumor treatment. Unraveling the 
interplay between platelets and tumor cells during micro 
tumor thrombi formation and tumor metastasis will provide 
a deeper understanding of the mechanism of tumor progres-
sion and will be conducive to designing novel therapeutic 
agents that specifically target tumor lesions without apparent 
effects on platelet physiological functions.
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