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Abstract
Background Lung cancer is the second most common cancer and the main cause of cancer-related mortality world-
wide. In spite of various efforts that have been made to facilitate the early diagnosis of lung cancer, most patients
are diagnosed when the disease is already in stage IV, which is generally associated with the occurrence of distant
metastases and a poor survival. Moreover, a large proportion of these patients will relapse after treatment, heralding
the need for the stratification of lung cancer patients in addition to identifying those who are at a higher risk of
relapse and, thus, require alternative and/or additional therapies. Recently, circulating tumor cells (CTCs) have been
considered as valuable markers for the early diagnosis, prognosis and risk stratification of cancer patients, and they
have been found to be able to predict the survival of patients with various types of cancer, including lung cancer.
Additionally, the characterization of CTCs has recently provided fascinating insights into the heterogeneity of
tumors, which may be instrumental for the development of novel targeted therapies.
Conclusions Here we review our current understanding of the significance of CTCs in lung cancer metastasis. We
also discuss prominent studies reporting the utility of enumeration and characterization of CTCs in lung cancer
patients as prognostic and pharmacodynamic biomarkers for those who are at a higher risk of metastasis and drug
resistance.
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1 Introduction

Lung cancer is the second most common cancer worldwide
and the main cause of cancer-related mortality, contributing to
approximately 25.3% of all cancer deaths [1]. Most of the
patients with lung cancer are diagnosed when the disease is
already in stage IV, which is generally associated with daunt-
ing metastases [2, 3]. According to data from 2008 to 2014,
the 5-year survival of lung cancer patients with distant metas-
tases is only 18.6% [1]. This poor prognosis highlights the
importance of diagnosing and treating patients before the es-
tablishment of overt metastases. Importantly, given that nei-
ther surgical resection nor repeated invasive biopsies are part
of standard care in metastatic lung cancer, access to clinically
relevant tissues is limited. Various efforts have been made to
improve the early diagnosis of lung cancer including comput-
erized tomography (CT) scanning [4], bronchoscopy [5] and
sputum cytology analysis [6]. However valuable these diag-
nostics may be, they do not confer further information for risk
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stratification of patients with primary lung cancer for a timely
application of potentially life-saving treatments in those who
are at a higher risk of recurrence and metastasis.

More recently, the detection of circulating tumor cells
(CTCs) has developed into an evident diagnostic and prog-
nostic approach for patients with lung cancer [7]. CTCs are
tumor cells that are shed from the primary tumor and released
into the blood circulation. The migration of CTCs is an early
event in the progression of cancer. Hence, patients with tumor-
free lymph nodes have tested positive for CTCs in their circu-
lation [8]. Therefore, the presence of CTCs in blood allows for
an early diagnosis of asymptomatic tumors. Most of the CTCs
are cleared by cells of the immune system, but a few of them
may survive and reach distant organs and, consequently, es-
tablish metastases [9, 10]. In addition to the fact that the early
diagnosis, detection and enumeration of CTCs in blood her-
alds metastatic spread, it may as well be a strong predictive
factor of disease recurrence in patients with a primary solid
tumor. In this regard, the detection of CTCs has been incor-
porated in recent international tumor staging systems [11].
Due to its non-invasiveness and the possibility of longitudinal
assessments, CTC detection is useful for the evaluation of
cancer progression and assessment of the efficacy of therapies.
As a result, it serves as a tool for monitoring minimal residual
disease. Recent advances have also facilitated the characteri-
zation of the genotypes and phenotypes of CTCs, providing
new insights into the make-up of CTCs as well as the identi-
fication of genetic alterations that may help to predict sensi-
tivity or resistance to anti-cancer drugs. Recent studies on
CTCs obtained from patients with colorectal cancer have,
for instance, indicated a high degree of heterogeneity of
KRAS mutations, which predict inefficiency of EGFR-
targeting therapies in this type of cancer [12, 13]. Other ex-
amples include mutations in EGFR and HER2, which block
the efficacy of therapies that target these particular molecules
in lung [14] and breast [15] cancer, respectively. As “liquid
biopsy”, CTCs represent an attractive alternative source to
tumor biopsies and bone marrow aspirations with a better
patient compliance and being less invasive for monitoring
the changing burden of the disease during tumor progression
or the course of treatment. Hence, CTCs may provide further
complimentary prognostic information and may assist in
clinical decision-making.

Numerous technologies have been developed for the isola-
tion of CTCs, such as separation of tumor cells based on their
physical properties (size and density), the use of microfluidic
devices, or by using immunomagnetic separation methods
[16, 17]. However, clinical validations still need to be carried
out for most of them [18]. To date, the CellSearch technology
is the only US Food and Drug Administration (FDA)-ap-
proved system that has been clinically validated using thou-
sands of samples across multiple research laboratories.
Epithelial markers, such as epithelial cell adhesion molecule

(EpCAM) and cytokeratins (CKs), are usually expressed in
carcinoma cells because they originate from epithelial tissues.
These markers are, however, not expressed in normal blood
cells since these cells have a mesenchymal origin [19, 20].
The CellSearch platform takes advantage of positive immu-
nostaining for EpCAM and negative immunostaining for a
common leukocyte antigen, CD45, to exclude leukocytes.
Currently, CellSearch is considered as the ‘gold standard’
method for the detection of CTCs. It has been used in large
trials and has shown clinical relevance of EpCAM-positive
CTC detection. However, given that EpCAM-negative
CTCs are not detected by the CellSearch system, the develop-
ment of novel technologies to detect both EpCAM-positive
and EpCAM-negative CTCs, especially marker-independent
approaches, is needed [21]. Using the CellSearch system, it
has been found that the detection and enumeration of CTCs
may serve as an independent prognostic factor for
progression-free survival (PFS) and overall survival (OS) of
patients with e.g. breast, colorectal and prostate cancer
[22–24]. Furthermore, culturing CTCs ex vivo and/or the gen-
eration of CTC-derived xenograft (CDX) models through di-
rect implantation of cultured CTCs into recipient mice, have
been found to be helpful to overcome the problem of scarcity
of CTCs and may hold promise for deep sequencing of CTCs
to choose the best therapies over the course of the disease [25,
26]. It has, for instance, been reported that ex vivo culturing
and increasing the number of CTCs taken from breast cancer
patients may allow for deep sequencing of these cells and for
detecting pre-existing mutations in the PIK3CA gene and
newly-acquired mutations in the estrogen receptor gene
(ESR1), among others. Testing of drug sensitivities in these
CTCs with multiple mutations has revealed new therapeutic
targets [25]. Here, we review our current knowledge on the
biology and the application of CTCs in lung cancer in general
(both small-cell lung cancer, SCLC, and non-small-cell lung
cancer, NSCLC). In addition, we elude on the clinical valida-
tion of CTCs as predictive and prognostic markers for this
particular disease.

2 CTCs and the metastatic cascade

CTCs refer to cancer cells that are shed from the primary
tumor into the vasculature and are found at very low levels
in the bloodstream. According to the ‘seed and soil’ hypothe-
sis [27], detached tumor cells or “seeds”, which are now called
CTCs, require favorable environments for seeding. The dis-
semination of tumor cells into the circulation may occur at
early steps of tumor formation and may eventually lead to
blood-borne metastasis [28]. Initially, cancer cells may lose
their connections with adjacent cells and the extracellular ma-
trix (ECM), henceforth allowing them to migrate from their
original location to other sites either through hematogenous
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intravasation or via the lymphatic system [29]. Although
blood-borne spread has been the accepted as a route of cancer
dissemination and distant organ metastasis, dissemination to
the lymphatic system may lead to nodal metastasis [30, 31].
CTCs are able to enter the blood circulation at the end of the
lymphatic transport system because lymphatic vessels eventu-
ally return to the bloodstream via subclavian veins [32]. It has
been found that only 2.5% of CTCs form micro-metastases
and 0.01% are able to form macro-metastasis, a process re-
ferred to as ‘metastatic colonization’ [33]. Therefore, metas-
tasis is an inefficient process, in that only very small amounts
of CTCs are able to finally develop into macro-metastases. It
has been found that CTCs may travel either as single cells or
as clusters of cells (2 to more than 50 cells, known as circu-
lating tumor micro-emboli (CTM)) [34]. Although CTC clus-
ters have been reported to be associated with a worse progno-
sis in locally advanced lung cancer [35] and in other cancers,
including head and neck cancer [36], much remains to be
learned about the nature and clinical relevance of these clus-
ters. During their parallel progression, metastatic cells acquire
features different from their primary tumors [37, 38].
Therefore, the characterization of CTCs may bear relevance
for the identification of patients who may benefit from com-
plementary therapies [39]. When CTCs arrive at the bone
marrow, they are referred to as ‘disseminated tumor cells’
(DTCs). These tumor cells may reside in the bone marrow
for many years, hence creating a ‘tumor reservoir’ [40].
DTCs usually lack the expression of Ki-67, contributing to
their stationary phase and resistance to chemotherapy [41]
and, thereby, facilitating their impending progression to
metastasis.

2.1 Metastasis initiation and CTC formation

In theory, tumor cells may invade the basement membrane,
enter the circulation and disseminate throughout the body via
EMT-mediated or non-EMT-mediated pathways. Via the
EMT-mediated pathway, cancer cells actively take on cellular
programs to interrupt the basement membrane, migrate
through the extracellular matrix (ECM) and enter the blood
circulation. Via the non-EMT pathway, the invasion of cancer
cells into the blood circulation occurs based on centrosome
amplification [42] or on a passive shedding process [43].
Through both pathways, CTCs can leave tumors as single
cells or as clusters. In the following two paragraphs, we de-
scribe the EMT- and non-EMT-mediated mechanisms in-
volved in the formation and dissemination of CTCs (Fig. 1).

2.1.1 EMT-mediated formation and dissemination of CTCs

EMT is considered as a crucial process for the transformation
of epithelial cells into mesenchymal cells, which exhibit a
greater motility and resistance to apoptosis, thereby enabling

efficient invasion into the blood stream and transport to distant
sites to form metastases. EMT is associated with debilitated
cell-cell interactions, apoptosis and anoikis, along with in-
creased drug resistance [44]. EMT-related transcription factors
(EMT-TFs) (Snail-1, Snail-2 (Slug), Twist, ZEB-1) and extra-
cellular molecules (TGFβ, HGF, FGF,Wnt and Notch) secret-
ed from tumor cells and/or inflammatory cells, as well as
specific signaling pathways (Wnt/β-catenin, MAPJ, NF-k
and PI3K) regulate these changes. These changes, which turn
tumor cells into stem-like cells, increase their mobility and
survival, and eventually allow them to invade other tissues
[45, 46]. In addition, these stem-like cells are resistant to che-
motherapy and, as such, they may give rise to cancer
recurrence.

Tumor cells that have undergone EMT have been found to
express different markers. Low expression of epithelial
markers such as EpCAM, cadherin, claudin, plackoglobin
and CK, and high expression of mesenchymal markers such
as vimentin, laminin and N-cadherin are characteristic of
EMT. EpCAM and CK are generally being used to detect
CTCs, although these markers may be insufficient due to the
fact that they may be poorly expressed on CTCs after having
undergone EMT [47]. Recently, studies have been carried out
to detect EMT markers in CTCs of various cancers, including
lung cancer. The identification of these markers may play an
important role in both primary tumor detection and in tumor
metastasis detection. Larsen et al. reported that the expression
of ZEB1 and the resultant induction of EMT is increased in
early stages of tumor formation in patients with non-small cell
lung cancer (NSCLC), and that this marker can be considered
as an important molecular target in reducing the metastasis of
lung cancer and human bronchial epithelial cells (HBECs)
[45]. In another study, Tsoukalas et al. assessed the relation-
ship between immunohistochemical expression of E-cadherin,
vimentin and Ki-67 in tissue microarray (TMA) samples of
121 patients with NSCLC. They observed a direct relationship
between the expression of E-cadherin and the overall survival
rate, and an inverse relationship between the expression of
vimentin and Ki-67 and the overall survival rate, indicating
a role of high vimentin and Ki-67 expression and low E-
cadherin expression in NSCLC progression and metastasis
[48]. To unravel the role of EMT in the dissemination of
CTCs, Yu et al. established a quantifiable RNA-in situ hybrid-
ization (ISH) assay [49]. Using this assay, they assessed cir-
culating breast tumor cells for the expression of seven epithe-
lial markers (CKs -5, -7, -8, -18 and -19, EpCAM and CDH1)
and three mesenchymal markers (FN1, CDH2 and
SERPINE1/PAI1). The found that CTCs exhibit dynamic
changes in epithelial and mesenchymal composition during
tumor progression. Their results indicated that rare primary
tumor cells may simultaneously express epithelial and mesen-
chymal markers. Subsequent serial monitoring of CTCs dur-
ing tumor progression revealed that the mesenchymal markers
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were highly enriched in CTCs occurring both as single cells or
as multicellular clusters (CTM) [49]. These data underscore a
role of EMT in blood-borne metastasis.

The Notch signaling pathway is known to be involved in
processes of normal growth, embryonic development, neuro-
endocrine (NE) hormone production and EMT. Its receptors
include four transmembrane proteins, NOTCH 1–4. Hassan
et al. found that a high expression of NOTCH3, followed by
an increased expression of NOTCH1, Hes1 and Jagged1,
plays a role in NSCLC progression via EMT induction.
Conversely, it was found that this pathway prevents EMT in
small cell lung cancer (SCLC) patients [50].

Fucosyltransferase IV (FUT4) and its synthetic cancer
sugar antigen Lewis Y (LeY) have been found to be
abnormally expressed in many cancers, including lung cancer
[51–54]. FUT4 catalyzes the transfer of Fucose to N-
acetylglucosamine on sugar chains, turning it into an impor-
tant enzyme in the synthesis of LeY. LeY induces the

glycosylation and activation of EGFR and promotes the mi-
gration of tumor cells. Tian et al. [53] revealed a role of
Ginsenoside Rg3 in the inhibition of FUT4, EMT and metas-
tasis, in addition to an decreased activation of EGFR in lung
cancer. Therefore, the direct relationship observed between
high FUT4 expression and EMT in patients with lung cancer
and its important role in metastasis and tumor invasion indi-
cates that FUT4 may be considered as a therapeutic target for
cancer [53].

2.1.2 Non-EMT-mediated formation and dissemination
of CTCs

Although EMT-related tumor metastasis is generally accepted
as an established route for cell invasion and metastasis, non-
EMT routes have also been found to be involved in tumor cell
dissemination [46, 55]. Non-EMT cancer metastasis may oc-
cur through a number of mechanisms and, consequently, lead

Fig. 1 Mechanisms of CTC formation and various CTC subpopulations
existing in the circulation. CTCs can be generated through EMT- or non-
EMT-mediated mechanisms. In the EMT-mediated mechanism, tumor
cells actively undergo different changes at the cellular and molecular
levels, leading to break-down of the basement membrane, migration
across the ECM and entrance into the circulation. In contrast, in the
non-EMT-mediated mechanism, tumor cells travel to the blood via pas-
sive infiltration by external forces or centrosome amplification-mediated

invasion. Through both mechanisms, CTCs can leave the primary tumor as
single cells or as cell clusters. Once entering the circulation, CTCs may be
present as single cells with different EMT phenotypes (a-d) that may
subsequently bind to immune cells, or as clusters of cells with different
EMT phenotypes (e-i) that may be covered by immune or stromal cells.
Reprinted with permission from Creative Commons Attribution (CC BY-
NC 4.0) license [181]
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to the formation of pro-metastatic CTCs [56]. In this regard, it
has been shown that increased Arp2/3-dependent actin poly-
merization and reduced cell-cell adhesion upon centrosome
amplification may convey invasive properties to cancer cells
[55]. Collective migration of cancer cells is known as another
form of non-EMT-associated dissemination [57]. In this pro-
cess, E-cadherin-positive epithelial cell clusters act as invasive
leader cells intravasating into the surrounding vasculature [9].
This collective migration is thought to be a potential contrib-
utor to the successful establishment of metastases and to con-
tribute to the resistance of tumor cells to anoikis-mediated cell
death. These cancer cells retain their epithelial-like character-
istics allowing cell-cell adhesion at distant sites [9, 56, 58].
Interestingly, after intravenous injection of EMT-derived cells
and non-EMT cells, Tsuji and colleagues found that unlike
EMTcells, non-EMTcells were able to initiate lungmetastasis
[59]. In a study conducted by Fischer et al., an EMT lineage
tracing strategy, which was capable of monitoring EMT
in vivo, revealed that breast-to-lung cancer metastasis was
mainly derived from non-EMT tumor cells, contradicting the
original EMT/MET hypothesis [60]. In another study by Zhao
et al. it was found that non-EMT tumor cells maintain their
epithelial phenotype during lung metastasis and that EMT is
dispensable for the establishment of lung metastases [61]. In
addition, migration in vascularized areas inside the tumor
mass, early dissemination at the stage of carcinoma in situ
and passive shedding, which represent other prevalent
routes of cell migration, have been shown to trigger
cancer metastasis [56, 62].

2.2 Dispersion of CTCs into the vasculature

It has been estimated that when CTCs enter the circulation, they
survive for approximately 1–2.5 h [63]. After this time period,
most of the CTCs (specially as single cells) undergo apoptosis
in circulation [64]. It has also been reported that about 1 million
tumor cells may enter the circulatory system every day and that
the immune system clears more than 85% of these cells within
minutes after leaving the original tumor mass [33]. Compared
with single cells, CTC clusters are relatively rare in the circula-
tion, but they are more resistant to apoptosis [65]. So, although
pro-metastatic CTCs are relatively rare in the blood circulation,
they can extravasate through several mechanisms and ultimate-
ly form distant metastases [66].

Within the circulatory system, CTCs are faced with various
factors, including hemodynamic forces of the blood flow, im-
mune responses and endothelial cells lining the vessel walls.
All these factors create a challenge for the survival of CTCs.
Once CTCs enter the blood stream, single tumor cells may be
bound to platelets and/or macrophages, after which the clus-
ters may be further covered by platelets, macrophages and/or
reactivated stromal cells [55]. Therefore, an increased platelet
count (thrombocytosis) is often observed in many cancer

types. The attachment of CTCs to platelets yields aggregated
platelets, a process that is termed tumor cell-induced platelet
aggregation (TCIPA) [67]. TCIPA plays a key role in the sur-
vival of the tumor cells in circulation. CTCs trigger TCIPA by
direct contact or through the release of agonistic mediators,
such as ADP, thrombin, TXA2 or tumor-associated protein-
ases [68]. Platelets are activated in TCIPAs and, as a conse-
quence, bind to the surface of CTCs through GPIIb-IIIa-
fibrinogen bridges, and are up-regulated by P-selectin [68].
It has been shown that by treating mice with a highly specific
antagonist of thrombin, coagulation events are blocked and
lung metastasis is inhibited [69]. The tight coating of CTCs
by activated platelets may help to avoid physical stress and/or
their recognition and destruction through the immune system
[70]. TCIPA also helps CTCs to undergo EMT. Thereby, it
enhances the ability of the tumor cells to resist apoptosis.
Platelets also protect CTCs against natural killer (NK)/T cells
and mediate the enrollment of neutrophils, which further en-
able the adhesion of CTCs to endothelial cells and, hence,
extravasation. In Fig. 2 interactions of CTCs with immune
cells and platelets, resulting in immune escape, are depicted.
In addition to platelets, in the majority of cases CTCs are
associated to neutrophils. In a recent study, Szczebra et al.
isolated and characterized individual CTC-associated neutro-
phils from breast cancer patients and used single-cell RNA
sequencing to compare transcriptome profiles of CTCs asso-
ciated with neutrophils with those of CTCs alone [26]. Their
study revealed a number of differentially expressed genes that
underlie cell cycle progression and trigger metastasis. They
also identified cell-cell junction and cytokine-receptor pairs
that are involved in the clustering of CTCs with neutrophils,
representing key vulnerabilities for therapeutically targeting
metastasis [26].

Tumor cells may also escape from the immune system by
other mechanisms, including down-regulation of the expres-
sion of certain HLA-I types, loss of antigens, alterations in the
expression of MHC molecules, involvement of NK-cell li-
gands, FAS/FAS ligand (FASL)-induced apoptosis, and
immune-checkpoint molecules, such as CD47 and pro-
grammed cell death-ligand 1 (PD-L1) (Fig. 2) [71]. In lung
cancer, immune escape can occur by reducing the expression
of HLA through allele-specific HLA loss events. Loss of het-
erozygosity (LOH) at the HLA locus has been observed in
40% of NSCLC patients. This loss facilitates evasion from
the immune system and allows a cancer to transit to the escape
stage, allowing CTCs to attach to the vascular endothelium,
leave the circulatory system, and survive at distant locations to
form metastases [72].

2.3 Extravasation of CTCs to distant organs

When CTCs are dispersed through blood vessels, they may
become trapped within capillaries due to their small diameters
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(3–8 μm) which are, in general, less than the size of a tumor
cell (9–30 μm) [73]. As such, CTCs can anchor to the luminal
surface of endothelial cells and extravasate through the
subepithelial extracellular matrix (ECM). Given the notion
that CTC clusters may seem too large to pass through narrow
capillaries, it was previously thought that only individual tu-
mor cells can reach distant organs. However, recent studies
have challenged this assumption. Using microscale devices
designed to mimic human capillary constrictions and in vivo
studies, it has been shown that CTC clusters can reversibly be
reorganized into single-file chains and subsequently trans-
verse through capillaries [74, 75].

Interactions between CTCs and endothelial cells during
extravasation occur through ligand-receptor binding pro-
cesses. For example, integrins, which are present on CTC
surfaces, can bind to intercellular adhesion molecule 1
(ICAM-1) or vascular cell adhesion molecule 1 (VCAM-
1) on endothelial cell surfaces. Platelets and leukocytes
mediate this process. Interactions between CTCs and
platelets induce the expression of C-C chemokine ligand
5 (CCL5), which in turn leads to an increase in the re-
cruitment of leukocytes to the CTCs [76]. In addition,
platelet-derived TGF-β and PDGF have been found to
induce EMT in CTCs and to provide CTCs with the mi-
gratory and invasive properties needed to break through
the ECM of blood vessel walls [76]. Leukocytes may act
as linker cells between CTCs and endothelial cells [77].
Cancer cells are capable of producing chemokine ligands
(e.g. CXCL12), which may promote organ-specificity of
metastatic tumor growth depending on expression of the
respective receptors (e.g. CXCR4). This process relates to
how lymphocytes become destined for homing to distant
organs according to chemokine ligand-receptor trafficking
processes.

3 CTC detection and enrichment

Compared to more invasive tests, the detection and sampling
of CTCs in the peripheral blood is easier and more reproduc-
ible. In addition, it has the advantage of a better patient com-
pliance. However, the low number and short half-life of CTCs
are challenging factors that are faced during their separation,
i.e., ~1 CTC may be found among 105–106 peripheral blood
mononuclear cells [18, 78]. Therefore, enrichment of CTCs is
an important step in their detection as well as in their actual
use for the diagnosis and prognosis of cancer. Several methods
have been developed and applied for enriching specific cell
types within blood samples, and some current CTC detection
methods combine a CTC enrichment step with tumor-specific
molecular analyses. Both enrichment and isolation techniques
take advantage of unique characteristics of CTCs. Below, we
will discuss the basic approaches that can be used for these
purposes.

Enrichment/isolation techniques can be classified accord-
ing to their physical and biological characteristics. Both the
enrichment and isolation of CTCs based on their physical
characteristics are encountered with several difficulties due
to the associated cell stress. Therefore, new approaches have
been designed based on the expression of specific proteins,
which can be used with less variation. The two main tech-
niques used for CTC enrichment include density gradient cen-
trifugation, either by Ficoll-Hypaque or by OncoQuick®, and
immunomagnetic enrichment of tumor cells using cell surface
antigens. One disadvantage of immunomagnetic enrichment
is that CTCs are highly heterogeneous in their expression of
antigens [73, 79, 80] and, as a result, methods using EpCAM
as an enrichment marker may miss the population of EpCAM
-negative CTCs [45]. Therefore, it would be more reasonable
to use tumor-specific antigens, for example CD17, for the

Fig. 2 Mechanisms of escape of CTCs from immunity in blood

M. Yousefi et al.36



enrichment of CTCs [81, 82]. Furthermore, CTCs can be iso-
lated by size. A great advantage of isolation by the size of the
tumor cell (ISET) is that by this technique, CTCs are not
modified during the enrichment process. Accordingly, they
can subsequently be used for fluorescence in situ hybridiza-
tion (FISH)- or polymerase chain reaction (PCR)-based char-
acterization methods. The RosetteSep™ system offers a neg-
ative selection of tumor cells by cross-linking unwanted blood
cells to erythrocytes, thereby simplifying their removal during
density gradient centrifugation [82].

The CellSearch system is the ‘gold standard’
immunocytological diagnostic technique for the detection of
CTCs. This system is based on antibodies that have been
generated against specific epithelial markers, such as
EpCAM, CK19, CK18 and CD45, to exclude leukocytes
[83]. The measurements are attained according to fluores-
cence microscopy. This system allows a sensitive and positive
capture of CTCs through utilizing EpCAM coated with
ferrofluids [83]. The CellSearch system is a widely used sys-
tem with many advantages, providing prognostic information
with respect to PFS and OS [15]. However, it suffers from a
number of disadvantages, including a low sensitivity and a
failure to detect EpCAM-negative cells [84, 85]. That is why
recent strategies are focused on the development of
marker-independent methods. These methods are not on-
ly able to detect both EpCAM-positive and EpCAM-
negative CTCs, but can also better detect CTC clusters,
which are considered imperative in the process of me-
tastasis. The OHSV1-hTERT-GFP technique has been
used to detect CTCs in lung cancer patients and its
sensitivity was compared with that of the CellSearch
system. In doing so, more CTCs were detected using
the oHSV1-hTERT-GFP technique compared to the
CellSearch system, which suggests a relatively high sensitiv-
ity of the former technique. [86]. The Nanoelectromechanical
Chip (NELMEC) technique represents a new nano-based
method to differentiate whole tumor cells (WTCs) and
chymase-positive mast cells (MCTCs) from white blood cells
(WBCs) without the need for labeling and marking. In addi-
tion, it is devoid of the problems confronted in the EMT pro-
cess. This technique is based on the use of SiNG/Au
nanoelectrodes and is able to separate CTCs fromWBCs with
a capture yield of 92% to 97% [87].

The Fiber-Optic Array Scanning Technology (FAST) is
based on a fast scanning technique, which is widely used for
the rapid detection of CTCs by analyzing 300,000 cells per
second. This technique has the ability to examine large vol-
umes of samples as well as the ability to detect CTCs using
antigen-agnostics and size-agnostics. An automated digital
microscopy (ADM) platform and a laser raster are used in this
technique. It has also been shown to be able to detect PD-L1
and vimentin surface markers in patients with NSCLC
[88, 89].

Two other diagnostic methods for detecting CTCs may be
used, including flow cytometry and immunofluorescence as-
says. A high specificity along with multiple parameters
(DNA-content, cellular markers and cell size) are considered
important advantages of the flow cytometry method. The de-
tection of heterogeneous CTCs by immunomagnetic nano-
spheres modified with antibodies against EpCAM and folate
receptor α (FRα) markers in NSCLC cells by applying fluc-
tuation cytometry and immunofluorescence techniques have
been shown to yield a high sensitivity and a high performance
in diagnosis. Hence, this evidently indicates the implication of
flow cytometry for the detection of CTCs [90]. Epithelial
Immuno-SPOT (EPISPOT) and enzyme linked immunosor-
bents, which are used to detect specific secretion proteins
(CK19, PSA, HER2 and VEGF), can detect non-apoptotic
and viable cells with a high sensitivity relative to the
CellSearch system [81, 91, 92]. It has been found that an
active subset of breast cancer cells with metastatic properties
can be detected by the presence of CK19 proteins via the
EPISPOT assay (63).

Nucleic acid-based diagnostic techniques (RNA and DNA)
and aptamers represent yet other strategies widely used for the
detection of CTCs in conjunction with surface markers [93,
94]. Several studies have been carried out to detect FR+-CTCs
using LT-PCR techniques in lung cancer patients. FR is a
glycoprotein receptor that can be found on the surface ofmany
tumor cells, including ovarian and lung cancer cells [95, 96].
The basis of this technique is labeling CTCs with conjugated
ligands or tumor-specific oligonucleotides and, subsequently,
performing PCR. This technique has shown a high sensitivity
(81.8%) and specificity (93.2%) for the detection of CTCs
[97]. Quantitative reverse transcription PCR (RT-qPCR) is
another diagnostic technique for the detection of CTCs. One
of the advantages of this technique is a quantitative detection
with a high sensitivity as well as a simultaneous analysis of
more than one marker [98]. In order to detect CTCs with RT-
qPCR, several enrichment steps need to be carried out. The
AdnaTest is a commonly used technique that is based on
immunomagnetic enrichment and, subsequently, CTC detec-
tion using RT-qPCR. As such, the RT-qPCR technique has
been applied to detect NSCLC CTCs using CK7, CK19, fi-
bronectin 1 (FN1) and human epithelial glycoprotein (EGP)
for enrichment [99]. FISH is another technique used for the
detection of CTCs. This method has shown a high sensitivity
(75.0%) and specificity (100%) for the detection of CTCs in
the cerebrospinal fluid (CSF) of patients with lung cancer
meningeal metastasis [100].

The isolation of platelet-covered CTCs may be another
interesting approach to capture CTCs. Compared to conven-
tional CTC isolation/enrichment methods, which are depen-
dent on the presence of surface markers on tumor cells,
platelet-targeted isolation can be applied to capturing CTCs
of both epithelial and mesenchymal phenotypes. In a recent
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study by Jiang et al., free platelets were first depleted by
means of hydrodynamic size-based sorting, followed by
immuno-affinity-based isolation of platelet-covered CTCs
with antibodies directed against human platelets (CD41 HB-
Chip) or CTCs (EpCAM HB-Chip) via a herringbone micro-
mixing device. This method enabled the isolation of CTCs
from 66% of lung cancer, 60% of breast cancer and 83% of
melanoma (mesenchymal) samples tested [101]. The various
systems for the detection of CTCs are listed in Table 1.

4 CTCs as diagnostic and prognostic factors
in lung cancer

During the last decade, there has been a pressing need for the
development of non-invasive, blood-based biomarkers for the
early diagnosis and prognosis of human cancers, as well as for
the monitoring of therapeutic responses. The fact that CTCs
can be found in blood samples of patients with a primary
tumor before the establishment of an overt metastasis, has
been an impetus for continued studies to grasp hypothesis-
generating information on the predictive and prognostic sig-
nificance of CTCs in patients with lung cancer. In this regard,
various approaches have been developed to detect CTCs in
blood of cancer patients and to evaluate their correlation with
the course of the disease. In this section, we will mainly focus
on state-of-the-art translational studies, which have been de-
voted to unraveling the prognostic significance of CTCs in
patients with lung cancer, with the ultimate aim to carry them
to clinical application.

4.1 CTCs and early diagnosis of lung cancer

As mentioned above, thus far most studies performed on
CTCs have been focused on the risk stratification and prog-
nosis of patients with an established diagnosis of cancer.
However, tumor cells may disseminate through the circulatory
system years before a diagnosis is even made. Based on this
notion, several studies have considered CTCs as the ‘Achilles
heel’ of this cancer entity and asked whether sensitive detec-
tion methods may permit the early diagnosis of lung cancer.

In 2009, Tanaka et al. reported a first detailed study on the
diagnostic significance of CTCs in patients with a suspicion or
a diagnosis of primary lung cancer using the CellSearch sys-
tem [102]. They detected CTCs in 17 of 88 (19.3%) stage I
patients. According to their study, although the CTC counts
were significantly higher in patients with lung cancer than in
nonmalignant patients, its discriminatory capacity was insuf-
ficient in performance, with an area under each receiver oper-
ating characteristic curve (AUC-ROC) of 0.598 compared to
the moderate performance of serumCEA (AUC-ROC, 0.747).
This insufficient capacity was mainly attributable to a low
sensitivity and a negative predictive value of CTC detection

among patients. It is important to note that the CTC status was
significantly competent in predicting tumor progression as
well as in predicting the occurrence of impeding metastasis
(AUC-ROC, 0.783), whereas the detection of serum CEAwas
insufficient. Therefore, the most important advantage of CTC
evaluation in early stage lung cancer may be the prediction of
micro-metastases, which are undetectable using conventional
diagnostic methods.

In another study, Ilie et al. attempted to examine the pres-
ence of CTCs in chronic obstructive pulmonary disease
(COPD) patients devoid of any clinically detectable malignan-
cy. The purpose was to identify patients with COPDwho were
at a high risk for lung cancer [103]. COPD and lung cancer
share a common pathophysiology, and it has been shown that
the presence of COPD, even in its early stage, is a risk factor
for NSCLC [104]. According to their study, CTCs were de-
tected in 5 of 168 (3%) COPD patients. Furthermore, one to
four years after the detection of CTCs, CT scan screening
revealed lung nodules in these patients, which ultimately led
to the histopathological diagnosis of early-stage lung cancer
and subsequent surgical resection. Interestingly, follow-up of
these patients by CT scan and ISET one year after surgical
resection revealed no tumor recurrence. This result highlights
the importance of early diagnosis in the efficacy of tumor
management.

4.2 Enumeration of CTCs as a prognostic factor
in SCLC and NSCLC

Allard et al. reported the first proof-of-principle on the possi-
bility to enumerate CTCs in lung cancer patients using the
CellSearch platform [21]. They used this platform to analyze
964 samples from different cancer patients, including 90 with
lung cancer. Their results revealed that 36% of all samples and
nearly 20% of samples from patients with metastatic lung
cancer showed positive CTC counts at baseline. The baseline
was defined as ≥2 CTCs in 7.5 ml blood. This study was a
prelude to consider the incorporation of CTCs as biomarkers
in clinical trials for lung cancer patients. However, they did
not report on the prognostic significance of CTC positivity in
the patients, nor specified whether these samples were obtain-
ed from patients with SCLC or NSCLC. Subsequent studies
indicated that the median number of CTCs in blood of patients
with SCLC is relatively high (28; range, 0–44,9) [105], while
this number is smaller in NSCLC patients (1; range, 0–146)
[106]. The abundance of CTCs in blood of patients with
SCLC concurs with the rapid doubling time, the metastatic
proficiency and the aggressive behavior of SCLC [107], and
supports a rationale for studying CTCs independently in
SCLC and NSCLC.

Amongst human solid tumors, SCLC is an exemplary can-
cer entity that initially is relatively sensitive to chemotherapy,
but invariably relapses with a fatal chemo-resistant phenotype
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[107]. Therefore, it is of utmost importance to develop new
tools to monitor minimal residual disease in this malignancy
before the establishment of macroscopic metastases. Although
often considered as a neuroendocrine tumor, SCLC is an ep-
ithelial tumor expressing epithelial markers along with neural
and endocrine markers [108]. The first studies using
unvalidated manual technologies for the detection of epithelial
markers in blood revealed CTCs in a small number of SCLC
patients. The results, however, were not robust enough to
prove the significance of CTCs in the studied patients [109,
110]. In 2009, Hou et al. published a first report on the use of
the CellSearch system for the detection and enumeration of
CTCs in 88 SCLC patients undergoing standard chemothera-
py [105]. They also noted CD56 positivity in the CTCs, there-
by confirming their neoplastic origin. They found that CTCs
were detectable in 86% of the patients and their enumeration
was found to serve as a strong prognostic marker for patient
survival and for monitoring therapy response as determined
by univariate analysis. In addition, they found that patients
without detectable CTCs exhibited early stages, raising the
question whether CTC enumeration is capable of stratifying
patients according to chemoradiotherapy outcome.
Importantly, the number of CTCs was found to decrease in
all patients after one cycle of chemotherapy, suggesting that
CTCs may serve as pharmacodynamic biomarkers for SCLC.
Therefore, CTC detection may help to identify high risk
SCLC patients prone to metastatic relapse.

In 2011, Krebs et al. published a first study reporting the
prognostic significance of CTCs in patients with NSCLC
using the CellSearch system [106]. Using blood samples ob-
tained from 101 patients with previously untreated stage III
and IV NSCLC, they found that CTCs were detectable in
21% of the patients with advanced NSCLC at baseline (≥ 2
CTCs in 7.5 ml blood). In addition, they found that the num-
bers of CTCs were higher in patients with stage IV NSCLC
compared to stage IIIA and IIIB patients. They also assessed
the prognostic capacity of CTC enumeration in NSCLC (cutoff
≥ 5 CTCs) and found that both PFS and OS were higher in
patients with fewer than five CTCs compared to patients with
five or more CTCs. Using multivariate analysis, they showed
that CTC enumeration was the strongest predictor of OS.
Interestingly, they found that the hazard ratio prominently in-
creased with the incorporation of a second CTC enumeration
following one cycle of chemotherapy [106]. More recently,
Lindsay et al. explored the use of CTCs as prognostic markers
in 125 patients with treatment-naive stage IIIb-IVNSCLCwho
were prospectively recruited for CellSearch analysis. In line
with previous reports, this study validated a prognostic cutoff
of ≥ 5 CTCs through OS analysis and confirmed the clinical
utility of CTC enumeration as an independent and strong prog-
nostic factor for patients with advanced NSCLC [111].
Although both of these studies are considered as early indica-
tions for a 5 CTC-cutoff in NSCLC, they are consistent with

previous validated reports for breast, colorectal and prostate
cancer, which led to FDA approval of the CellSearch system
for the enumeration of CTCs in these cancers [22, 23, 112].
Although additional clinical studies have reported the prognos-
tic significance of CTC enumeration in NSCLC using the
CellSearch system, the numbers of patients in these studies
were small and validation was lacking (Table 2).

5 Characterization of CTCs as potential
biomarkers for therapy response
and targeting of lung cancer

Molecular characterization of CTCs in peripheral blood can be
employed for real-time cancer monitoring and patient evalua-
tion [113]. As such, CTCs may have a great potential as bio-
markers for prognosis assessment. CTCs may also serve as
biomarkers for novel targeted therapies aimed at inhibiting
metastatic recurrence and improving patient management
[114]. Since CTCs have been found to be derived from clones
of the primary tumor [16], theymay reflect tumor burden at all
stages of its development. Thus, in addition to playing a po-
tential role in early diagnosis and prognosis, CTCs may also
be used for the detection of genetic and immunophenotypic
changes during tumor progression. As such, CTC characteri-
zation may be instrumental for the development of new
targeted therapies [17, 18]. A particularly important attribute
of blood sampling is that it is safe and can be performed
repeatedly, whereas repeated invasive procedures, including
bone marrow aspiration, may result in limited patient compli-
ance. A limitation of using CTCs to monitor disease progres-
sion and therapy response may be their scarcity among blood
cells. Recent findings have, however, shown that in vitro cul-
turing of CTCs and/or the generation of cell-derived xeno-
grafts (CDXs) may help to overcome this limitation. Such
strategies may result in sufficient starting material for CTC
characterization via e.g. deep sequencing. Recent work has,
for example, shown that CTCs from patients with either
chemo-sensitive or chemo-refractory SCLC can form tumors
in immune-compromised mice, and that deep sequencing re-
vealed that somatic mutations are stably maintained between
primary patient tumors and CDXs. Consequently, the resultant
CDXs were found to reflect the donor patient’s responses to
etoposide and platinum and recapitulated the evolving drug
sensitivities of the patients [115, 116].

Various studies have shown that molecular characterization
of tumor cells may facilitate the specific targeting of oncogen-
ic variations in patients with advanced NSCLC [117, 118].
But, since the sizes of tumors related to NSCLC are usually
small, molecular screening may be a challenge, especially
when carried out during early stages of the disease as well as
during the course of treatment with e.g. tyrosine kinase inhib-
itors (TKIs). Maheswaran et al. noted an increase in the

M. Yousefi et al.40



Ta
bl
e
2

R
ep
or
ts
on

th
e
C
T
C
de
te
ct
io
n/
en
um

er
at
io
n
in

pa
tie
nt
s
w
ith

lu
ng

ca
nc
er

us
in
g
th
e
C
el
lS
ea
rc
h
an
d
IS
E
T
m
et
ho
d

G
ro
up

(R
ef
.)

Pr
im

ar
y
tu
m
or

M
et
ho
d

S
iz
e
of

co
ho
rt

D
et
ec
tio

n
ra
te
(%

)
S
en
si
tiv

ity
(%

)
S
pe
ci
fi
ci
ty

(%
)

R
es
ul
ts

Ta
na
ka

et
al
.[
10
2]

SC
L
C
/N
SC

L
C

C
el
lS
ea
rc
h

15
0

30
.6
%

71
.0

83
.0

In
su
ff
ic
ie
nt

ca
pa
bi
lit
y
of

th
e
C
T
C
te
st
in

th
e
di
sc
ri
m
in
at
io
n
be
tw
ee
n
lu
ng

ca
nc
er

an
d
no
nm

al
ig
na
nt

di
se
as
es
/C

T
C
co
un
ts
ig
ni
fi
ca
nt
ly

in
cr
ea
se
d
al
on
g
w
ith

tu
m
or

pr
og
re
ss
io
n

A
lla
rd

et
al
.[
21
]

N
ot

sp
ec
if
ie
d

C
el
lS
ea
rc
h

99
20
%

–
–

N
o
pr
og
no
st
ic
si
gn
if
ic
an
ce

w
ith

th
e
de
te
ct
io
n
of

C
T
C
s.

W
an
g
et
al
.[
17
0]

SC
L
C

C
el
lS
ea
rc
h

96
50
.0

–
–

Se
ru
m

ne
ur
on
-s
pe
ci
fi
c
en
ol
as
e
(N

SE
)
w
as

fo
un
d
to

be
as
so
ci
at
ed

w
ith

C
T
C
th
re
sh
ol
ds
/

no
si
gn
if
ic
an
td

if
fe
re
nc
es

w
er
e
ob
se
rv
ed

fo
r
an

as
so
ci
at
io
n
of

an
y
th
re
sh
ol
d
C
T
C

co
un
tw

ith
th
e
tr
ea
tm

en
tr
es
po
ns
e

N
or
m
an
n
et
al
.[
17
1]

SC
L
C

C
el
lS
ea
rc
h

60
90

–
–

C
T
C
s
ha
ve

a
us
ef
ul

pr
og
no
st
ic
ro
le
in

ex
te
ns
iv
e
SC

L
C
,b
ut

on
ly

th
e
ch
an
ge

of
th
e
C
T
C

co
un
ta
ft
er

th
e
fi
rs
tc
yc
le
of

ch
em

ot
he
ra
py

pr
ov
id
es

cl
in
ic
al
ly

re
le
va
nt

in
fo
rm

at
io
n

H
ou

et
al
.[
17
2]

SC
L
C

C
el
lS
ea
rc
h

88
86

–
–

K
re
bs

et
al
.[
10
6]

N
SC

L
C

C
el
lS
ea
rc
h

10
1

21
26

10
0

C
T
C
s
ar
e
de
te
ct
ab
le
in

pa
tie
nt
s
w
ith

st
ag
e
IV

N
SC

L
C

L
in
ds
ay

et
al
.[
11
1]

N
SC

L
C

C
el
lS
ea
rc
h

12
5

40
.8

–
–

T
he

ba
se
lin

e
pr
es
en
ce

of
≥5

to
ta
lC

T
C
s
in

ad
va
nc
ed

N
SC

L
C
co
nf
er
s
a
po
or

pr
og
no
si
s/
C
T
C
s
fr
om

th
e
E
G
FR

-m
ut
an
tN

SC
L
C
ex
pr
es
se
s
E
M
T
ch
ar
ac
te
ri
st
ic
s,
no
t

se
en

in
th
e
C
T
C
s
fr
om

pa
tie
nt
s
w
ith

th
e
K
R
A
S-
m
ut
an
ta
de
no
ca
rc
in
om

a
H
ir
os
e
et
al
.[
17
3]

N
SC

L
C

C
el
lS
ea
rc
h

33
36
.4

–
–

T
he

en
um

er
at
io
n
of

C
T
C
s
co
ul
d
be

a
us
ef
ul

pr
ed
ic
tiv

e
fa
ct
or

fo
r
th
e
ef
fe
ct
iv
en
es
s
of

cy
to
to
xi
c
ch
em

ot
he
ra
py

in
pa
tie
nt
s
w
ith

m
et
as
ta
tic

N
SC

L
C

Pu
nn
oo
se

et
al
.[
17
4]

N
SC

L
C

C
el
lS
ea
rc
h

41
78

–
–

T
he

gr
ea
te
r
se
ns
iti
vi
ty

fo
r
th
e
m
ut
at
io
n

de
te
ct
io
n
w
as

ob
se
rv
ed

in
ct
D
N
A
ra
th
er

th
an

in
th
e
C
T
C
s
an
d
th
e
de
te
ct
ed

m
ut
at
io
ns

w
er
e
st
ro
ng
ly

co
nc
or
da
nt

w
ith

th
e
m
ut
at
io
n
st
at
us

in
th
e
m
at
ch
ed

tu
m
or
/t
he

co
rr
el
at
io
n
be
tw
ee
n
de
cr
ea
se
s
in

th
e
C
T
C
co
un
ts
an
d
ra
di
og
ra
ph
ic
re
sp
on
se

by
ei
th
er

th
e
FD

G
-P
E
T
or

R
E
C
IS
T
in

pa
tie
nt
s
w
ith

ad
va
nc
ed

N
SC

L
C

M
ui
ne
lo
-R
om

ay
et
al
.[
17
5]

N
SC

L
C

C
el
lS
ea
rc
h

43
41
.9

–
–

T
he

hi
gh

le
ve
ls
of

to
ta
lC

K
po
si
tiv
e
ev
en
ts
w
er
e
as
so
ci
at
ed

w
ith

a
po
or

pr
og
no
si
s
in

th
e

gr
ou
p
of

pa
tie
nt
s
w
ith

<
5
C
T
C
s.
R
eg
ar
di
ng

th
e
th
er
ap
y
an
d
m
on
ito
ri
ng
,t
he

pa
tie
nt
s

pr
es
en
tin
g
w
ith

in
cr
ea
se
d
le
ve
ls
of

C
T
C
s
du
ri
ng

th
e
tr
ea
tm

en
td
em

on
st
ra
te
d
lo
w
er
O
S

an
d
PF

S
ra
te
s

Ju
an

et
al
.[
17
6]

N
SC

L
C

C
el
lS
ea
rc
h

37
24

–
–

C
T
C
s
≥2

at
th
e
ba
se
lin

e
w
er
e
de
te
ct
ed

in
on
ly

24
%

in
th
is
gr
ou
p
of

pa
tie
nt
s
w
ith

ad
va
nc
ed

N
SC

L
C
as

w
el
la
s
a
po
or

pe
rf
or
m
an
ce

st
at
us
/N
o
si
gn
if
ic
an
td

if
fe
re
nc
es

w
er
e
ob
se
rv
ed

in
th
e
PF

S
an
d
O
S
be
tw
ee
n
th
e
pa
tie
nt
s
w
ith

or
w
ith

ou
tC

T
C
s
at
th
e

ba
se
lin
e

C
hu
da
sa
m

et
al
.[
17
7]

N
SC

L
C

C
el
lS
ea
rc
h

23
80
.6

–
–

T
he

pr
es
en
ce

of
C
T
C
s
an
al
yz
ed

by
Sc
re
en
C
el
ld

id
no
tn

ec
es
sa
ri
ly

le
ad

to
a
po
or
er

pr
og
no
si
s
in

th
e
pa
tie
nt
s
w
ith

lu
ng

ca
nc
er

af
te
r
cu
ra
tiv

e
su
rg
er
y

H
of
m
an

et
al
.[
17
8]

N
SC

L
C

C
el
lS
ea
rc
h
/I
SE

T
21
0

69
–

–
T
he

pr
es
en
ce

of
C
T
C
s
de
te
ct
ed

by
bo
th

th
e
C
el
lS
ea
rc
h
an
d
IS
E
T
co
rr
el
at
ed

ev
en

be
tte
r

w
ith

a
sh
or
te
r
D
FS

at
a
un
iv
ar
ia
te
an
d
m
ul
tiv

ar
ia
te
le
ve
l/
th
e
C
el
lS
ea
rc
h
an
d
IS
E
T
ar
e

co
m
pl
em

en
ta
ry

m
et
ho
ds

fo
r
th
e
de
te
ct
io
n
of

C
T
C
s
in
pr
eo
pe
ra
tiv

e
ra
di
ca
ls
ur
ge
ry

fo
r

N
SC

L
C

H
of
m
an

et
al
.[
17
9]

N
SC

L
C

IS
E
T

20
8

49
–

–
T
he

pr
es
en
ce

an
d
le
ve
lo

f
50

or
m
or
e
ci
rc
ul
at
in
g
no
nh
em

at
ol
og
ic
ce
lls

(C
N
H
C
)
ar
e

as
so
ci
at
ed

w
ith

a
w
or
se

su
rv
iv
al
in

pa
tie
nt
s
w
ith

re
se
ct
ab
le
N
SC

L
C

Is
ob
e
et
al
.[
18
0]

N
SC

L
C

C
el
lS
ea
rc
h

24
33
.3

–
–

T
he

pr
es
en
ce

of
C
T
C
s
w
as

co
rr
el
at
ed

w
ith

th
e
po
si
tiv

ity
of

th
e
E
G
FR

m
ut
at
io
n
in

cf
D
N
A

Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer 41



sensitivity of detecting EGFR mutations in CTCs using a
CTC-chip [14]. Subsequently, they used a Scorpion amplifi-
cation refractory mutation system (SARMS) to detect EGFR
mutations in both circular tumor DNA (ctDNA) and CTCs, as
well as for the detection of primary tumor sample mutations.
From 27 NSCLC patients tested, 20 were found to harbor
EGFR mutations in the tumor samples and in 19 of them
(95%) CTCs with EGFRmutations were detected. Other stud-
ies were carried out to test various methods such as real time-
PCR and melting curve analysis (sensitivity 100%) [119],
next-generation sequencing (sensitivity 84%) [120] and
SARMS (sensitivity 50%) [121]. Detecting EGFR mutations
in CTCs may improve the prognosis of NSCLC patients,
whereas longitudinal molecular screening of CTCs gives
may lead to the detection of new mutations underlying e.g.
therapy resistance. Maheswaran et al. were, for example, able
to recognize an exon 20 T790M EGFR hot spot mutation in
64% of the NSCLC patients who suffered from relapse after
EGFRTKI treatment [14]. Yafang Liu et al. conducted a com-
prehensive meta-analysis and demonstrated that EGFR muta-
tions can be detected in CTCs with a high specificity (99%)
and sensitivity (91%), and an additional AUC-ROC of 0.99
illustrated a high diagnostic performance of CTCs for the de-
tection of EGFRmutations [122]. Sundaresan et al. found that,
while CTC- and ctDNA-based genotyping failed to detect the
T790M EGFR hot spot mutation in 30% and 20% of the
patients harboring this mutation in their tumor, the combined
use of these two assays enabled its detection in all patients
from whom a blood sample was available [123]. Moreover,
using these two assays, they detected the T790M mutation in
35% of the patients in whom the concurrent biopsy was neg-
ative or indeterminate [123]. Therefore, complementary CTC
and ctDNA analyses [124] may result in a complete assess-
ment of each patient’s cancer and, thus, may reliably predict
their responses to T790M-targeted inhibitors.

Several studies have demonstrated that also ALK and
ROS1 rearrangements may serve as actionable genetic alter-
ations that can be detected in CTCs fromNSCLC patients. Ilie
et al. showed, for instance, that FISH and immunohistochem-
istry (IHC) could reliably be used for screening of CTCs (iso-
lated by ISET test) in 87 NSCLC patients [125]. By doing so,
they showed that 6% of the patients exhibited ALK rearrange-
ments in paired samples of CTCs and tumor biopsies, while
both the CTCs and tumor samples from the remaining 82
patients were lacking ALK rearrangements. Thereby, they il-
lustrated an excellent concordance between CTCs and tumor
samples for the presence of ALKmutations [125]. Pailler et al.
developed a semi-automated microscopy approach that was
able to merge phenotypic and cytomorphological information
with filter-adapted FISH for the detection of filtration-
enriched CTCs (isolation by size of epithelial tumor cells,
ISET). Through this approach they were able to detect ALK-
rearranged CTCs in 82% of the patients with ALK-rearranged

NSCLC [126]. Similarly, filter-adapted FISH can be used for
the detection of ROS1 rearrangements in CTCs [127].
Additional molecular abnormalities related to NSCLC that
can be screened in CTCs are KRAS and BRAF mutations
[113, 128]. Recently, the significance of CTCs with an aber-
rant ALK-FISH pattern (ALK-rearrangement or ALK-copy
number gain (ALK-CNG)) has been evaluated using filter-
adapted FISH (FA-FISH) in NSCLC patients treated with
the ALK inhibitor crizotinib [31]. They found that decreases
in CTC numbers with ALK-CNG upon crizotinib treatment
were significantly associated with a longer PFS [31].
Therefore, ALK-CNG may serve as a predictive biomarker
for crizotinib and may be used for real-time patient monitoring
and clinical outcome prediction. It has also been found that
ALK-rearranged CTCs may express the mesenchymal
markers vimentin and N-cadherin, suggesting that ALK rear-
rangements and mesenchymal phenotypes may arise from
clonal selection of tumor cells with a metastatic CTC
proficiency [129].

Various studies have indicated that PD-L1 expression may
increase during radiotherapy and/or chemotherapy, providing
a rationale for combining PD-1/PD-L1 inhibitors with chemo-
therapy and/or radiotherapy [130]. Given the fact that
obtaining serial biopsies from lung cancer patients is difficult,
evaluation of PD-L1 expression in CTCs may allow real-time
monitoring of immune activation in lung tumors. Several stud-
ies have indicated that a high PD-L1 expression in patients
with early stage NSCLC [131], or before/during chemothera-
py [132] and radiotherapy [133], is associated with a poor
prognosis. In addition, it has been shown that abundant
CTCs with a high PD-L1expression facilitate selection of pa-
tients for PD-1/PD-L1 blockade therapy [134]. It has also
been reported that CTCs with a high PD-L1 expression may
be characterized by a partial EMT phenotype, which suggests
that co-expression of PD-L1 and EMT markers may help
CTCs to escape from immunity [135].

Large-scale screening of multiple abnormalities may allow
their simultaneous detection in CTCs and, thus, enable the
development of new targeted therapies also directed against
NSCLC. Park et al., for example, conducted a high-
throughput multiplexed approach for single-cell mutation pro-
filing of CTCs from 35 stage IV lung adenocarcinomas. They
also evaluated the expression and mutation status of four
genes in single CTCs and reported an increased sensitivity
[136]. Yoo et al. performed a large scale molecular screening
of 381 cancer-associated genes in single CTCs from 13
NSCLC patients, and subsequently confirmed the results
using droplet digital PCR. Point mutations, primarily found
in the EGFR and TP53 genes, were detected in 62% of the
blood samples and 85% of the tumor samples. Furthermore,
they found several mutations in the CTCs that were not de-
tected in the related tumor samples, suggesting that the genetic
profiles of CTCsmay differ from those of tumor samples. This
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observation indicates a parallel progression of tumor cells in
the blood [137]. In another study, Jiang et al. used cerebrospi-
nal fluid CTCs (CSF CTCs) as a potential “liquid biopsy”
approach for the detection of leptomeningeal metastases
(LM) in advanced NSCLC [138]. They utilized a next-
generation sequencing (NGS) panel to screen 416 cancer-
associated genes on CSF CTCs from LMs. By doing so, they
were able to show that the molecular alterations detected in
CSF CTCs were 89.5% (17/19) similar to the genetic profiles
identified in the primary tumors [138]. Carter et al. assessed
copy number alterations (CNAs) in CTCs from two pretreat-
ment SCLC cohorts (13 patients as a training set and 18 pa-
tients as a validation set) with whole-genome amplification
(WGA) to identify genetic alterations that occur differently
in chemo-sensitive and chemo-refractory diseases. They were
able to distinguish 83% of the tumor samples as chemo-
refractory versus chemo-sensitive according to the CNA pro-
files [139]. Ultimately, whole transcriptome analyses (WTA)
of CTCs in lung cancers has been found to allow the assess-
ment of global gene expression profiles and to enable the
identification of main regulators of lung cancer cells. In a
study of 42 NSCLC patients with EpCAM-positive CTCs,
for example, WTA indicated that the most extremely dysreg-
ulated genes in CTCs were linked to cell adhesion, cell-cell
communication and cell movement. According to their obser-
vations, NOTCH1 was identified as a potential prognostic
biomarker for CTCs. Additionally, the authors suggested that
NOTCH1 may have the potential to be used as a molecular
target for the prevention of lung cancer metastasis [140].

6 Conclusions and perspectives

During the last decade, CTC detection and enumeration ap-
proaches have been explored for the early identification of
micro-metastases and their development into overt metastases.
These efforts have resulted in FDA-approval of the CellSearch
system for the prognosis of breast, colorectal and prostate
cancer. In addition, it has been found that CTCs may serve
as pharmacodynamic biomarkers that may fulfill the criteria
for appropriate surrogate response biomarkers. Additional re-
search is needed to define the significance of CTCs in other
human cancers, including lung cancers, which are not easily
accessible for sampling. The CellSearch system, although
valuable, suffers from a relatively low sensitivity and an in-
ability to detect EpCAM-negative CTCs, which may provide
valuable prognostic information. Therefore, other reliable
methods are needed to enhance the accuracy and sensitivity
of CTC detection/enumeration. Taking advantage of the high
number of CTC markers available, a multi-gene panel may
allow the development of more efficient CTC-chips for the
detection of CTCs. Alterations in the expression of CTC
markers during the process of EMT may represent another

challenge in the detection of CTCs, especially since most
metastasis-forming CTCs undergo EMT and, thus, acquire
more invasive phenotypic profiles. This challenge should be
addressed when developing new CTC-detection methods. As
such, the development of marker-independent strategies may
hold promise. Taken together, we conclude that additional
knowledge on the biology of CTCs and the development of
new technologies for the detection/isolation of CTCs with
clinical applicability will be instrumental for improving the
prognosis of human cancer patients, especially lung cancer
patients. In addition, we conclude that novel anomalous/
dysregulated markers in CTCs may be useful to better reflect
the tumor burden, to allow an improved clinical management
of the disease and to develop personalized therapeutic
strategies.
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