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Abstract
Background The field of liquid biopsies in oncology is rapidly expanding, with the application of cell-free circulating tumour
DNA (ctDNA) showing promise in this era of precision medicine. Compared with traditional clinical and radiographic tumour
monitoring methods, the analysis of ctDNA provides a minimally-invasive and technically feasible approach to assess temporal
and spatial molecular evolutions of the tumour landscape. The constantly advancing technological platforms available for ctDNA
extraction and analysis allow greater analytical sensitivities than ever before. The potential translational impact of ctDNA as a
blood-based biomarker for the identification, characterization and monitoring of cancer has been demonstrated in numerous
proof-of-concept studies, with ctDNA analysis beginning to be applied clinically across multiple facets of oncology.
Conclusions In this review we discuss the biology, recent advancements, technical considerations and clinical implications of
ctDNA in the context of cancer, and highlight important challenges and future directions for the integration of ctDNA into
standardised patient care.
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1 Introduction

It is now well-accepted that cancer is fundamentally a genetic
disease, where the sequential accumulation of somatic muta-
tions and epigenetic changes disrupts the delicate homeostasis
of cellular functioning. Advances in technological platforms
such as next-generation sequencing (NGS) have allowed in-
depth interrogations of such genetic aberrations and have,
subsequently, led to significant advancements in our under-
standing of the key regulators of oncogenesis. As a conse-
quence, we have entered the era of ‘precision medicine’,
whereby therapeutic strategies may be tailored to patients
based on their tumour molecular landscapes. With this comes
the necessity to collect tumour samples for genomic analysis.

Tissue biopsy remains the current gold-standard method for
sampling a patient’s tumour for genotypic analysis [1, 2].
There are, however, multiple shortcomings to this method.
Such invasive and costly sampling methods are associated
with a high degree of complications. For example, 17% of
lung cancer patients undergoing intra-thoracic image-guided
biopsy suffer from an adverse event [3]. Additionally, owing
to spatial and temporal tumour heterogeneity, a single-site
biopsymay inadequately represent the total genetic landscape,
and therapeutically actionable mutations or potentially resis-
tant clones may thus be missed [1]. There is also a risk that a
biopsy fails to obtain a sufficient number of cancerous cells to
carry out adequate downstream analyses [4]. Moreover, cur-
rent tissue preservation methods such as formalin fixation can
introduce significant artefacts that may confound molecular
testing [5]. In solution to these drawbacks, minimally-
invasive biopsy methods have risen in popularity over recent
years alongside the rise in molecular tumour profiling. Termed
‘liquid biopsies’, these methods include collecting blood or
other bodily fluids from which to isolate various circulating
components. In particular, cell-free DNA (cfDNA) holds
promise as a biopsy surrogate, and has the potential to become
a rapid, cost-effective and non-invasive means to assess the
tumour landscape (Table 1).
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2 Cell-free DNA biology

Cell-free DNA, double-stranded, highly fragmented extracel-
lular DNA was first described in blood plasma in 1948 [25].
Subsequently, it has been detected in urine, saliva, peritoneal
fluid, pleural fluid, uterine lavage fluid and cerebrospinal fluid
[26–30], where it is presumably released from cells via both
active secretion and apoptosis [31, 32]. Healthy individuals
harbour between 1 and 10 nanograms of cfDNA in each
millilitre of blood, with the major contributors being hemato-
poietic cells [30, 33–35]. Further studies are, however, re-
quired in order to definitively determine the threshold of ‘nor-
mal’ cfDNA concentrations. Whilst cfDNA has a short half-
life of approximately 16 minutes, associations with various
lipids and proteins can increase its longevity up to 10-fold
[30, 36, 37]. cfDNA clearance from the body primarily in-
volves nuclease action, followed by renal excretion [37, 38].

2.1 Biology and origin of tumour-derived cell-free
DNA

Whilst a number of non-malignant causes of elevated cfDNA
exist due to increases in cellular death and turnover (infection,
autoimmune disease, trauma), it wasn’t until 1977 that the first
connection between cfDNA and cancer was uncovered, when
it was noted that circulating levels were increased in various
types of cancers [39, 40]. This initial study by Leon et al. also
provided a first indication that cfDNA levels may be propor-
tional to tumour staging [41]. The presence of tumour-specific
DNA among the pool of extracellular nucleic acids in the
circulation was not confirmed until sensitive, mutant-specific
PCR technologies were introduced nearly 15 years later [40,
42]. These early observations hinted at the possibility of using
cfDNA to analyse tumour genomes in a minimally-invasive
manner. Further technological advances such as the advent of
next-generation sequencing (NGS) have brought these initial
ideas to fruition.

In a malignant state, levels of cfDNA can increase to 50-
1000 ng/ml blood, with tumour DNA comprising 3-90% of

the total [43]. Increased levels are presumably due to a high
turnover rate of tumour cells and an inefficient clearing of
dead and dying cells [40]. The principal mechanisms through
which tumour-derived cfDNA (herein referred to as ctDNA) is
released in both solid and haematological malignancies are
still under dispute, but multiple properties suggest cell death
as the major contributor. The most common size of double-
stranded ctDNA fragments is 160-180bp, as determined by
sequencing-based approaches in humans and xenograft mouse
models [30, 44, 45]. This size corresponds to the length of
DNA occupying a nucleosome, the structural units of the eu-
karyotic chromosome [40]. Additionally, prominent but
smaller fragment populations of ~330 and ~500 bp can be
seen, corresponding to a linear progression of di- and tri-
nucleosomal fragments [46] (Fig. 1). These observations im-
plicate caspase-activated DNase, an endonuclease active in
cellular apoptosis which cleaves chromatin DNA in an inter-
nucleosomal pattern [46]. Another suggested method of
ctDNA release is active secretion, in which newly-
synthesised fragments are released in a lipid-protein complex
[47]. This homeostatic mechanism, which was demonstrated
early on by Abolhassani et al., can also produce DNA frag-
ments of comparable lengths to those arising from apoptosis
[48, 49]. Some studies have suggested that a large proportion
of ctDNA is derived from active cellular secretion, such as the
one published by Bronkhorst et al. who identified ctDNA
fragments of novel length predominantly being released by
viable, non-apoptotic osteosarcoma cells from [50]. There is
also a case for necrotic release of tumour DNA, especially
when considering the hypoxic environment of solid lesions.
Necrotic cell death leads to the release of rapidly-cleaved,
predominantly large (> 10,000 bp) nucleic acid fragments
[43, 51]. A recent study using an in vivo inducible necrotic
liver injury model demonstrated that large DNA fragments
greater than 10,000 bp can be identified in the circulation
which can significantly contribute to the pool of cfDNA frag-
ments [43]. Current extraction methods, however, poorly re-
cover larger ctDNA fragments and, therefore, the contribution
of tumour cell necrosis to the ctDNA population is still

Table 1 A comparison of
applications between solid tissue
biopsy and cell-free DNA

Tissue cfDNA

Able to observe histological patterns Yes [6] No [7]

Easy to obtain with minimal discomfort No [8, 9] Yes [10]

Ability to represent full mutation spectrum of tumour No [11] Yes [12, 13]

Evaluation of RNA expression Yes [14] No [15]

Detection of SNVs, CNVs, indels, SVs Yes [16] Yes [17–19]

Proteomics analysis Yes [20] No [15]

Analysis of methylation patterns Yes [21] Yes [22]

Potential to detect MRD No [23] Yes [24]

Abbreviations: SNV, Single nucleotide variant;CNV, Copy number variant; indel, insertion/deletion; SV, Structural
variant; MRD, Minimal residual disease; cfDNA, cell-free DNA.
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incompletely understood [34, 52]. It is currently accepted that
a combination of all three mechanisms may lead to ctDNA
deposition, although further research is required to determine
the relative contribution each makes to the total ctDNA levels
in the context of different fluid compartments. Such knowl-
edge may inform choices for cfDNA extraction methods in
order to enrich for ctDNA.

3 Technical considerations for ctDNA isolation
and analysis

There are a number of factors that need to be considered when
isolating patient ctDNA for analysis, and a thorough investi-
gation of each may assist in the selection of standardized op-
erating procedures to help control for preanalytical variables
common during cfDNA processing. Whilst ctDNA has been

identified in multiple fluid compartments, the most common
source for analysis is blood (Box 1).

3.1 Plasma versus serum

ctDNA is, by nature, diluted in cfDNA present due to normal
cellular turnover. Therefore, further dilution of the ctDNA by
inadvertent lysis of leukocytes and other cells after sample
collection is undesirable, as it can severely hinder the ability
to detect low frequency mutations [58]. Past studies have
favoured ctDNA collection from serum, as the total cfDNA
yield is consistently greater compared to that of plasma [59,
60]. However, in recent years it has been demonstrated that
this difference is due to the higher level of leukocyte lysis
during blood coagulation [60]. For this reason, plasma has
become the desired medium from which ctDNA may be ex-
tracted, and has since been shown to contain higher propor-
tions of tumour-derived nucleic acids [45].

3.2 Collection tube and anti-coagulant

Between venepuncture and sample processing, the concentra-
tion of cfDNAwill increase over time due to cellular lysis [61,
62]. To minimise genomic DNA contamination of ctDNA,
prompt separation of plasma from the cellular components
of blood via centrifugation is essential. The maximum time
that a sample can be left unprocessed before it becomes com-
promised is still under debate, and ranges from 2 to 24 hours
[63–67]. The type of blood collection tube should be taken
into consideration when assessing the available infrastructure,
or lack thereof, that may form a barrier to timely plasma iso-
lation after venepuncture. The most common plasma collec-
tion tubes are ethylenediaminetetraacetic acid (EDTA) and
cell-free DNA™ tubes (Streck), both of which contain the
K3EDTA anti-coagulant, with the latter containing an addi-
tional preservative to reduce cellular DNA release [68].
Comparative studies in the fields of obstetrics and oncology
have demonstrated the equivalence of both collection tube
types if plasma isolation occurs within 6 hours of
venepuncture [69]. Beyond this, cell-free DNA™ tubes

Box 1: Non-blood circulating tumour DNA

Whilst blood is the most commonly collected matrix for the isolation and
analysis of ctDNA, non-blood circulating tumour DNA fragments can
also be found in other body fluids and compartments [53]. Collection
of these fluids, such as saliva, urine and stool is economical, even less
invasive than a blood draw, and can be performed by the patient
without professional assistance. Moreover, this approach overcomes
the issue of repetitive venipuncture in advance-stage cancer patients
with pre-existing anemia [54].

It has been suggested that due to the dilution of ctDNA in blood with
genomic DNA, and the close proximity of various neoplasms to certain
compartments, i.e., stool to colorectal carcinoma, collection of other
fluids can provide greater proportions of ctDNA and, therefore,
increase the sensitivity of downstream analyses. Indeed, a number of
studies has shown that non-blood ctDNA either matches or surpasses
the sensitivity seen in plasma for detecting local cancer [55–57].

However, one concern of this collection method is that, like solid
biopsies, non-blood ctDNAwill fail to fully inform on distant meta-
static sites. More studies are needed to determine the ability of
non-blood ctDNA to represent the spatial heterogeneity seen during
metastatic spread, and perhaps multiple samplings of both blood and
non-blood ctDNAwill be required for ctDNA analysis to reach its full
potential.
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Fig. 1 Origins of circulating tumour DNA in the peripheral circulation.
Capillary electrophoresis indicates that the bulk of ctDNA is present as

mono-, di-, and tri-nucleosomal fragments, consistent with DNA release
via cellular apoptosis



outperform conventional EDTA tubes at preventing signifi-
cant genomic DNA contamination [69–71], and have been
shown to preserve the quality of cfDNA for five days at room
temperature [72]. Other blood collection tubes include those
containing citrate or heparin anti-coagulants, but K3EDTA
surmounts both when considering cfDNA preservation and
downstream analysis [65, 73].

3.3 Extraction and storage

Circulating DNA levels can be extremely variable and, there-
fore, all possible measures should be taken to maximise yield
and minimise degradation in order to allow for sensitive de-
tection of mutant alleles [74, 75]. Consequently, careful selec-
tion of a nucleic acid isolation kit suitable for low cfDNA is
critical. There are currently numerous kits principally de-
signed for the purpose of extracting cfDNA (Table 2), each
with is own merits and limitations. After extraction, cfDNA
can be stored between -20 and -80°C for extended periods of
time, but multiple freeze-thaw cycles will invariably cause
cfDNA fragmentation and should be avoided unless the
DNA is stored in a low-salt elution buffer [61, 66].
Additionally, due to the hydrophilic nature of double-
stranded helical DNA, use of plastic-ware containing hydro-
phobic polymers such as polypropylene can lead to reduced
yields [61]. In contrast, polyallomer or specially-treated poly-
propylene plastic-ware has been shown to bemore suitable for
DNA storage and for maximising nucleic acid recovery during
pre-analytical stages [84, 85].

3.4 Analysis platform

Similar to solid tumour biopsy analysis, the genomic interro-
gation of ctDNA ranges from single point mutation to whole-

genome investigation. At present, there are numerousmethods
used to interrogate ctDNA, which can broadly be separated
into candidate-gene approaches (for assessing 1-10 loci) and
deep-sequencing approaches (Table 3). Whilst deep-
sequencing methods provide the ability to assess a high num-
ber of loci without any prior knowledge of molecular alter-
ations, and also affords a good platform for discovery of novel
genes for precision medicine, it is expensive and requires
comprehensive informatics analysis. Due to the low complex-
ity and highly-damaged nature of ctDNA, whole genome
studies are relatively scarce, although low-depth whole-ge-
nome sequencing has been used to identify somatic copy-
number alterations in prostate cancer and neuroblastoma [86,
87]. As such, targeted sequencing approaches have become
the preferred method when analysing ctDNA via deep se-
quencing [88, 89]. Candidate gene analysis approaches such
as digital PCR have a comparable or increased sensitivity, are
more cost-effective, and no bioinformatic analysis is required.
However, such approaches only enable monitoring of known
mutations, and multiplexing capabilities are low. It is likely
that high-throughput, deep-sequencing methodologies will
continue to be used for research purposes, and resulting data
should inform a candidate-gene analysis approach that can
easily be implemented in clinical practice where specific ge-
nomic expertise may be lacking. An assessment of the merits
and limitations of current technologies used for ctDNA anal-
ysis is provided in Table 3.

3.4.1 Increasing analytical sensitivity

At present, both workflow approaches are lacking in the
sensitivity required for ctDNA analysis to become im-
bedded in clinical practice. False-positives still occur
[90], and it is suspected that many false-negatives arise

Table 2 A comparison of the different methods currently utilised to extract cfDNA from clinical samples

Extraction method Examples Strengths Limitations

Manual extraction Phenol/chloroform-based Inexpensive [76] Harmful reagents
Time-consuming
Carry-over of phenol can reduce

PCR efficiency [76–78]

Column-based QIAamp Circulating Nucleic Acid Kit
GenElute™ Plasma/Serum Cell-Free

Circulating DNA Purification Midi Kit

Highest extraction efficiency
[79, 80]

Can be expensive
Possibility of aerosol contamination

[76, 81]

Magnetic bead-based cfPure™ Cell Free DNA extraction kit
MagMAX™ Cell-Free DNA Isolation Kit
Maxwell® RSC ccfDNA Plasma Kit
EpiQuik Circulating Cell-Free DNA

(cfDNA) Isolation Easy Kit
NextPrep-Mag™ cfDNA Isolation Kit

Reduced processing time compared
to column-based methods

Potential for full automation
[76, 82]

Can have lower yields than
column-based methods [79, 82]

Polymer-mediated
enrichment capture

PME free-circulating DNA Extraction Kit Reduced processing time compared
to column-based methods [83]

Usually lower yields than column
and bead-based methods
[80, 82]

16 H. Fettke et al.
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due to insufficient detection of ctDNA in the larger pool
of cfDNA, especially in the case of primary, low burden
tumours. The addition of unique molecular identifiers
(UMIs) in next generation sequencing approaches such
as Safe-SeqS are expected to increase the sensitivity of
deep-sequencing approaches for ctDNA detection. This
molecular barcoding technique assigns unique sequences
to each original DNA fragment, allowing the formation
of UMI families following sequencing and the generation
of corrected consensus reads without PCR or sequencing
errors [91]. This allows utilisation of PCR replicates to
reduce background errors and, therefore, increase true
variant detection at lower allelic frequencies, which is
useful when trying to identify ctDNA in a larger pool
of normal cfDNA. Likewise, CAPP-seq uses a similar
method, but each strand of the DNA template molecules
is assigned a unique identifier allowing even pre-PCR
errors to be removed, which further increases the sensi-
tivity of the assay [92, 93]. Utilisation of targeted se-
quencing over whole genome or whole exome sequenc-
ing will also improve the sensitivity of NGS assays, as it
allows increased coverage of specific regions of interest
and, therefore, increases the likelihood of picking up a
variant at low allelic frequency within the total pool of
cfDNA. However, it should be noted that targeted
methods reduce the discovery of novel cancer-
associated loci.

Other methods that can be adapted to increase analytical
sensitivity include in silico enrichment of shorter fragments
from the cfDNA pool, as ctDNA fragments have been shown
to be, in general, shorter than other cfDNA fragments [44, 94].
Additionally, when detecting a smaller tumour burden such as
in early-stage malignancy, MRD or disease recurrence, a
larger-volume sample from patients should be considered.
Future studies should be aimed at assessing the best sample
source and the utility of taking multiple samples concurrently
(i.e., plasma and urine) to improve ctDNAyield.

4 Clinical applications of ctDNA

The clinical applications of circulating DNA in a cancer set-
ting are numerous and varied. These applications include de-
tection and localisation of neoplastic growth, prediction of
tumour staging and prognosis, tumour genotyping and identi-
fication of potential targeted therapeutics, monitoring treat-
ment efficacy and resistance, as well as identification of
early-stage recurrence.

4.1 For early detection of disease

Early identification and intervention of cancer growth has the
potential to improve therapy response and overall survival

rates. ctDNA can be detected in patient plasma before con-
ventional screening methods identify a cancerous lesion, as
shown in one particular prospective study that found that
KRAS2 and P53 mutations in otherwise ‘healthy’ individuals
were associated with a higher risk of developing clinically
detectable bladder cancer within 6 years (OR, 4.25 and 1.81,
respectively) [95]. Whether this study represents the identifi-
cation of a biomarker for cancer development, or a true iden-
tification of malignancy in pre-symptomatic individuals is still
unclear. Nevertheless, it does represent a proof of concept for
the potential incorporation of ctDNA into future screening
programs. A deficit of this and similar studies is the interro-
gation of only 1 or 2 cancer-associated loci, making it likely
that some true-positive patients may be overlooked for further
investigative procedures in the absence of a ‘hallmark’ muta-
tion [96, 97]. Moreover, a small number of healthy individuals
harbour cancer-associated genomic alterations [98, 99], sug-
gesting that analysis of a limited gene set is insufficient to
confirm the presence or absence of ctDNA.

Assessment of the mutational and/or copy number status of
a panel of pan-cancer-associated genes could potentially pro-
vide a more reliable method of identifying early-stage disease
by increasing the sensitivity for detecting ctDNA. A multi-
gene targeted NGS panel was recently utilised by Nair et al.
on ctDNA isolated from uterine lavage fluid of women under-
going hysteroscopy for endometrial cancer screening. Ultra-
deep sequencing revealed that all 7 women who received a
positive early-stage diagnosis by classical histopathological
assessment also had ctDNA harbouring significant cancer-
associated gene mutations [26]. On a much larger scale,
Cohen et al. reported the advent of CancerSEEK, a blood test
with the ability to detect eight common cancer types across
1005 newly-diagnosed patients. CancerSEEK combines data
collected from amplicon-based sequencing of cfDNA at 61
pan-cancer loci with levels of 8 circulating protein markers
[100]. Of these eight cancer types, five currently have no
effective screening test. With an assay specificity of over
99% and a sensitivity ranging from 69-98% (depending on
cancer type), the possibility of using such liquid biopsies for
early cancer detection is gaining momentum.

Still, whilst these early proof-of-concept studies are
promising, a number of technical and biomedical chal-
lenges need to be overcome before a ctDNA screening
assay becomes clinically attainable. Assay sensitivity re-
quires ongoing improvement to detect early-stage cancer
with high confidence and a low frequency of false-
negative determinations. Currently, deep sequencing tech-
niques meet this challenge better than low-throughput as-
says such as digital PCR. Additionally, the type and
amount of specimen used (e.g. urine versus plasma) is also
an important consideration when trying to identify small
quantities of tumour DNA in an asymptomatic individual
[26, 101]. Additionally, current patient follow-up tests
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may be of little use to ctDNA positive patients in which no
neoplasm is detectable by current methods, except to pin-
point patients in need of close surveillance.

4.2 For cancers of unknown primary

Malignant cancers in which the disseminated site(s) are identi-
fied but not the primary location are associatedwith an extreme-
ly poor prognosis (mean survival < 12 months) due to a lack of
tailored therapeutic strategies [102]. Epigenetic patterns of
ctDNA are often highly stable and unique to particular cell or
tissue types even in a cancer setting, and thus may facilitate the
identification of the primary mass in CUPs (cancers of un-
known primary). Recently, Lehmann-Werman et al. interrogat-
ed methylome databases to generate a list of methylation pat-
terns than can be used to distinguish between different cell and
tissue types. Consequently, through bisulfite sequencing, they
demonstrated that methylation markers specific for exocrine
pancreatic cells corresponded to those found in ctDNA of pa-
tients with pancreatic cancer [33]. This notion provides prelim-
inary evidence that the ctDNA epigenome can be used to in-
form on cell-of-origin. Additionally, patterns of nucleosomal
spacing of ctDNA fragments can also be used to infer cell types
contributing to a pathological state. Snyder et al. assessed nu-
cleosomal positioning in various solid tumours via deep se-
quencing and reported that the nucleosomal footprint of the
tumour cells corresponds to ‘nucleosome maps’ derived from
cancer cell lines [103]. In addition to epigenetic patterns, infor-
mation on microsatellite instability has also been used to pro-
vide a primary source of diagnosis, as was the case in two
trophoblastic tumours without a definitive histopathological di-
agnosis [104]. These proof-of-concept studies have revealed the
potential utility of ctDNA for the localisation of a primary neo-
plastic site, and future studies should include larger cohort sizes
and CUP patients to fully elucidate the clinical utility of ctDNA
in providing a tissue-specific signal.

4.3 For tumour genotyping

Increasingly, there has been a transition away from anatomical
and histological classification of tumours to a system based on
molecular classification. This paradigm shift has allowed the
introduction of precision medicine – customisation of
healthcare and therapies based on genetic and molecular land-
scapes. The analysis of ctDNA has provided an avenue by
which genetic and molecular signatures can be detected in a
minimally invasive fashion. However, in order for ctDNA to
become clinically relevant and play an integral part in day-to-
day practice, there must be demonstration of a high concor-
dance between mutational profiles found in ctDNAs and those
found in solid biopsy samples. Studies in NSCLC have so far
had the most success in this regard, with a recent trial showing
the ability to detect epidermal growth factor receptor (EGFR)

mutations in patient cfDNA with a concordance of 94.3% to
matched solid biopsies. Additionally, 12 patients with a pre-
viously undefined mutational status due to technical difficul-
ties with obtaining a tissue biopsy were identified as mutation-
positive, and were subsequently treated with the EGFR inhib-
itor gefitinib [105]. There have been similar studies performed
in a variety of other malignancies, including colon cancer and
melanoma, were KRAS and BRAF mutations were interrogat-
ed, respectively [106–109].Within these studies, variable con-
cordance rates, sensitivities and specificities were reported,
likely, in part, due to the assay types and technological plat-
forms used. It should also be noted that rates of concordance
between solid and liquid biopsies may not be an ideal method
of assay validation, as ctDNA is expected to report on the
genetic profile of all malignant populations [110], whereas a
single tissue biopsy is unlikely to represent the full molecular
landscape of a cancer.

4.4 For tumour staging and prognosis

Clinicopathological characteristics such as tumour stage and
burden have been found to be significantly associated with
both relative amounts and absolute concentrations of ctDNA
[111–113]. Specifically, a 0.04% increase in plasma ctDNA
levels (measured via TP53 mutant allele fraction) has been
reported for every additional 1 cm3 of high grade serous ovar-
ian tumour, as measured by computed tomography scans
[114]. Such a statistic cannot be directly applied to other tu-
mour types, due to the inherent differences in rates of cellular
turnover, location and vascularity. Nevertheless, a liquid biop-
sy to determine tumour burden has clear advantages over con-
ventional imaging and biomarker analyses as its short half-life
allows real-time reporting [37]. In fact, in metastatic breast
cancer, ctDNA has a greater correlation with tumour size when
compared to both circulating tumour cells (CTCs) and the con-
ventional protein biomarker CA 15-3 (Cancer Antigen 15-3)
[115]. Studies measuring ctDNA levels to investigate tumour
size almost always occur in a high burden setting, with the
clinical utility of using ctDNA to report on precise tumour
volumes in a minimal disease setting still being largely unclear.

The link between ctDNA levels and tumour burden sug-
gests that cfDNA has prognostic ability. Indeed, many studies
have observed a relationship between either total cfDNA or
ctDNA levels and tumour staging (based on tumour size and
extent of metastatic spread) [30, 74, 116, 117]. One particular
study in 640 patients with various solid tumours found mutant
fragments within plasma ctDNA increasing significantly be-
tween tumour stages (I through IV). The study also reported a
significant association between mutant allele count and sur-
vival probability, with a two-fold rise reducing the 2-year sur-
vival probability from 25% to 10% [74]. A recent meta-
analysis assessing a total of 1,170 non-small cell lung cancer
(NSCLC) patients also concluded that a high cfDNA
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concentration was associated with a worse outcome in stage
III-IV disease [118]. Other studies have reported similar find-
ings [116, 119, 120] although, again, focus has been on tu-
mour types with a high mutational burden and a distinct set of
‘hallmark’ alterations such as colorectal cancer. Larger gene
panels are required to increase the sensitivity for detecting
ctDNA in genetically heterogeneous tumours, or total
cfDNA concentrations considered instead, although this
comes with its own challenges due to fluctuations that may
occur independently of tumour cell release [39, 40].
Additional challenges for using ctDNA for tumour staging
arise from the high amount of inter-patient variability of plas-
ma levels within the same stage and type of disease [74]. This
is presumably due to differences in tumour vascularisation and
extent of metastatic spread and, therefore, tumour burden.
Such inter-individual differences need to be considered when
using ctDNA as a staging tool, and perhaps a two-armed ap-
proach combining ctDNA with conventional methods may
have the greatest utility.

4.5 For guiding treatment selection

The demonstration of reliable concordances between cfDNA
and solid biopsies in regards to mutational profiling has given
rise to studies investigating whether liquid biopsies can guide
the selection of targeted therapies. Although retrospective in
nature, multiple studies have showcased the ability of ctDNA
to predict outcomes to targeted therapy. One such study in
NSCLC reported that patients positive for the T790M EFGR
mutation in plasma have outcomes that are equivalent to pa-
tients deemed positive by a tissue-based assay when treated
with osimertinib, a third-generation EGFR inhibitor (overall
response rates of 63% and 62%, respectively) [121]. Likewise,
a study assessing BRAF mutations in melanoma ctDNA as a
predictive marker of response to dabrafenib across four clini-
cal trials concluded that it may be a useful marker for targeted
therapy, although there was a small subset of plasma mutant-
negative patients who experienced a therapeutic response
[109]. Regardless, the robust data supporting ctDNA profiling
in NSCLC has influenced major management guidelines
allowing plasma biopsy as a viable alternative for molecular
profiling before treatment in cases in which an initial tissue
biopsy is non-diagnostic, and repeated biopsy is not feasible
[4]. As a result, first-line targeted therapies in EGFR-mutated
NSCLC based on liquid biopsy are now a reality due to ap-
proval by major regulatory bodies in the United States and
Europe [122]. Other cancer types are not far behind, with
numerous clinical trials currently underway assessing the pre-
dictive utility of ctDNA for approved targeted therapies.

In addition, total ctDNA levels may also be useful for guid-
ing therapy. A recent study assessing plasma ctDNA in 21,807
advanced cancer patients revealed a relationship between
ctDNA levels and the total mutational burden of a tumour,

which may illuminate patients responsive to immunotherapy
[123]. However, this link was only identified in breast cancer,
colorectal cancer and NSCLC, and may be less applicable to
cancer types with lower ctDNA fractions (e.g. glioma).

4.6 For monitoring treatment efficacy

Quantification and analysis of ctDNA represents a novel and
timely method for measuring response (or lack thereof) to thera-
py. Currently, a combination of patient symptomology, biochem-
ical markers and radiographic evaluation is used to objectively
evaluate a patient’s response to treatment. These methods are not
without significant drawbacks, however. Definitive symptoms
can often lag behind overt disease progression, and tumour
markers have been shown to lack specificity. For example, serum
prostate-specific antigen (PSA) is widely used for disease mon-
itoring in advanced prostate cancer despite progression regularly
occurring in the absence of any detectable changes in PSA [124,
125]. Furthermore, the extended half-lives of tumour markers
such as PSA allow them to persist in the circulation at levels that
may not reflect treatment outcome, thereby hampering dynamic
treatment decisions [126, 127].

In comparison, the unique properties of ctDNA, in particular
its short half-life, make it an attractive real-time indicator of
treatment efficacy andmay lead to the identification of response
earlier than clinical detection. Studies monitoring patients
throughout therapy have reported that the dynamic changes in
ctDNA throughout treatment correlates with response
[128–130]. One such prospective study in women with meta-
static breast cancer concluded that ctDNA is superior to other
circulating biomarkers such as CA 15-3 in sensitivity and that,
due to its dynamic range, it shows a greater correlation to
changes in tumour burden [129]. Similar results have been re-
ported in NSCLC, where reductions in ctDNA concentrations
can predate favourable imaging findings by 4-6 weeks [131].

A recent study onmetastatic melanoma suggested that clinical
responses to anti-PD-1 immunotherapy may be preceded by re-
ductions in ctDNAwithin 2-4 weeks of treatment initiation, al-
though the cohort of 5 patients needs to be expanded [130]. It is
likely that a drop in ctDNA is preceded by an initial peak in
circulating ctDNA levels due to an initial increase in tumour cell
death. Indeed, an earlier study on metastatic melanoma reported
that an early peak in ctDNA level within the first week was
indicative of a favourable response to T-cell transfer immuno-
therapy [132]. If confirmed, these data may be used to shape
guidelines as to when ctDNA sampling should take place in
order to assess early treatment responses to immunotherapy.

4.7 For identifying treatment resistance

It is well-appreciated that targeted therapies exert selective
pressure on sensitive populations of neoplastic cells, ultimate-
ly leading to a molecular evolution of a patient’s tumour and
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the development of treatment resistance [133]. If, during treat-
ment, relative changes in mutations can be observed early,
then clinicians may be one step ahead, preparing for a second
line of therapy to immediately combat the rise of novel resis-
tant clones. Serial analysis of ctDNA represents an avenue
through which clonal evolution can be closely monitored for
the manifestation of resistance-conferring mutations that in-
variably develop during the treatment course [134–136] (Fig.
2). The ability of ctDNA to report on the genetic landscape of
multiple tumour sites will also ensure that novel metastases
arising from sub-clones are not ignored [110, 137]. Most ev-
idence outlining the utility of ctDNA in monitoring treatment
resistance currently comes from NSCLC, with the T790M
mutation conferring resistance to EGFR tyrosine kinase inhib-
itors being reliably detected in the ctDNA of patients 16 to 49
weeks before clinical or radiological progression is observed
[138–140]. There is also emerging evidence that ctDNA can

be used to investigate therapeutic resistance in other malig-
nancies, including advanced prostate cancer, where various
somatic aberrations have been linked to resistance to the
androgen-axis targeting therapeutic compounds enzalutamide
and abiraterone acetate [75, 141, 142].

The preferred method of interrogating the ctDNA muta-
tional landscape for resistance-conferring mutations is via a
candidate gene approach such as digital droplet PCR, presum-
ably due to its superior sensitivity (Table 3). However, the
application of ctDNA to the identification of treatment resis-
tance warrants deep sequencing studies interrogating multiple
targets in order to identify all potential resistance-conferring
clones. Whole exome or large-panel sequencing of cfDNA are
currently limited by their lower sensitivity and higher costs,
with patient-specific mutation panels presenting a more desir-
able alternative [143]. This, however, also presents the risk of
missing de novo events.

Fig. 2 Monitoring of tumour
clonal evolution via serial liquid
biopsies. Targeted therapeutics
puts cancer cells under selective
pressure, changing the genetic
landscape and, thereby, altering
treatment efficacy. Detection of
such clonal evolution in
circulating tumour DNA can help
to guide the selection of ensuing
therapies

Fig. 3 Current clinical trials
utilising cell-free DNA in cancer
settings. Trials are either
recruiting or underway, as
detailed on clinicaltrials.gov.
Search performed on 29/06/2018
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4.8 For monitoring MRD

A central question after any anti-tumour therapy (surgery or
otherwise) is whether the treatment has left behind any resid-
ual cancer cells or microscopic metastatic deposits that are
responsible for relapse. Minimal residual disease (MRD) is a
prominent concept in haematological malignancies, however
the ability to detect small populations of residual tumour cells
in solid tumours is still underdeveloped. A highly sensitive
and accurate assay capable of detecting the presence of
ctDNA can potentially be used to identify patients in need of
further adjuvant therapies whilst saving low-risk patients from
unnecessary and expensive treatments. It has been estimated
that approximately 44 million malignant cells are required for
significant plasma ctDNA detection, a number below the limit
of resolution of current radiological techniques [144]. The
ability to detect ctDNA even in the absence of any other clin-
ical evidence of cancer makes it a prime candidate for mea-
suring early-stage disease recurrence.

A recent prospective correlative biomarker study in 230
early-stage colon cancer patients reported that only 10% of
patients with no detectable post-operative ctDNA suffered ra-
diological relapse within three years whilst 100% of ctDNA-
positive patients suffered disease recurrence [145]. As a result,
post-operative ctDNA detection has been incorporated into a
prospective clinical trial of stage II colon cancer patients re-
ceiving adjuvant chemotherapy. Such a high predictive value
is presumably due to the personalised Safe-SeqS assays de-
veloped based on the molecular characteristics of the patient’s
tumour resected during surgery, and the large volume of plas-
ma collected at each time point (10 ml). Whilst this study
clearly shows the validity of a patient-specific assay to detect
MRD, results of similar studies in other cancer types are less
clear, such as a separate study in multiple myeloma patients
which found plasma ctDNA to be a poor predictor of disease
recurrence, although one potential limitation of this study is a
lack of sensitivity due to under sampling of patient serum (1
ml) [146]. It should also be noted that the design of a
personalised assay for monitoring MRD based on somatic
mutations in a resected sample may reduce assay sensitivity
due to a potential lack of representation of heterogeneous tu-
mours, and the emergence of novel sub-clones post-surgery.

5 Concluding remarks and future directions

Liquid biopsies are likely to play an increasing role in the
implementation of precision medicine and the personalised
treatment of various cancers. At present, many proof-of-
concept studies have paved the way for the field to move from
exploratory studies to implementation in clinical trials where
ctDNA profiling guides patient management decisions.
Currently, over 200 clinical trials investigating the prognostic

and/or predictive biomarker utility of ctDNA across various
cancer types are underway or actively recruiting (Fig. 3).
However, there remain multiple issues delaying the wide-
spread incorporation of ctDNA into routine patient care.
Future focus should be on establishing optimal techniques
for sample collection, cfDNA isolation (to improve yield of
all relevant fragment sizes) and analysis. In addition, further
studies are required to better understand the biological char-
acteristics of ctDNA, such as mechanisms of release and clear-
ance, and a proper characterisation of normal reference ranges.
It is also important to understand how non-malignant condi-
tions (e.g. inflammation, illness) contribute to the total cfDNA
pool, as this may be informative for the optimal time for liquid
biopsy collection.

As with any biomarker, a critical step to incorporation into
clinical care is validation of a highly sensitive, universally
agreed-upon platform. At present, multi-gene approaches capa-
ble of identifying several variant types (e.g. SNVs, CNVs) such
as hybrid-capture based deep sequencing appear to be the most
promising for biomarker discovery and development, and may
soon match candidate-driven approaches in terms of sensitivity.
Such assays should be developed with rigorous attention to an-
alytical validity, accompanied by precise reporting onmethods in
accordance to best practice guidelines [147, 148]. Only by first
addressing analytical validity one can begin to broach to the idea
of clinical validation in prospective clinical cohorts.

On the challenge of clinical validation, there is an impera-
tive that investigators continue to design biomarker-driven,
prospective clinical trials, where patients receive specific
treatment(s) on the basis of a predefined marker of interest
[149, 150]. This focused approach, where the ctDNA bio-
marker will define the management plan, enriches study co-
horts for patients likely to benefit, potentially streamlining
drug development and accelerating drug approval [151]. It is
important that ctDNA biomarker testing in such trials is re-
stricted to clinical testing laboratories with a Clinical
Laboratory Improvement Amendments (CLIA) certification,
preferably with ample prior experience with the assay is ques-
tion. Finally, robust evidence demonstrating definitively im-
proved clinical outcomes or superior diagnostic capability
compared to any current gold-standard is crucial before we
can confidently transfer a ctDNA biomarker assay into routine
clinical practice.

A future with ctDNA as a validated biomarker is on the ho-
rizon. As concordance of detectable driver alterations between
ctDNA and solid biopsies improves, it will only be a matter of
time before such a minimally-invasive liquid biopsy becomes a
vital component of clinical practice and precision medicine.
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