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Abstract

Background Tumor-associated macrophages (TAMs) are known to play important roles in the initiation and progression of
human cancers, as well as in angiogenesis. TAMs are considered as main components of the tumor microenvironment.
Targeting TAMs may serve as a therapeutic strategy for the treatment of cancer. In this review, the signaling pathways, origin,
function, polarization and clinical application of TAMs are discussed. The role of TAMs in tumor initiation, progression,
angiogenesis, invasion and metastasis are also emphasized. In addition, a variety of clinical and pre-clinical approaches to target

TAMs are discussed.

Conclusions Clinical therapeutic approaches that show most promise include blocking the extravasation of TAMs along with
using TAMs as diagnostic biomarkers for cancer progression. The targeting of TAMs in a variety of clinical settings appears to be
a promising strategy for decreasing metastasis formation and for improving patient outcome.

Keywords Macrophage - TAM - Cancer - Angiogenesis - Metastasis - Targeted therapy - Immunotherapy

1 Introduction

It has been well-established now that solid tumors are com-
posed of both malignant cells and a number of non-malignant
hematopoietic and mesenchymal cells [1-3]. Among these non-
malignant cells, macrophages play an important role in promot-
ing tumor neovascularization and progression. Macrophages
represent a multifunctional component of innate myeloid cells
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that are released from bone marrow as immature monocyte
precursors, circulate in the bloodstream and migrate to different
tissues where they differentiate [4]. These cells can engulf in-
vading microbes or cell debris from injured sites, and also re-
lease immunomodulatory cytokines that activate the adaptive
immune system [5]. The broad degree of heterogeneity of mac-
rophages enables these cells to adapt or alter their phenotype to
match the microenvironment in which they reside.
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A classification mirroring the Th1/Th2 division of T-
lymphocytes has been introduced [6]. The ability of macro-
phages to adapt to a large variety of biological stimuli by
rapidly changing their phenotype and function has resulted
in the understanding that a classification of macrophages into
M1 versus M2 is a simplification of the in vivo situation [7].
Another classification of macrophages that has been sug-
gested is into pro-inflammatory or classically activated mac-
rophages and alternatively activated macrophages [6, 8]. M1
macrophages are stimulated by Thl mediators such as
interferon-y (IFN-y), tumor necrosis factor-alpha (TNF-x)
and lipopolysaccharide (LPS) [8]. The main cytokine is
IFN-y. Receptors using Janus kinase Jak1 and Jak2 adaptors
can activate signal transducer and activator of transcription 1
(STAT1) and interferon regulatory factors [8]. For the regula-
tion of signaling pathways, IFN-y and STAT1 recruit toll-like
receptors (TLRs), inflammatory factors, tissue-destructive cy-
tokines, anti-inflammatory cytokines and cytokines that acti-
vate opposing STATs. These signaling pathways disclose in-
sight into how IFN-y regulates macrophage activation, in-
flammation, tissue remodeling, and helper and regulatory T
cell differentiation [9]. Some specific genes regulated by
IFN-v include those encoding the cytokine receptors
CSF2RB, IL15 receptor alpha (RA), IL2RA and IL6R, cell
activation markers (CD36, CD38, CD69, and CD97), as well
as a number of cell adhesion molecules (intercellular adhesion
molecule 1(ICAM1), integrin alpha L (ITGAL), ITGA4,
ITGbeta-7 (B7), mucin 1 (MUC1), and ST6 beta-
galactosamide alpha-2,6-sialyl transferase 1 (SIAT1)) [10].
According to the M1/M2 paradigm, IFN-y is combined with
LPS, and the gene expression profile of this mode is different
from the LPS or [FN-y profiles alone [11, 12]. The M1 and
M2-associated gene expression and function profiles are listed
in Tables 1 and 2.

M1 macrophages secrete pro-inflammatory cytokines such
as IL-12 and IL-23, present antigens by their MHC-II complex
molecules and enhance the differentiation of naive CD4" T-
cells into Th1 effector cells and Th17 cells. They also remove
intracellular bacteria and viruses [6, 13, 14]. By contrast, M2
activators are classified primarily based on their capacity to
antagonize prototypical inflammatory responses and markers.
However, as M1 activators, their origin, function, receptors
and signaling pathways differ. So far, five main M2 stimuli
have been identified: firstly interleukin 4 (IL-4), which is pro-
duced by Th2 cells, basophils, eosinophils, or macrophages
themselves and is recognized by three different receptor pairs.
To form these receptor pairs, IL-4R 1 can either pair with the
common gamma chain (yc), allowing IL-4 binding, or with
IL-13Ra1 enabling IL-4 or IL-13 binding. After binding, the
receptors can activate JAK1 and JAK3. Activation of JAK
leads to STAT6 activation and translocation, after which IL-
4 induces macrophage fusion and a decrease in phagocytosis
[15]. Interleukin 13 (IL-13) is another stimulator that has a
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signature similar to IL-4, but they do not completely overlap
[16]. Other stimulators of M2 macrophages are glucocorti-
coids, IL-10 and macrophage colony-stimulating factor (M-
CSF). The M-CSF receptor is a tyrosine kinase transmem-
brane receptor. When M-CSF binds to its receptor, this may
lead to several specific modifications, including dimerization,
autophosphorylation, activation of extracellular signal-
regulated kinases (ERK), activation of phosphatidylinositol
3-kinase, activation of phospholipase C and, eventually, Sp1
transcription factor nuclear localization. Ultimately, M-CSF
causes a series of transcriptional responses that comprise tran-
sient gene clusters with overrepresentation of cell cycle genes
(e.g. cyclins A2, B1, D1 and E1) and downregulation of hu-
man leukocyte antigen [17] members and stable gene clusters,
including TLR7 and the complement C1QA/B/C subunits.
Activated M2 stimulates CD* Th2 cells and regulatory T cell
(Treg) differentiation. M2 cells have also been implicated in
homeostatic processes and to be critical in angiogenesis, tissue
remodeling, anti-inflammatory processes and wound healing
[18, 19]. Several investigators have attempted to classify them
into different sub-groups, to better reflect the situation in vivo.
Among them, Mantovani and colleagues sub-classified the
M2 population into M2a, M2b and M2c, where M2a was
stimulated by the representative Th2 cytokines IL-4 and IL-
13, M2b by immune complexes along with TLR or the IL-1
receptor antagonist and M2c by glucocorticoids and IL-10 [7].

The classification of macrophages in this way faces two
major challenges: the in vitro influences of chosen immune-
related ligands on the phenotype of macrophages and in vivo
evidence for distinct subsets of macrophages in disease, com-
parable to polarized B- and T cell responses. The main restric-
tions of the current view are (i) that it ignores the origin and
context of the stimuli, (ii) that the M1 and M2 stimuli do not
exist singly in tissues and (iii) that macrophages may not form
clearly defined activation subunits nor broaden clonally [20].
Tumor-associated macrophages (TAMs) have been found to
play a leading role in the development and progression of
tumors, and to enhance the tumor environment to facilitate
angiogenesis and metastasis. As a consequence, TAMs have
been proposed as potential therapeutic targets for cancer treat-
ment [21]. Here, we review the role of TAMs in tumor initia-
tion, progression, angiogenesis, invasion and metastasis.
Different therapeutic approaches targeting TAMs in each of
these steps are also discussed.

2 Role of TAMs in tumor initiation
and progression

The German pathologist Rudolph Virchow in the nineteenth
century suggested a pathophysiological association between
inflammation and cancer. Inflammation usually occurs in two
stages, acute and chronic. Later on, it has been proposed that
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Table 1 (continued)

M2

M1

Ref

Function

Gene name

Locus

Gene

Ref

Function

Gene name

Locus

Gene

Involved in cycle development and the

Signal transducer and

Tumor promotion, regulation of

Signal transducer

regulation of apoptosis, role in

activator of

macrophage functions,

and activator of
transcription 1

hematopoiesis, differentiation and

angiogenesis, regulators of

transcription 3

adaptive immune responses,

stimulates iNOS and IL-12

transcription in M1

macrophage
promote cytotoxic responses and [75]

proliferation and persistence of tumor

cells
promotes expression of KLF4 and

(76, 77]

12q13.3  Signal transducer and

STAT6

2q32.2-q32.3 Signal transducer

STST4

PPARs; promotes alternative

activator of

Th1 cell differentiation,

and activator of
transcription 4

activation, promotes M2 polarization

transcription 6

inflammation in its chronic stage may trigger cancer initiation.
About 90-95% of all neoplasms are connected to tobacco,
obesity, smoke, radiation, environmental pollutants and
chronic infections, all of which induce a chronic inflammatory
state [22]. Macrophages are present in the inflammatory envi-
ronment including the tumor microenvironment.
Macrophages are involved in immune responses to tumors
in a polarized manner: classical M1 macrophages produce
IL-12 and promote tumor initiation, whereas M2 macrophages
produce IL-10 and promote tumor progression. To define the
role of macrophages in tumor progression, it is necessary to
understand TAM differentiation and their tumor promoting
properties. M2-like macrophages encompass the majority of
TAMs with a representative M2 marker expression profile,
including a mannose receptor, a low MHC class II complex,
stabilin-1 and arginase-1 [14]. These markers are involved in
tissue remodeling, immune regulation and angiogenic pro-
cesses within the tumor microenvironment by releasing high
levels of IL-10, low levels of IL-12, angiogenic factors such as
vascular endothelial growth factor (VEGF), prostaglandin E2
and matrix metalloproteinase-9 (MMP9) [14].

M1-like macrophages promote tumor initiation via chronic
inflammation in the tumor microenvironment that is caused by
intrinsic and extrinsic signals and leads to proliferation and
survival of malignant cells, angiogenesis, suppression of
adaptive immunity and reduced responses to hormones and
chemotherapeutic agents [23]. The intrinsic pathways include
genetic alterations in oncogenes such as RET [24], RAS [25],
MYC [26], or in tumor suppressor genes such as the von
Hippel-Lindau tumor suppressor (VHL) [27], which contrib-
utes to the transcription of pro-inflammatory cytokines and
growth factors in the genetically altered tumor cells and in-
duces a tumor-driven inflammatory environment. The extrin-
sic pathway leads to chronic inflammation that increases the
risk of developing cancer at a specific anatomical site, often
prostate, colon or pancreas [28]. The extrinsic and intrinsic
pathways co-operate in the activation of transcription factors
such as NF-kB or STAT3, which promote tumor progression
in the microenvironment [29-31]. NF-kB is an essential factor
for the transcription of pro-inflammatory and angiogenic fac-
tors such as IL-12, TNF-«, inducible nitric oxide synthase
(AINOS) [32] and cyclooxygenase-2 (COX-2), and is associat-
ed with the promotion of carcinogenesis in different tumor
types [33]. Activation of STAT3 also allows tumor cells to
resist apoptosis, inhibit inflammation, impede dendritic cell
maturation, induce growth, and to stimulate migration, inva-
sion and angiogenesis, culminating in an active tumor envi-
ronment [34]. During early carcinogenesis, all macrophages
exhibit a higher degree of similarity to M1, but in later stages
the majority of tumors recruit M2-like macrophages to their
microenvironment. In hepatocellular carcinoma, for example,
macrophages in the early stage of development mostly express
high levels of MHC-class II, which has been associated with
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high concentrations of IL-1f3, IL-6, IL-12 and iNOS. In con-
trast, macrophages in late stages of development mainly ex-
press typical M2-associated molecules such as macrophage
mannose receptor ¢l (MRC1), arginase, IL-10 and TGF-f3,
and low levels of MHC-class II [35].

Some causative signals that are involved in the M1/M2
switch have been identified. It has been found, for example,
that COX-2 innately contributes to changing TAMs from M1
to M2. Inhibition of COX-2 leads to a decreased number of
M2 macrophages and causes an increase in [FN-y level, there-
by reducing the progression of intestinal tumors in patients
with colon carcinoma [36]. Another regulatory pathway that
has been found to be important for TAM differentiation com-
prises TLR signaling. Some of the extracellular matrix pro-
teins such as versican, hyaluronan fragments or heat shock
proteins, which act as ligands for TLR in the tumor environ-
ment, have been associated with tumor progression and me-
tastasis [37]. TLR signaling pathways are dependent on both
myeloid differentiation primary response gene88 (MyDS88)
and TIR-domain-containing adapter-inducing interferon-3
(TRIF). It has been found that an imperfect activation of
MyD88, but an undamaged TRIF-mediated signal transduc-
tion, increases the phosphorylation of ERK1/2.
Phosphorylation of ERK1/2 leads to increased secretion of
IL-10 from TAMs, causing extensive expression of
interleukin-1 receptor-associated kinase M (IRAK M).
IRAK M is an inhibitor of the MyD88-dependent pathway.
Generally, defective TLR-MyD88/TRIF signal pathway reg-
ulation in TAMs favors an increased immunosuppressive
function of these macrophages [38].

Another condition that affects TAM differentiation during
tumor progression is a limited oxygen supply in highly
expanding regions of the developing tumor. When macro-
phages are in a hypoxic condition, the expression of
hypoxia-inducible factor-1 (HIF-1) is increased, which is
closely associated with NF-kB activation [39]. The Notch sig-
naling pathway is also involved in TAM differentiation. Notch
signaling may be activated in M1 macrophages, which leads
to enhanced expression of IL-12 that, in turn, limits tumor
progression. In addition, the M2 response has been found to
be induced by M1 inducers at the expense of M1 when Notch
signaling is blocked. Macrophages deficient in canonical
Notch signaling have been found to show TAM phenotypes
[40, 41]. In addition to transcription factors and innate signal-
ing pathways, chemokines are also involved in M1-M2 tran-
sition during tumor progression. CXCL12, also known as
stromal cell-derived factor-1 (SDF-1), is one of the
chemokines that is highly secreted from monocytes in the
tumor microenvironment. This chemokine not only facilitates
the attraction and migration of monocytes to the tumor site,
but also leads to the differentiation of TAMs into a pro-
angiogenic and immunosuppressive phenotype by up-
regulating CCL1 and VEGF [41]. CXCLI12 also drives
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TAM aggregation and survival in hypoxic tumor areas [42].
This chemokine may enhance scavenger receptor CD163 ex-
pression, thereby shaping monocyte differentiation towards an
immunosuppressive and proangiogenic phenotype [41].
CXCL12 expression has been found to be significantly corre-
lated with augmented CD163+ TAMs in tumor stroma (TS)
and tumor margin (TM) in gastric cancer patients [43]. Wang
et al. reported that the prodrug of the green tea polyphenol (—)-
epigallocatechin-3-gallate (Pro-EGCG) may serve as an an-
giogenesis inhibitor in endometrial cancer. They found that
Pro-EGCG decreased tumor angiogenesis in xenograft models
through downregulation of CXCL12 in the host stroma, and
VEGFA and HIF 1« in the tumor cells, as shown by immuno-
histochemical staining. Down-regulation of CXCL12 in the
stromal cells by Pro-EGCG treatment restricted the migration
and differentiation of macrophages, thereby inhibiting infiltra-
tion of VEGFA-expressing TAMs [44].

As noted above, the presence of TAMs in the tumor envi-
ronment may result in cancer promoting inflammation, which
plays a central role in tumor initiation [22, 45]. Several exper-
imental studies support the role of inflammation in cancer
initiation. For instance, chronic obstructive pulmonary disease
in human leads to persistent colonization of the bacterium
Haemophilus influenza and this colonization has been associ-
ated with an increased risk of lung cancer. Concordantly, in a
lung cancer mouse model, bronchial inflammation elicited by
H. influenzae led to an increase in tumorigenesis [46], but
more work needs to be conducted in lung cancer models.
Mechanistically, the transcriptional factors NFkB and
STAT3 work oppositely [47]. STAT3 is a transcription factor
that suppresses inflammation and, therefore, absence of
STAT3 in myeloid cells leads to an abundant expression of
TNF«x and IL-6 via macrophages, which consequently results
in chronic colitis and invasive colonic adenocarcinomas [48,
49]. In addition, the inflammatory condition is controlled by
NF«kB, which is an essential transcription factor that triggers
downstream inflammatory signaling pathways and activates
TLR, which leads to the expression of inflammatory cytokines
such as IL-12 and TNF «, as well as iNOS [47]. Concordantly,
it has been found that impeding IkB kinase o« (IKK«) in
myeloid cells in a mouse model of intestinal cancer dimin-
ished inflammation and inhibited tumor progression [50].
Furthermore, macrophages produce both reactive nitrogen
and oxygen species. Nitric oxide (NO) can react with perox-
idases to produce nitrosoperoxycarbonate, which can lead to
progression of inflammation [51]. This effect is due to the fact
that the highly reactive components create a mutagenic envi-
ronment that causes mutations in adjacent epithelial cells [51].
In addition, it has been found that inflammation in the tumor
microenvironment may promote genetic instability within de-
veloping tumor epithelial cells [23].

The tumor immune microenvironment mainly consist of
macrophages, T lymphocytes, natural killer (NK) cells,
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dendritic cells, neutrophils and myeloid-derived suppressor
cells (MDSCs) [52, 53]. TAMs in the tumor microenviron-
ment express both chemokines and cytokines promoting an
immunosuppressive tumor microenvironment [54, 55].
Chemokines secreted by TAMs such as CCL5, CCL22 and
CCL20 recruit regulatory T (Treg) cells, whereas cytokines
such as IL-10 and TGF-f3 induce Treg cells. In addition,
TAMs may suppress the antitumor activity of tumor-
infiltrating NK cells and T cells, and via MDSCs, tumor-
associated dendritic cells and neutrophils that promote an im-
munosuppressive tumor microenvironment synergistically
[55, 56]. Inhibition of T cell function may result from secretion
of specific enzymes by TAMs such as NOS and arginase
[57-60]. In addition, expression by TAMs of ligands such as
programmed cell death protein ligand 1 (PD-L1) and B7-H1
for receptors programmed cell death protein (PD-1) and
CTLA-4, may lead to the inhibition of cytotoxic functions of
T-cells, NKT cells and NK cells [61]. In one study, the role of
inhibitory CD163* monocytes or macrophages, and NK cells
in diffuse large B cell lymphoma (DLBCL) and Hodgkin lym-
phoma [12] have been investigated. It was found that PD-1
expression in CD3 CD56™CD16™° NK cells was higher than
in CD3"CD56%™CD16" cells, which spread in blood and tis-
sue more markedly in cHL than in DLBCL patients. In this
regard, within diseased lymph nodes TAMs have been found
to express high levels of PD-L1/PD-L2. In an in vitro func-
tional model TAM-like monocytes were found to suppress the
activation of PD-1" NK cells, which could be reversed by PD-
1 blockade. Importantly, suppression of NK cells can occur
indirectly by PD-L1/PD-L2 expressing TAMs [62].

3 Role of TAMs in tumor growth

TAMSs may exhibit both tumor growth promoting and inhibiting
activities [63, 64]. They may promote tumor growth not only
through stimulating angiogenesis, but also through suppressing
acquired immune responses. TAMs may act as gatekeepers in
tumors, producing various factors for tumor invasion and me-
tastasis (Fig. 1). The role of TAMs in the growth of various
cancers, including breast cancer [65, 66], hepatocellular carci-
noma (HCC) [67], colorectal cancer [68] and glioblastoma [69,
70] has been well-established. Using a spontaneous genetic
model of breast cancer metastasis and orthotopic transplant ex-
periments it has, for example, been shown that SNAILI, an
epidermal to mesenchymal transition inducer [71], regulates
the production of GM-CSF, TNF«, IL1« and IL-6, and modu-
lates the polarization of TAMs. This modulation ultimately
leads to the growth and metastasis of primary breast tumor cells
[72]. ERKS plays a role in determining macrophage polarity,
and it has been found that in ERK5-deficient mice the growth of
carcinoma grafts is halted. Targeting ERK5 in macrophages has
been found to lead to a transcriptional switch that favors

proinflammatory mediators. Further molecular studies have
shown that STAT3 activation via phosphorylation of Tyr705
is impaired in ERKS5-deleted TAMs. So, impeding STAT3-
induced gene expression via blocking ERKS may serve as a
strategy for cancer treatment through reprogramming macro-
phages towards an antitumor state [73].

4 Role of TAMs in angiogenesis

TAMs play an important role in tumor progression and inva-
sion and act as key players in angiogenesis [74, 75]. In re-
sponse to hypoxic conditions, TAMs begin to express a num-
ber of transcription factors such as HIF's that regulate a range
of genes to promote angiogenesis, which in turn increases the
invasion of tumor cells. TAMs also secrete angiogenic factors
such as VEGF, FGF2, bFGF, PDGF and adrenomedullin [76],
YKL-40, thymidine phosphorylase (TP), MMPs and
urokinase-type plasminogen activator, all of which play im-
portant roles in tumor progression and invasion (Fig. 1) [59,
74,77]. Badawi et al. examined the relationship between mac-
rophage infiltration and the degree of angiogenesis in human
colon carcinoma. They found that the number of infiltrating
macrophages was significantly higher in malignant/invasive
tumors and that their blood vessels were denser compared to
those in benign polyps. Thus, a significant relationship was
observed between macrophage infiltration and angiogenesis,
invasion and metastasis of colon cancer cells [78].
Additionally, Tie2-expressing monocytes (TEMs), a type of
TAMs that are present in both human peripheral blood and
tumors, have been found to play an important role in tumor
angiogenesis and growth. Studies aimed at examining human
and murine endometriosis lesions, pancreatic cancer, ovarian
cancer and other cancers have revealed a role for TEMs in
angiogenesis [79—-83]. In addition, it has been found that elim-
ination of TEMs may lead to inhibition of angiogenesis in
various tumor models. Angiopoietin-2 (Ang-2), a ligand for
Tie2, is produced by angiogenic tumor vessels and serves as a
chemoattractant for TEMs. Hypoxia has been found to enhance
Tie2 expression in TEMs and, together with Ang-2, to down-
regulate their antitumor capacity [84]. Ang is secreted by endo-
thelial cells. According to Chen et al., there is a close relation-
ship between tumor recurrence and Tie2 over-expression after
chemotherapy. This recurrence occurs via re-regeneration of
blood vessels within tumors. Hence, removal of Tie2 in mye-
loid cells may be used to prevent the regeneration of blood
vessels and, thereby, tumor recurrence [85].

5 Therapeutic targeting of angiogenesis

Targeting TAM-induced angiogenesis serves as a potential
approach for cancer treatment. VEGFA is one of the most
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Fig. 1 Impact of tumor-
associated macrophages on dif-
ferent aspects of tumor biology
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important TAM-secreted factors that plays an important role in
angiogenesis and tumor metastasis. Inhibition of the VEGF
pathway is a commonly used treatment option for controlling
tumors. Bevacizumab is a monoclonal antibody directed
against VEGF that has been approved by the US Food and
Drug Administration (FDA) [78]. It acts through binding to
VEGF and, thereby, inhibiting its interaction with the VEGF
receptor (VEGFR). The efficacy of bevacizumab has currently
been investigated in several cancer types including ovarian,
colorectal, breast, renal, non-small cell lung and cervical can-
cers [86-91].

The role of Ang2 as a potential target in patients with naive
and bevacizumab-resistant glioblastoma was investigated by
Scholz et al. [92]. Ang-2 is an angiogenic growth factor that is
not expressed in normal human brain, but its expression is
increased in glioblastoma patients who are resistant to
bevacizumab. Blocking VEGF in murine models has led to
increased expression of Ang2 in endothelial cells, thereby
impeding the effect of VEGF (aflibercept). In addition, it
was found that application of an anti-human Ang-2 antibody
led to reduced vascular permeability, eliminated TAMs and
increased the number of intra-tumoral T lymphocytes. As a
result, it was found that inhibition of both the VEGF/VEGFR
and Ang-2/Tie2 pathways led to the removal of TAMs and
suppression of the pro-angiogenic process. Peterson et al. [93]
investigated the effect of MEDI3617 (an anti-Ang2-
neutralizing antibody) in combination with cediranib (a pan-
VEGEFR tyrosine kinase inhibitor) in orthotopic glioblastoma
Gl261 and U87 models. They concluded that dual inhibition

@ Springer

of VEGFR/Ang-2 was superior compared to inhibition of
VEGFR alone, and increased the lifespan of the vessels.

YKL-40 is used as biomarker to diagnose tumor angiogen-
esis in renal cell carcinoma (RCC) and melanoma patients [94,
95]. It has been found that YKL-40 levels in serum and pleural
fluid in patients with malignant pleural effusions are increased
compared to those in patients with transudative or non-
malignant exudative effusions. The importance of this bio-
marker in the diagnosis of malignant pleural infections has
been shown [96]. Also, an increase in serum YKL-40 and
IL-6 levels in patients with colorectal cancer has been reported
to serve as a useful prognostic biomarker before liver resection
[97]. Furthermore, Shao et al. [98] reported that an YKL-40
neutralizing antibody (mAY) and ionizing irradiation (IR)
may prevent angiogenesis and tumor growth in glioblastoma
patients. Specifically, it was found that mAY blocked mural
cell-mediated vascular stability and angiogenesis through in-
terfering with intercellular contact by N-cadherin, while IR
only stimulated tumor cells. From their results, they also con-
cluded that dual treatment with IR and bevacizumab in glio-
blastoma patients was more effective than IR alone, regardless
YKL-40 expression. For patients with advanced glioblastoma,
the therapeutic combination of mAY, IR and bevacizumab was
found to be efficacious [98].

Cytochrome P450 4A (CYP4A) is known to play an im-
portant role in tumor angiogenesis and metastatic niche devel-
opment. CYP4 enzymes can biosynthesize 20-
hydroxyeicosatetraenoic acid (20-HETE), which is an impor-
tant mediator of VEGF-mediated angiogenesis [99]. Blocking
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CYP4A to inhibit angiogenesis in glioblastoma by the novel
flavonoid FLA-16 has, therefore, been examined. It was found
that inhibition of FLA-16 by CYP4A in TAMs and endothelial
progenitor cells (EPCs) leads to downregulation of TAM- and
EPC-derived VEGF and TGF-f3 via the PI3K/Akt pathway,
thereby providing another mechanism for inhibiting angio-
genesis and survival of glioma cells [100].

6 Role of TAMs in invasion

As the number of TAMs increases, invasion and metastasis
increases [101]. Important stages of metastasis include inva-
sion, intravasation, circulation and extravasation. In order for
invasion to occur cancer cells must undergo a process called
epithelial-mesenchymal transition [71] [97] [102]. A strong
correlation between EMT and the beginning of the invasion
phase, including loss of cell-cell binding and cell-basement
membrane binding, invasive behavior and resistance to apo-
ptosis has been found to exist [103—106]. Several studies have
addressed the role of TAMs in EMT. Zhang et al. [107], for
example, observed a role of TAMs and their relationship with
EMT in the progression and invasion of gastric cancer by
measuring the level of infiltrated TAMs and the expression
of EMT markers. They concluded that TAMs may play an
important role in EMT induction and in the promotion of
migration and metastasis of gastric cancer cells.

7 Role of TAMs in intravasation

Intravasation is a phase through which tumor cells enter blood
vessels to metastasize to distant sites [108]. It has been report-
ed that there is a significant relationship between tumor cells
and TAMs and their role in intravasation [64, 109]. This rela-
tionship has also been reported in animal models for breast
cancer exploring the relationship between peripheral macro-
phages and the intravasation of tumor cells [110]. Through the
secretion of various factors such as (epidermal growth factor)
EGF, CCL18, TNF-«, cathepsin and osteonectin, TAMs are
able to promote tumor cell intravasation [111]. Specifically,
Gorelik et al. [112] revealed a role of macrophages in the
intravasation of murine tumor cells and the subsequent devel-
opment of pulmonary metastatic tumors. In a similar study, Hu
et al. [113] revealed a role of TAMs in the progression and
invasion of Kazakh esophageal squamous cell carcinoma
(ESCC) cells. They showed that an increase in the number
of TAMs, using CD163 as a marker, in the tumor stroma
significantly correlated with ESCC progression and metasta-
sis. Furthermore, they found that there was a close relationship
between a high number of TAMs and an increased expression
of VEGF-C, either in the tumor nests or in the tumor stroma,
which ultimately led to ESCC invasion and metastasis [113].

A positive interaction between tumor cells and TAMs may
lead to secretion of CSF1 by the tumor cells, which stimulates
TAMs to secrete EGF. These factors play an important role in
the invasion and migration of both cell types into blood ves-
sels [114, 115]. CSF1 is a chemokine that plays an important
role in regulating macrophages. A high CSF-1 level has also
been found to be associated with poor prognoses in many
cancers [116-118]. TAM-derived EGF leads to an increase
in the invasion and movement of tumor cells by destroying
the matrix and, thereby, by accelerating tumor invasion [64,
119]. The interaction between CSF1 and EGF forms a para-
crine loop between tumor cells and macrophages, which sub-
sequently has been found to result in the intravasation and
migration of breast tumor cells. This observation was first
made in vivo by Wyckoff et al. [119]. TNF-« is another im-
portant factor known to be involved in tumor intravasation.
Wang et al. [120] found for example, using a Zebrafish model,
that TNF-o and IL-6 may increase the ability of TAMs to
promote tumor metastasis.

8 Therapeutic interventions to prevent
intravasation

Targeting CSF1/CSF1R or EGF/EGFR has been found to in-
hibit the reduction of bone marrow monocyte mobilization.
Thus, inhibition of CSF1-CSFIR may serve as a therapeutic
tool to prevent tumor intravasation [110, 121, 122]. The effect
of inhibition of CSFIR in a mouse glioblastoma model was
investigated by Pyonteck et al. [123]. From their results they
concluded that inhibition of CSF-1R by BLZ945 led to changes
in macrophage accumulation, increased survival and blockage
of tumor growth. The CSF1R inhibitor was also found to affect
CSFI1R expressed at the TAM level. This type of intervention is
currently being investigated clinically, as a phase I/II study of
BLZ945 alone or in combination with PDR001, in patients with
malignant tumors (NCT02829723). Another phase I trial
assessing CSF-1R inhibitor LY3022855 in combination with
Durvalumab (MEDI4736) or Tremelimumab has been started
in patients with advanced solid tumors (NCT02718911).

9 Role of TAMs in circulation

After tumor cells enter the bloodstream, they must survive to
migrate throughout the body. These cells are called circulating
tumor cells (CTCs). After tumor cells have entered the blood-
stream successfully, they are faced with a new survival chal-
lenge. TAMs play an important role in the survival of CTCs in
peripheral blood [124, 125]. Adams et al. [125] have shown
that cancer-associated macrophage-like cells (CAMLs) can
bind to CTCs in the peripheral blood. Such binding facilitates
the implantation of tumor cells at distant locations.
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Furthermore, the authors confirmed the presence of TAMs
bound to CTCs in peripheral blood of patients with breast,
pancreatic and prostate cancer. These results underscore the
importance of macrophages in the circulation of cancer pa-
tients and their involvement in the development of distant
metastases. It was also concluded that evaluation of the fluid
phase of solid tumors is important for the detection of metas-
tases. In a similar study, the presence of CALMs in the periph-
eral blood of 93% of patients with malignant breast cancer
was confirmed. In 88% of patients undergoing core biopsies
for the diagnosis of invasive carcinoma CAMLs were
detected, compared to 26% of patients with benign breast
conditions [126]. According to these results, screening for
the presence of TAMs regardless of the stage of the disease
is warranted [126]. In addition, it has been found that TAMs,
by secreting factors such as MMPs and CXCL12, can convert
solid tumor cells to CTCs. Therefore, the detection of TAM as
a diagnostic biomarker for disease progression may be
important.

10 Therapeutic interventions to prevent
tumor cell circulation

The use of cabozantinib against circulating monocytes has
shown a strong association between monocyte reprograming
and therapeutic bone responsivity. As such, this observation
may be used for patient selection at early stages of treatment.
Based on this notion, a re-evaluation of tyrosine kinase
inhibitor-based therapeutic strategies in prostate cancer has
been considered for suitable patient populations based on tu-
mor microenvironment responses [127]. In addition, inhibi-
tion of M-CSFR by PLX3397 (pexidartinib), a CSF-1R kinase
inhibitor, has been found to decrease the number of TAMs and
circulating monocytes effectively in mesothelioma mouse
models, although the survival outcome was not favorable.
The subsequent use of PLX3397 in combination with dendrit-
ic cell vaccination was found to augment survival synergisti-
cally, to decrease TAMs and to increase CD8" T cell numbers
and functionalities [128]. It has also been shown that
legumain, an asparaginyl endopeptidase, is highly expressed
on the surface of TAMs. Specifically, legumain activates a
doxorubicin-based prodrug, which selectively results in the
reduction of angiogenic factors by ablation of TAMs. The
use of this prodrug also inhibited CTCs and led to significant
inhibition of tumor growth and metastasis formation in murine
tumor models [129].

11 Role of TAMs in extravasation

Extravasation is the last stage of tumor cell travel in the blood
circulatory system [130]. Through extravasation, tumor cells
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pass the blood vessel endothelium and invade target tissues
[130, 131]. The extravasation of tumor cells occurs through
interactions between tumor cells, endothelium and immune
cells such as platelets, granulocytes/neutrophils and macro-
phages [132, 133]. Similar to the intravasation process, mac-
rophages play a prominent role in the extravasation process.
CCL2 is a chemokine that is secreted from tumor cells and is
absorbed by TAMs. Its role in the extravasation of tumor cells
has amply been shown. It has, for example, been shown that
tumor-derived CCL2 can facilitate tumor metastasis through
TAMs and metastasis-associated macrophages (MAMs) [134,
135]. CCL2 and its receptor CCR2 are expressed by macro-
phages. CCL2 stimulates the production of CCL3 from
MAMs. Kitamura et al. [136] found that CCL3 secreted from
MAMs and the CCL3-CCRI1 axis may increase breast cancer
cell implantation via MAM accumulation. In addition, they
found that removal of CCL3 or CCR2 reduced the metastasis
of lung cancer cells in humans and breast cancer cells in mice,
and that both were associated with decreased MAM accumu-
lation. Also, macrophages are known to produce VEGFs that
play an important role in vascular permeability and facilitate
the extravasation of tumor cells [137]. Therefore, prevention
of extravasation may serve as a tool by which cancer metas-
tasis may be impaired.

12 Therapeutic interventions
for extravasation

Inhibition of the CCL2-CCR2 chemokine axis may be used as
a mechanism to decrease tumor progression. A phase II study
of PF-04136309 in combination with FOLFIRINOX in
PDAC patients has indicated that this drug was safe and well
tolerated by patients. PF-04136309 inhibits CCR2 activity,
which decreases the infiltration of TAMs and prevents the
mobilization of inflammatory macrophages into blood vessels
(NCT01413022) [138]. Furthermore, inhibition of CCR2 sig-
naling has been found to block tumor cell extravasation [139].
In another study, a protein consisting of a CCL2 mutant fused
to human serum albumin (i.e., dnCCL2-HSA chimera) was
constructed that prevented the absorption of inflammatory
monocytes by binding to endothelial cells, thereby reducing
the permeability of lung vessels and, thus, tumor seeding. This
reduction in extravasation was supported by a decrease in
vascular permeability in lung carcinoma samples [140].

13 Preparation of the metastatic niche

Metastatic niche refers to an environment in a secondary or-
gan that provides the proper environment for the metastasis of
a primary tumor. Primary tumor-secreted factors, such as
VEGFA, TGF-p, TNF and LOX, have been found to
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stimulate expression of the SI00A8, SI00A9 and SAA3 pro-
teins, and to lead to extracellular matrix remodeling at meta-
static sites. This remodeling provides a suitable metastatic
environment before tumor cells arrive. SI00A8 and ST100A9
have been reported to play important roles in the establish-
ment of pre-metastatic niches, and blocking of these factors
has been found to prevent tumor cell infiltration of pre-
metastatic Mac1* myeloid cells [64, 141, 142]. These TAMs
represent one class of the bone marrow-derived cell (BMDC)
population that contributes to the formation of metastatic
niches through the promotion of tumor cell dissemination, as
well as through providing an environment that supports the
growth of cancer cells [143]. This was shown by Wang et al.
[144], who found that colorectal cancer-derived VEGFA can
stimulate TAMs to produce CXCLI in the primary tumor.
This CXCL1 subsequently recruited CXCR2-positive
MDSCs and neutrophils in pre-metastatic liver tissue to form
a pre-metastatic niche that ultimately promoted liver metasta-
sis. The authors also showed that CXCR2 antagonist could
prevent tumor progression and expansion. Similar results from
Miyake et al. also showed that TAM- and cancer-associated
fibroblast (CAF)-derived CXCL1 may play an important role
in adhesion between tumor cells and stromal cells, thereby
enhancing human bladder cancer growth [145].

A group of proteases secreted from TAMs, including ca-
thepsin, MMP2, MMP7 and MMP9, has been found to be
involved in ECM destruction, the migration of tumor cells
and the formation of metastatic niches [63]. Another factor
derived from TAMs that is involved in metastasis is CCL18.
Through binding to the PITPNM3 receptor, CCL18 has been
found to stimulate integrin clustering on the surface of breast
cancer cells and to increase their binding to the ECM [63, 146,
147]. In addition, TAM-derived TNF-&, VEGF and TGF-f3
have been found to induce macrophages to produce S100A8
and serum amyloid A3, factors that recruit tumor cells and
macrophages and stimulate the formation of metastatic niches
[63]. CYP4A expression by TAMs and its role in the forma-
tion of pre-metastatic niches has also been reported. Chen
et al. [99] showed that over-expression of CYP4A may play
an important role in clinical specimens from patients with
invasive breast carcinoma and melanoma. CYP4A was found
to induce the production of cytokines derived from M2 mac-
rophages, including VEGF, SDF-1 and TGF-{3. These cyto-
kines can activate the migration of VEGFR1* myeloid cells
from bone marrow and fibroblasts, thereby leading to the for-
mation of pre-metastatic niches and the promotion of metas-
tasis [99]. Inhibition of the formation of metastatic niches may
be a promising strategy to prevent tumor metastasis [148].
This could potentially be achieved by decreasing the expres-
sion of CYP4A and by inhibiting angiogenic factor produc-
tion. For example, N-(4-butyl-2-methylphenyl)-N’-
hydroxyformamidine has been found to inhibit the synthesis
of 20-HETE and to decrease the production of pro-angiogenic

factors such as VEGF [99]. Therefore, inhibition of the ex-
pression of CYP4A in CYP4A positive TAMs may be used as
a method to inhibit the formation of metastatic niches and,
thus, metastasis [99].

14 Conclusions and perspectives

In this review, the origin, function, polarization and signaling
pathways involved in TAMs, and putative clinical applica-
tions of TAMs are discussed. The role of TAMs in tumor
initiation, progression, angiogenesis, invasion and metastasis,
as well as different TAM-targeting therapeutic approaches re-
lated to each step were emphasized. In addition, M1 and M2-
associated gene expression profiles and their functional con-
sequences were explained.

Since TAMs are known to play critical roles in the devel-
opment and progression of human cancers, their targeting may
be used as a potential therapeutic strategy. Previous and on-
going experimental, preclinical and clinical investigations
have indeed shown potential. Clinical applications that appear
to show most promise include blocking the extravasation of
TAMs and using TAMs as diagnostic biomarkers for cancer
progression. The future targeting of TAMs may well turn out
to be a promising strategy for decreasing metastasis formation
and for improving patient outcome.
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