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Abstract
Purpose Despite vast improvements that have been made in
the treatment of children with acute lymphoblastic leukemia
(ALL), the majority of infant ALL patients (~80%, < 1 year of
age) that carry a chromosomal translocation involving the
mixed lineage leukemia (MLL) gene shows a poor response
to chemotherapeutic drugs, especially glucocorticoids (GCs),
which are essential components of all current treatment regi-
mens. Although addressed in several studies, the mecha-
nism(s) underlying this phenomenon have remained largely
unknown. A major drawback of most previous studies is their
primary focus on individual genes, thereby neglecting the pu-
tative significance of inter-gene correlations. Here, we aimed
at studying GC resistance in MLL-rearranged infant ALL pa-
tients by inferring an associated module of genes using co-
expression network analysis. The implications of newly iden-
tified candidate genes with associations to other well-known
relevant genes from the same module, or with associations to
known transcription factor or microRNA interactions, were
substantiated using literature data.

Methods A weighted gene co-expression network was con-
structed to identify gene modules associated with GC resis-
tance in MLL-rearranged infant ALL patients. Significant
gene ontology (GO) terms and signaling pathways enriched
in relevant modules were used to provide guidance towards
which module(s) consisted of promising candidates suitable
for further analysis.
Results Through gene co-expression network analysis a novel
set of genes (module) related to GC-resistance was identified.
The presence in this module of the S100 and ANXA genes,
both well-known biomarkers for GC resistance in MLL-
rearranged infant ALL, supports its validity. Subsequent gene
set net correlation analyses of the novel module provided fur-
ther support for its validity by showing that the S100 and
ANXA genes act as ‘hub’ genes with potentially major regula-
tory roles in GC sensitivity, but having lost this role in the GC
resistant phenotype. The detected module implicates new
genes as being candidates for further analysis through associ-
ations with known GC resistance-related genes.
Conclusions From our data we conclude that available sys-
tems biology approaches can be employed to detect new can-
didate genes that may provide further insights into drug resis-
tance of MLL-rearranged infant ALL cases. Such approaches
complement conventional gene-wise approaches by taking
putative functional interactions between genes into account.

Keywords Acute lymphoblastic leukemia . Glucocorticoid
treatment . Drug resistance . Systems biology . Gene
co-expression network

1 Introduction

During the last four decades major improvements in the treat-
ment of childhood acute lymphoblastic leukemia (ALL) have
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been made, resulting in current disease-free survival rates of
approximately 85 % [1]. Unfortunately, the benefits of these
improvements are not distributed equally. A majority (~80 %)
of infant (< 1 year of age) ALL patients carry a chromosomal
translocation involving the mixed lineage leukemia (MLL)
gene, and only ~40 % of these patients have a chance of
long-term survival, depending on the treatment protocol used
[2, 3]. Experimental studies have shown that cellular resistance
to chemotherapeutic drugs is the main obstacle for achieving a
successful treatment outcome. In particular, resistance to pred-
nisolone, an essential glucocorticoid (GC) drug administered in
most currently used ALL treatment regimes, limits the chances
of a successful treatment outcome [4]. A poor response to pred-
nisolone has been observed in 30 % of MLL-rearranged infant
ALL patients, while this rate drops to <10 % in non-infant (>
1 year of age) pediatric ALL patients [5]. An in-depth under-
standing of the mechanisms that underlie prednisolone resis-
tance in childhood ALL is required to develop mitigation mea-
sures for this phenomenon, to achieve a full treatment potential,
and to increase a successful outcome rate.

Previous studies have indicated that a high expression
of the myeloid cell leukemia 1 (MCL1) gene, a member
of the anti-apoptotic BCL-2 family, is a common factor
involved in resistance to prednisolone in non-infant and
infant MLL-rearranged ALL [6, 7]. It has been found that
the MCL1 activity in pediatric ALL can be controlled by
rapamycin and that the sensitivity to GCs can be restored
by this drug [8]. Rapamycin has, however, been shown to
be ineffective in the treatment of MLL-rearranged infant
ALL, which indicates that additional factors must be re-
sponsible for GC resistance in MLL-rearranged infant ALL
patients. It has also been shown that pan-BCL-2 inhibitors
such as gossypol and AT-101 can induce prednisolone
sensitivity in MLL-rearranged infant ALL patients by in-
creasing the levels of pro-apoptotic proteins such as BIM,
BID, BAD and NOXA, rather than by decreasing the
levels of pro-survival proteins such as BCL-2, BCL-X or
MCL1 [9]. In addition, it was found that free calcium in
the cytosol may be associated with GC-induced
lymphocytolysis [10] and that high levels of S100
calcium-binding protein family members such as S100A8
and S100A9 may be correlated with prednisolone resis-
tance in MLL-rearranged infant ALL patients [11].
Interestingly, it was found that the expression levels of
S100A8 and S100A9 in primary leukemic cells are up-
regulated in infant ALL compared to non-infant ALL pa-
tients [12]. This relationship was subsequently found to be
true for more members of the S100 family of proteins,
including S100A4 and S100A8 and S100A12 [11].
Recently, a high level of another calcium-binding protein,
annexin A2 (ANXA2), has been found to be associated
with GC resistance in MLL-rearranged infant ALL cases
as well [13]. The underlying mechanism of this latter

effect includes Src kinase-induced phosphorylation of
ANXA2, which requires the adapter protein p11 that is
encoded by the S100A10 gene. Knockdown of either the
ANXA2 or S100A10 genes was found to lead to inhibition
of this process and, concomitantly, to an increased sensi-
tization to prednisolone [13]. A similar sensitization to
prednisolone of MLL-rearranged ALL cells could be elic-
ited by LY294002, an inhibitor of phosphatidylinositol 3-
kinase (PI3K) [14]. This latter sensitization was found to
be accompanied by down-regulation of several genes, in-
cluding S100A2.

Several studies on GC resistance in MLL-rearranged
infant ALL cases have revealed potential targets that
may inhibit this phenomenon, but its underlying mech-
anism(s) are still largely unknown. One major drawback
of most of the previous studies may be the ignorance of
putative relevant inter-gene correlations. Although the
identification of differentially expressed genes may pro-
vide clues for subsequent functional analyses, gene co-
expression patterns may provide leads that may have
been overlooked by previous one-dimensional differen-
tial gene expression approaches. Relevant gene sets can
either be deduced from existing well-characterized gene
sets or be inferred from putative functional interactions
between genes. Multiple studies have shown that gene
networks can be used to identify new biomarkers related
to complex diseases such as cancer [15–23]. Co-
expression networks are the most commonly used gene
networks that model correlations between gene expres-
sion profiles. In these networks, highly co-expressed
(correlated) genes are grouped into co-expression mod-
ules (gene sets) for further analysis using, for example,
enrichment for gene ontology (GO) or multivariate sta-
tistical methods. The subsequent identification of key
regulators (‘hubs’) in these modules may provide useful
information, as they may be related to significant bio-
logical functions.

Here, we set out to examine GC resistance in MLL-
rearranged infant ALL patients and show that co-expression
network analysis allows the detection of genemodules that are
associated with GC resistance. We found that one module
encompassed multiple genes, including several S100 and
ANXA genes, that have previously been associated with GC
resistance inMLL-rearranged infant ALL patients. We also set
out to examine relationships among consensus modules (i.e.,
modules that are conserved in both GC sensitive and GC
resistant co-expression networks), by constructing eigengene
networks for each group separately and by performing differ-
ential eigengene network analyses across groups. No signifi-
cant rewiring among consensus modules was observed be-
tween eigengene networks, and inter-modular relationships
were found to be preserved between the GC sensitive and
GC resistant groups.
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2 Materials and methods

2.1 Datasets and preprocessing

The microarray datasets used were retrieved from the NCBI
gene expression omnibus with GEO Series accession numbers
GSE32962 [11] and GSE19143 [7]. Dataset GSE32962 con-
sists of gene expression profiles of 43 infants (< 1 year of age)
with MLL-rearranged ALL. The infants could be classified
into two groups based on prednisolone sensitivity status, i.e.,
19 prednisolone-sensitive and 24 prednisolone-resistant.
Dataset GSE19143 consists of gene expression profiles of
both infant (< 1 year of age) and non-infant (> 1 year of
age) ALL cases that could again be classified into
prednisolone-sensitive and prednisolone-resistant groups.
Only the infant ALL samples of this latter dataset, including
13 sensitive and 12 resistant samples, were used in this study.
A full description of the microarray datasets used in this study
is provided in Table S1 (Supplementary Materials). The
downloading of raw CEL files and the conversion of probe-
level data into expression abundances were carried out using
the GEOquery [24] and Affymetrix [25] R software packages.
Expression data were normalized using the Variance
Stabilizing Normalization (VSN) method, as implemented in
the R VSN package [26]. Probe identifiers were mapped to
gene identifiers using an annotation file released by
Affymetrix for each platform. After these preprocessing steps,
we obtained two expression matrices in which the rows rep-
resent genes and the columns represent samples.

2.2 Construction of co-expression networks

A weighted gene co-expression network was constructed to
reveal correlations between gene expression profiles, as im-
plemented in package WGCNA [27]. We calculated pairwise
gene correlations using the biweight midcorrelation (bicor)
measure [28] based on its robustness to outliers in comparison
to the Pearson correlation coefficient. The two common types
of co-expression networks were designated as signed network
and unsigned network. While the former uses the correlation
coefficient value, the latter uses the absolute value and hence,
information regarding gene activation and repression is ig-
nored. In this study, we constructed signed hybrid networks
by removing all negative correlation values and preserving
only links associated with positive correlations. Next, the
non-negative similarity matrix of the signed hybrid network
was converted to a weighted adjacency matrix using a soft-
thresholding approach.

To compute the adjacency matrix as described above, we
used the adjacency function of package WGCNA with the
following parameters (corFnc = Bbicor^, type = Bsigned
hybrid^, corOptions = BmaxPOutliers = 0.1^). The power
parameter β , which satisfies the scale-free topology property

of the co-expression network, was estimated for the input of
the adjacency function by the pickSoftThreshold function of
package WGCNAwith the parameters stated above.

2.3 Module identification

Genes were grouped into proximity-based modules using a
generalized version of the topological overlap measure
(TOM) for weighted networks [29], as implemented in the
TOMsimilarity function of package WGCNA. Every element
of the topological overlap matrix represents the similarity of
two genes in terms of shared neighbors in the co-expression
network. The dissimilarity matrix 1-TOM was used as an in-
put parameter to the average hierarchical clustering algorithm
for module identification. For average hierarchical clustering
we used the flashClust function with parameter method =
Baverage^, and modules were identified from the resulting
dendrogram using function cutreeDynamic with parameters
deepSplit = 2 and minClusterSize = 30, and other parameters
set as default.

After the detection of gene modules, the gene expression
profiles of each module were summarized by the module
eigengenes [27]. A module eigengene (ME) is defined for a
given module as the first principle component of the expres-
sion data of that module. We computed the module
e igengenes fo r a l l module s us ing the func t ion
moduleEigengenes from package WGCNA. To prioritize
genes within modules, we calculated the module eigengene-
based connectivity and intra-modular connectivity measures
[27]. In the module eigengene-based connectivity, the similar-
ity between the expression profile of gene i and the eigengene
of a module q is calculated as

kqME ið Þ ¼ cor xi;MEqð Þ

where xi refers to the expression profile of gene i and MEq

to the expression profile of the eigengene of module q. The
membership value of a gene to a given module was calculated
using the ME-based connectivity, and the statistical signifi-
cance of this value was provided by a simple correlation test
p-value. The second connectivity measure is the intra-modular
connectivity, which was calculated for the genes of each mod-
ule using the intramodularConnectivity function. Genes with
a strong connectivity to other genes in their respective mod-
ules, called ‘hub’ genes, were identified as key regulators in a
given module.

2.4 Differential co-expression analysis

Two different statistical tests on the resulting modules were
performed to identify modules that are differentially co-
expressed between two groups of GC sensitive and GC resis-
tant samples. The first test entails gene set co-expression
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analysis (GSCA) [30], by which the Euclidean distance be-
tween the pairwise correlation vectors of two groups is calcu-
lated to determine the extent of differential co-expression for a
given gene set. Pairwise correlations within a gene set, sepa-
rately measured for each group of samples, form two distinct
correlation vectors. A permutation test was used to assess the
significance of the difference. The second test entails gene set
net correlations analysis (GSNCA) [31] by which multivariate
changes in the co-expression structures for the identified gene
modules between two conditions are calculated. GSNCA as-
signs a normalized version of the eigenvector of the correla-
tionmatrix corresponding to the largest eigenvalue as a weight
vector for the genes in the gene set under each condition. The
difference between the weight vectors of two conditions was
quantified using a L1-norm distancemeasure, and to assess the
significance of the difference a p-value was calculated using a
permutation test. The GSNCA method is part of the
Bioconductor GSAR package. In this study, we considered
genes with kqME > 0:5 as gene sets related to the modules,
and applied the two methods described above to all gene sets.

2.5 Consensus network analysis

To study relationships between the modules of co-expression
networks across two conditions we used package WGCNA
for consensus network analysis [32]. In doing so, TOM ma-
trices for the GC sensitive (TOMsensitive) and GC resistant
(TOMresistant) samples were constructed separately. To con-
struct a consensus network among both conditions, both
TOMsensitive and TOMresistant were combined into a new
consensus_TOM matrix in the following manner:

Consensus�TOM i; jð Þ
¼ minfTOMsensitive i; jð Þ; TOMresistant i; jð Þg

In the consensus network analysis, the dissimilarity mea-
sure 1-Consensus_TOM was used to identify consensus mod-
ules. After merging close modules, an eigengene network was
constructed for each group of samples by measuring correla-
tions among module eigengenes in each group. In the
eigengene network, each node is an eigengene which relates
to a consensus module and the correlation between each pair
of eigengenes is represented by a weighted link. To examine
whether there was any rewiring in the co-expression networks
at the module level, the links of the eigengene networks were
compared between two groups using the preservation measure
implemented in the plotEigengeneNetworks function of the
WGCNA package. Through this function correlations be-
tween the eigengenes of each pair of modules between the
sensitive and the resistant eigengene networks are compared.
A strong preservation of each link across the two phenotypes
is indicated by a high preservation measure, while a low value

indicates a change in the relationship across the two pheno-
types. Furthermore, to assess the amount of similarity between
eigengene networks, the density measure (D) was calculated
by comparing correlations of all pairs of eigengenes across the
two phenotypes. A high D value depicts a strong preservation
between two networks.

2.6 Transcription factor and miRNA target data analysis
for module validation

Glucocorticoids are used as chemotherapeutic agents to in-
duce apoptosis through two mechanisms, i.e., (1) activating
the transcription of death-inducing genes or (2) inhibiting the
transcription of survival genes through the repression of tran-
scription factor activities [33]. We assessed genes in GC-
associated modules in the context of these two mechanisms
using transcription factor (TF)-target interaction data from the
Transcriptional Regulatory Relationships Unraveled by
Sentence-based Test mining (TRRUST) database [34].
TRRUST is a literature-curated database with data deduced
from millions of Medline abstracts. Its current version in-
cludes 8015 interactions between 748 TFs and 1975 non-TF
targets, and provides information about their modes of regu-
lation, i.e., activation or repression.

MicroRNAs (miRNAs) act as post-translational regulators
of gene expression. They can inhibit translation by binding to
the corresponding target mRNAs. Previously, silencing of
miRNAs via methylation inMLL-rearranged infant ALL cases
has been studied, and 11 miRNAs were found to be down-
regulated as a consequence of hypermethylation of their pro-
moters in t(4;11)-positive (MLL-rearranged) infant ALL sam-
ples compared to normal bone marrow samples [35]. The
down-regulation of at least some of these miRNAs may con-
tribute to over-expression of their corresponding target genes.
We examined such gene expression patterns in a GC-
associated module using the miRTarBase database [36]. The
miRTarBase database consists of experimentally validated
miRNA-target interactions and contains 324,219 interactions
between 2619 miRNAs and 12,738 targets. Only miRNA-
target interactions validated by strong experimental evidence,
i.e., reporter or Western blot assays, were considered in this
study.

3 Results

We present modules that are revealed by weighted gene co-
expression network analysis and highlight one module that is
highly associated with GC (prednisolone) resistance in MLL-
rearranged infant ALL patients. The robustness of the mod-
ules is underscored by our finding that the inter-module rela-
tionships exhibit no significant changes between two condi-
tions (GC sensitive versus GC resistant), and that the modules
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are preserved in two independent infant ALL datasets. We
corroborate the relevance of the highlighted module to pred-
nisolone resistance using differential gene expression analysis
and, in addition, assessing its co-expression structure using
two co-expression analysis methods. Finally, we perform
literature-based functional enrichment analyses for the genes
in the highlighted module. The accumulated results establish a
singlemodule associated with prednisolone resistance, includ-
ing multiple genes already known to be associated with pred-
nisolone resistance.

3.1 Network construction reveals 14 co-expression
modules

Independent of the prednisolone resistance status, the
preprocessed gene expression profiles of MLL-rearranged in-
fant ALL samples (i.e., GSE32962 dataset) were used to con-
struct a weighted gene co-expression network. To this end, we
chose the soft-thresholding approachwith a soft power param-
eter β = 8 to obtain a scale-free topology fit index > 0.8
(Fig. S1, Supplementary Materials). Genes with a stable ex-
pression across two phenotypes were discarded, since they
offer no or little distinction. From the ~19,000 genes in the
dataset, the 5000 most varying genes were selected for net-
work construction. The expression of these genes varied from
that of S100A8 (average expression = 11.86, variance = 5.26)
to that of CAD (average expression = 7.93, variance = 0.07).
Next, the co-expression network was clustered into gene mod-
ules, after which a unique color was assigned to each module
as shown in the upper color band of the unmerged modules in
Fig. S2 (Supplementary Materials). Since some modules were
not sufficiently distinct and their assignments were subopti-
mal, we merged close modules and subsequently adjusted the
module assignments using the moduleMergeUsingKME func-
tion of package WGCNA [27]. These merged modules are
indicated by the lower color bands in Fig. S2 (see
Supplementary Materials). After merging, the number of
modules decreased from 23 to 14, with module sizes ranging
from 52 genes (light-yellow module) to 639 genes (turquoise
module). We grouped 2343 genes that could not be assigned
to any of the 14 modules (background genes) into one module
(grey). This module was ignored in the following analyses.

3.2 Two co-expressionmodules are related to prednisolone
resistance

Correlations between the expression levels of module
eigengenes and prednisolone resistance status were calculated
to identify the most significant associations. We found that 2
out of the 14 modules were significantly (FDR corrected p-
value < 0.01) associated with prednisolone resistance in the
MLL-rearranged infant ALL samples. One of these modules
(green-yellow) contains 127 genes and a second module

(brown) contains 204 genes that were positively correlated
with prednisolone resistance (correlations of 0.56 and 0.51,
respectively). The genes of these modules were found to be
over-expressed in the prednisolone resistant ALL samples
compared to the prednisolone sensitive ALL samples. The
associations of all modules with prednisolone resistance are
depicted in Table S2 (Supplementary Materials).

Genes in module q were found to be associated with its
representative eigengene with different module membership
(MM) levels, quantified by kqME. To identify genes associated
with prednisolone resistance, we defined the gene significance
(GS) measure as a Pearson correlation of gene expression with
prednisolone resistance status. By doing so, we examined the
correlation between MM and GS values for the genes of each
module. Among the 14 modules, we observed a significant
positive Pearson correlation between the MM and the GS
values in the green-yellow module (correlation = 0.67, FDR
corrected p-value < 0.001) and in the brown module (correla-
tion = 0.49, FDR corrected p-value < 0.001). In Fig. S3
(Supplementary Materials, panels a and b) scatterplots are
shown between the MM and GS values for both the green-
yellow and the brownmodules. Genes significantly associated
with the prednisolone resistance status were often the most
significant members of the modules associated with the pred-
nisolone resistance status.

3.3 Prednisolone resistance module validation
by differential gene expression

To further validate the modules relevant to prednisolone
resistance, we set out to compare the module-centric re-
sults from the previous section with those obtained by
conventional differential gene expression analysis. To this

end we calculated the log2 expression fold change (logFC2 )
using package Limma [37]. The fold change for a gene
refers to the average expression ratio in the resistant sam-
ples compared to the sensitive samples. In both the green-
yellow and brown modules, a significant correlation (FDR
corrected p-value < 0.001) was observed between the
module eigengene-based connectivity kqMEð Þ and the

logFC2 . Scatterplots of kqME versus logFC2 for the green-
yellow and brown modules are depicted in Fig. S4
(Supplementary Materials). This figure shows that signifi-
cantly over-expressed genes in the resistant samples have
the highest level of membership to the green-yellow mod-

ule. Most of the genes with logFC2 > 1 (i.e., 15 out of 20
genes) are located in the green-yellow module with

kgreen−yellowME > 0:5.
In order to additionally verify the association between the

resulting modules and the prednisolone resistance status using
conventional differential gene expression analysis, we com-
pared modules by their average absolute moderated t-statistic
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obtained from package Limma [37] as an alternative module
significance measure. In accordance with the above results,
we found that the green-yellow module has the highest mod-
ule significance compared to the other modules (Fig. 1).

3.4 Module preservation using an independent data set

Next, a second dataset (i.e., the infant samples of the
GSE19143 dataset) was used to test whether the modules
resulting from the first dataset (GSE32962) can be repli-
cated, and whether the co-expression module definition
is robust across both datasets. To this end, we first ap-
plied the method reported in [22] to assess the compara-
bility among the datasets. We found that the correlation
of gene expression levels was positive and high
(cor = 0.84, p-value < 1e-200) and that also the gene
connectivity was high between the datasets (cor = 0.58,
p-value < 1e-200) (Fig. S5, Supplementary Materials).
This result indicates that the datasets are suitable for
module preservation analysis. We selected 3858 genes
of the second dataset that were also present among the
5000 most varying genes of the first dataset for repeating
the analysis. After construction of the co-expression net-
work using the selected genes of the second dataset,
genes were assigned to modules based on the module
assignment scheme in the first dataset. To assess the
module preservation quantitatively, the Z-statistic was
calculated for each module separately using the
modulePreservation function of package WGCNA [27].
For each module, a moderate preservation in the second
dataset can be concluded when 2 ≤ Z-statistic ≤ 10,
while a Z-statistic > 10 implies a strong preservation
[38]. Figure S6 (Supplementary Materials) shows that 5
modules had 5 ≤ Z-statistic ≤ 10 and that 9 modules had
a Z-statistic > 10, indicating that some modules are

moderately preserved between the two datasets while
others are strongly preserved.

3.5 Differential co-expression analysis reveals hub genes

In agreement with our above findings using the module-
centric approach, we found that also gene set co-
expression analysis (GSCA) and gene set net correlation
analysis (GSNCA) identified the green-yellow gene set
as exhibiting both a differential pairwise correlation as
well as a differential correlation structure between the
GC resistant and GC sensitive samples. Out of the 14
modules, only the green-yellow module was identified
by both GSCA and GSNCA at a significance level of
0.001. The most highly correlated genes in both the GC
sensitive and GC resistant samples, identified using the
minimum spanning tree-2 (MST2) structure implemented
in the plotMST2.pathway function of package GSAR,
are depicted in Fig. 2. The MST2 of a correlation net-
work is formed by combining the first and second
MSTs and highlights the minimal set of essential links
(highest correlations) among genes in the co-expression
network (see [31] for more details). The MST is defined
as the acyclic tree with the shortest links (highest cor-
relations) that connect all genes in the co-expression
network. In the MST2 structure, the degree of the high-
ly connected genes is relatively high, and they are
placed in central positions. In contrast, low degree
genes are placed in non-central positions in the MST2
structure [31]. Node colors indicate the value of the
weight factor (w) assigned to each gene to reflect its
average correlation with all other genes in the gene
set. The MST2 plot for the GC sensitive samples shows
that several S100 genes (S100P, S100A8, S100A9 and
S100A12) are relatively highly correlated among them-
selves, as well as with many other genes in this gene
set (i.e., hub genes). This pattern is lost in the GC
resistant samples in which their w-values are reduced
(especially for S100A12). This pattern likely indicates
a regulatory role for the S100 genes in the GC sensitive
phenotype that is lost in the GC resistant phenotype.
Although the four S100 genes lost their high w-values
in the GC resistant phenotype, they remained close to
each other in the MST2 structure in the GC resistant
phenotype, indicating that the correlations among the
genes themselves were not entirely lost but rather re-
duced. We found, however, that their correlations with
other genes in the gene set were diminished. In addi-
tion, we found that the MST2 in the GC sensitive phe-
notype revealed an overall better clustering, i.e., func-
tional link between genes, than that in the GC resistant
phenotype. These observations are in agreement with
previous findings regarding the S100 gene family [11].

Fig. 1 Boxplot indicating the module significance, which is determined
by the average absolute moderated t-statistic in each module
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3.6 Functional enrichment analysis reveals enrichment
for GC-related GO terms

The Database for Annotation Visualization and Integrated
Discovery (DAVID) tool [39] was used to perform a function-
al enrichment analysis of the genes within the green-yellow

module with a kgreen−yellowME > 0:5. The significantly enriched
gene ontology (GO) terms for the genes within the green-
yellow module are listed in Table 1. This functional enrich-
ment analysis revealed that the module is significantly
enriched for several GO terms, including defense response,
inflammatory response, response to stress, response to
wounding and response to stimulus (FDR < 1e-5). Other high-
ly enriched GO terms include immune system process, im-
mune response, response to another organism, regulation of
cytokine production, regulation of immune system process,
regulation of tumor necrosis factor production and phagocy-
tosis (Table 1). In addition, we found that signaling in the
immune system and hemostasis were among the most impor-
tant REACTOME pathways highly enriched in the green-
yellow module (p-value < 0.001). Some of the KEGG path-
ways in the module are also of particular interest, including the
hematopoietic cell lineage (p-value < 0.001) and the leukocyte

trans-endothelial migration (p-value = 0.003) pathways, as
well as the inflammation mediated by chemokine and cyto-
kine signaling pathway (p-value < 0.001) from the Panther
pathways (Table S3, Supplementary Mater ia ls ) .
Prednisolone is known to have immunosuppressive and anti-
inflammatory effects, and the enrichment for several immune
and inflammatory response gene sets and related GO terms in
the green-yellow module further underscores its relevance to
prednisolone resistance in MLL-rearranged infant ALL
patients.

3.7 Consensus network analysis reveals preserved
inter-modular relationships

Following the construction of the consensus network, as de-
scribed in the Materials and methods section, consensus mod-
ules were detected in both the GC sensitive and GC resistant
samples. After merging modules with eigengenes correlations
> 0.8 (ignoring the grey module), the number of consensus
modules decreased from 20 to 11. Next, the eigengene net-
work was defined across the consensus modules for each
group separately, and the links of eigengene networks were
compared to identify which inter-modular relationships were

Fig. 2 MST2 plot of the green-yellowmodule. This plot was produced by package GSAR to illustrate the most highly correlated genes (hub genes) of
the green-yellow module in both the GC sensitive (a) and the GC resistant (b) samples
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rewired between the two groups. Through preservation
heatmap analysis, we found that the correlations between all
consensus eigengenes were strongly preserved across the two
groups (Fig. 3), and that the overall preservation was 0.89 as
measured by the density of preservation measure (i.e.,Dmea-
sure). MEs refer to the consensus module eigengenes. ME0,
which represents the grey module, is ignored (see Materials
and methods). Figure 3 shows that the relationships between
pairs of the modules across the GC sensitive and GC resistant
MLL-rearranged infant ALL patients are well-preserved.

4 Discussion

Through weighted gene co-expression network analysis,
we identified one (the green-yellow) module as being most
significantly associated with GC (prednisolone) resistance
in MLL-rearranged infant ALL patients. The module was
found to be preserved across two independent datasets,
and conventional differential gene expression analysis re-
vealed that the significantly over-expressed genes in the
GC resistant phenotype exhibited the highest level of
module membership. Functional enrichment analysis re-
vealed GO terms and other gene sets that are biologically

relevant to GC resistance. Together, these results suggest
that new candidate genes from the module may be added
to the list of currently known GC resistance biomarkers
and, thus, that these genes warrant further analysis. In
Fig. 4 (generated using the Cytoscape software platform
[40]) a correlation network is depicted with nodes
representing genes from the green-yellow module with

the largest module membership (kgreen−yellowME > 0:5) and
links representing correlations > 0.7. More details regard-
ing the genes depicted in Fig. 4 are listed in Table S4
(Supplementary Materials). The correlation network in
Fig. 4 is configured such that genes with the lowest
intra-modular connectivity are placed at the fringes, where-
as the genes with highest connectivity (i.e., the hub genes)
are placed at the core. Most of the differentially expressed
genes between the GC resistant and GC sensitive samples

(i.e., genes with logFC2 > 1) are located in the green-yellow
module, and are presented by hexagons in Fig. 4.

The relevance of the genes composing the green-yellow
module in terms of GC response in MLL-rearranged ALL is
emphasized by the notion that several of these genes have
previously been associated with chemo-resistance in leuke-
mia, such as S100A8, S100A9, S100A10, S100A11, S100A12
and S100P. Spijkers-Hagelstein et al. [11] studied the mRNA
expression levels of the entire S100 protein family in a rela-
tively large cohort ofMLL-rearranged infant ALL patient sam-
ples and found that high levels of S100A8, S100A9, S100A10,
S100A11 and S100P expression were significantly associated
with prednisolone resistance. They also found that the
S100A8 and S100A9 proteins, which form hetero-tetramers,
function together to induce glucocorticoid resistance inMLL-
rearranged ALL cells. Moreover, S100A8 and S100A11 were
also found to be involved in the development of resistance to
chemotherapeutic drugs other than glucocorticoids [41, 42]. A
recent study has shown that a high level of ANXA2 may me-
diate glucocorticoid resistance in MLL-rearranged ALL cells
through the activation of Src kinases, a process requiring the
adaptor protein p11 that is encoded by the S100A10 gene. The
authors found that knockdown of either ANXA2 or S100A10
expression in GC resistant MLL-rearranged ALL cells ham-
pered this process, leading to increased sensitization to pred-
nisolone [13]. The presence of the ANXA1, ANXA3 and
ANXA2P2 (an ANXA2 pseudogene) genes in the green-
yellow module may suggest a role in the GC response of
MLL-rearranged ALL cases for all Annexin-coding genes.
Four other genes present in the green-yellow module
(VCAN, ITGAM, FCN1 and MPO) encode proteins that ex-
hibit calcium binding properties, similar to the ANXA and
S100 genes. The observed recurrent association of calcium
binding proteins with GC resistance suggests that these pro-
teins are of particular relevance for the acquisition of GC
resistance in MLL-rearranged ALL patients.

Table 1 Enriched GO terms in the green-yellow module

GO term Count P-value

Biological Process (BP)

defense response 35 1.16E-22

immune system process 32 1.68E-13

inflammatory response 20 4.16E-13

response to bacterium 16 2.68E-12

response to stimulus 51 5.02E-09

leukocyte chemotaxis 5 1.07E-04

regulation of immune response 9 1.40E-04

positive regulation of tumor necrosis factor
production

4 1.27E-04

response to lipopolysaccharide 6 1.67E-04

signal transduction 32 0.002

positive regulation of cytokine production 5 0.003

Molecular Function (MF)

carbohydrate binding 13 2.12E-06

sugar binding 9 3.06E-05

enzyme binding 12 4.26E-04

receptor activity 23 0.001

lipid binding 10 0.002

signal transducer activity 26 0.002

protease binding 3 0.006

protein dimerization activity 10 0.006

enzyme inhibitor activity 7 0.007

calcium ion binding 13 0.01

40 Z. Mousavian et al.



Two other interesting genes within the green-yellow mod-
ule were LGALS3 (encoding galectin-3) and ITGB2 (encoding
CD18). As it is becoming increasingly evident that the bone
marrow microenvironment plays an important role in the oc-
currence of leukemia relapses and the acquisition of drug re-
sistance, changes in leukemic gene expression patterns medi-
ated by bone marrow stromal cells are of particular relevance.
Interestingly, it has been found that the expression of both
LGALS3 and ITGB2 can be up-regulated by bone marrow
stromal cells, thereby mediating drug resistance in acute [43]
and chronic [44] leukemias, respectively.

Recently, Spijkers-Hagelstein and colleagues reported gene
expression profiles of primary MLL-rearranged infant ALL
samples either sensitive or resistant to prednisolone, including
an expression signature of 66 genes significantly associated
with prednisolone resistance in this type of leukemia [13]. In a
subsequent study, the same group used this expression signa-
ture to perform connectivity map analyses to identify possible
modulators of this specific set of genes, and found the PI3K
inhibitor LY294002 could markedly sensitize otherwise resis-
tant MLL-rearranged ALL cells to prednisolone [14].
Interestingly, they found that LY294002-induced predniso-
lone sensitization was accompanied by down-regulation of
the PSTPIP2, RNASE2 and TLR2 genes [14], which are all
present in the green-yellow module. Like RNASE2, LYZ en-
codes a protein associated with myeloid differentiation. As
MLL-rearranged ALL is often typified by co-expression of
specific myeloid cell surface markers, abundant expression

of both LYZ and RNASE2 may suggest that myeloid charac-
teristics specifically occur in GC resistant MLL-rearranged
ALL cells. The latter may particularly be true, since acute
myeloid leukemia (AML) cells typically do not respond to
GCs.

Two transcription factors (TFs), CEBPB and CEBPD, are
included in the green-yellow module and both of them were
found to be over-expressed in the GC resistant ALL samples
compared to the GC sensitive samples. TF-target interaction
analysis of the TRRUST database indicated that CEBPB may
activate target genes such as ADM, CDKN1A, GOT1, INSR,
IL1B, IL6 and PTGS2. Some of these genes respond to GC
stimulation whereas some, likeCDKN1A, IL1B and IL6, act as
positive regulators of cell proliferation and negative regulators
of apoptosis, suggesting that CEBPB may play a role in GC
resistance in infant ALL via the activation of these target
genes. Three TFs were identified as the most likely targets
of GC-induced gene repression, i.e., AP-1, NF-κB and c-
Myc [33]. Linking genes from the green-yellow module to
these three TFs lends further biological support to the associ-
ation between this module and GC resistance. AP-1 induces
the transcription of growth factors, cytokines and survival
genes resulting in enhanced cellular growth and proliferation.
After binding of GC to the GC receptor (GR), the activated
GR binds to AP-1 and blocks its trans-activating activity,
thereby suppressing the transcription of survival genes and
inducing apoptosis [33]. AP-1 is a dimer composed of two
oncogenic proteins, JUN and FOS. According to the

Fig. 3 Consensus network
analysis. The dendrograms show
the eigengene clustering trees in
the GC sensitive and GC resistant
groups (upper panel). In addition,
heatmaps of the eigengene
correlations in both groups are
shown, in which a positive
correlation is indicated by a red
color and a negative correlation
by a blue color. The preservations
of eigengene networks between
the two groups are shown in a
preservation heatmap and a
barplot, respectively. The
preservation heatmap indicates
which inter-modular relationships
are highly preserved and the
barplot depicts the mean
preservation of correlations for
each of the consensus eigengenes
(overall D measure = 0.89)
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TRRUST database, several genes from the green-yellowmod-
ule, including LGALS3, RNASE2, ITGAM, CD14, CYBB,
CCR1, NCF2, S100A10, TLR2, CD1D, ITGB2, S100A9,
CSF3R, CD33, PTAFR, MPO and BCL2A1, act downstream
of JUN and other genes such as CD1D, S100A9, CD33,
CSF1R and ARG1 which, in turn, can be activated by FOS.
Similarly, NF-κB is a heterodimeric TF that activates survival
genes coding for cytokines, cytokine receptors, chemotactic
proteins and cell adhesion molecules [45, 46]. Repression of
the transcriptional activity of these survival factors leads to
apoptosis. NFKB1, a subunit of NF-κB, can upregulate sev-
eral genes present in the green-yellow module, including
CCL5, BCL2A1, MPO, NCF2, CEBPB, PTAFR, CD33,
CYBB, S100A9, CD1D, TLR2, RETN, CD14 and CSF1R.
Most of these genes are normally upregulated by RELA, an-
other subunit of NF-κB. Also, c-Myc is involved in cell cycle
regulation, proliferation and survival. GCs can repress c-Myc
expression, leading to cell cycle arrest and apoptosis.
Concordantly, previous studies have revealed correlations be-
tween c-Myc suppression and GC-induced apoptosis in hu-
man leukemic cells [47]. Interestingly, several genes from

the green-yellow module, such as VCAN, TLR2, RNASE2,
ITGAM, LGALS3, ITGB2, PTAFR, NCF2, BCL2A1 and
ARG1, may act as downstream targets of c-Myc based on the
TF-target interactions listed in the TRRUST database. We
found that at least some of the genes from the green-yellow
module may be linked to these three TFs and, as such, they
may disrupt their role in GC-induced apoptosis. These obser-
vations underscore the association between the green-yellow
module and GC resistance in general. Further experimental
work is, however, needed to establish which of the candidates
discussed here is predominantly contributing to GC resistance
in ALL.

MLL-rearrangements are more frequent in infant ALL pa-
tients than in non-infant ALL patients [2, 3] and correlate well
with GC resistance. In addition to genetic factors, epigenetic
modifications in MLL-rearranged infant ALL samples have
also been shown to influence the clinical outcome [48]. In
particular, hypermethylated CpG islands within gene promot-
er regions [49] can be used to distinguish different subgroups
of MLL-rearranged infant ALLs, and they correlate well with
down-regulation of its corresponding genes [48]. Aberrant

Fig. 4 Correlation network of the
green-yellow module, in which
nodes represent genes with the
highest module membership and
links represent significant
correlations. Genes with different
levels of intra-modular
connectivities are placed in
different concentric circles, such
that genes forming the inner
circles have a higher connectivity
than genes forming the outer
circles. Hexagons represent the
differentially expressed genes of
the module. Genes with a known
association to GC resistance are
indicated in green. Novel GC-
related calcium binding genes are
indicated in red. New possibly
relevant genes (see text) are
indicated in purple. The
remaining genes of the module
are indicated in blue
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DNA methylation is more pronounced in infant ALL patients
with t(4;11) or t(11;19)-associatedMLL translocations than in
those with t(9;11)-associatedMLL translocations or wild type
MLL genes. The data reported in [48] show that some TF-
encoding genes, such as DLX4, NR2F2, NR3C1, NOTCH3,
TBPL1, FOXA1 and OTX2, may have hypermethylated gene
promoters in MLL-rearranged infant ALL samples. We re-
trieved the downstream targets of these TFs from the
TRRUST database [34] and found that some of them are up-
regulated in the green-yellow module. We hypothesize that
experimentally-validated [48] TF promoter hypermethylation
patterns in MLL-rearranged infant ALL samples may explain
the up-regulation of at least some of their downstream target
genes. The NR3C1 gene, for example, encodes GRs that bind
to glucocorticoid response elements (GREs) in the promoters
of GC responsive genes and, by doing so, activate their tran-
scription [33]. GRs are essential in inducing AP-1 and NF-κB
mediated apoptosis, and the repression of NR3C1 in MLL-
rearranged infant ALL cells may well affect their GC-
induced mode of action.

Previously, the effect of methylation on the expression of
miRNAs has been studied in MLL-rearranged infant ALL
cases [35]. Eleven miRNAs were found to be down-
regulated as a consequence of promoter hypermethylation in
t(4;11)-positive infant ALL cells compared to normal bone
marrow cells. miRNAs act as post-translational regulators of
gene expression, repressing gene translation by binding to the
corresponding target mRNAs [50, 51]. Here, we retrieved
miRNA-target interaction data from the miRTarBase database
[36] and found that miRNA down-regulation in MLL-
rearranged infant ALL cases may contribute to over-
expression of at least some target genes present in the green-
yellow module. miRNAs such as miR-432, miR-503 and
miR-148a, which are down-regulated more than 100-fold in
t(4;11)-positive infant ALL cases [35] can, for instance, lead
to over-expression of VCAN, TLR2, CYBB, PTAFR, CSF1R,
MPO, BCL2A1, CD1D, CEBPD, CCR1, CD33, S100A10,
S100A9, CSF3R and ARG1. Interestingly, we found that most
of these genes, as well as other genes in the green-yellow
module such as ITGB2, LGALS3, IL6R, CEBPB, RNASE2,
ITGAM, NCF2, CD14 and RETN, may act as targets of one
or more of the differentially expressed miRNAs in MLL-
rearranged infant ALL samples. Some TFs that play key roles
in cell survival and proliferation such as NFKB1, RELA, JUN,
FOS and c-MYc (discussed earlier) may also be activated via
the down-regulation of specific miRNAs such as miR-432,
miR-152, miR-10a, miR-200a and miR-200b in the MLL-
rearranged infant ALL cases.

Evidently, the presented green-yellowmodule does encom-
pass multiple genes already proven to be associated with GC
resistance and, therefore, it is likely to contain more genes
that, although to date unacknowledged, do mediate GC re-
sponses in MLL-rearranged ALL patients. Although this

implication by association requires further experimental vali-
dation, our findings show that systems biology-based compu-
tational approaches may complement conventional gene-wise
methods and, as such, may provide new insights into drug
resistance in human malignancies such as ALL.
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