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Abstract
Background Cancer stem cells (CSCs), also known as tumor-
initiating cells (TICs), are characterized by high self-renewal
and multi-lineage differentiation capacities. CSCs are thought
to play indispensable roles in the initiation, progression and
metastasis of many types of cancer. Leukemias are thought to
be initiated and maintained by a specific sub-type of CSC, the
leukemia stem cell (LSC). An important feature of LSCs is
their resistance to standard therapy, whichmay lead to relapse.
Increasing efforts are aimed at developing novel therapeutic
strategies that selectively target LSCs, while sparing their nor-
mal counterparts and, thus, minimizing adverse treatment-
associated side-effects. These LSC targeting therapies aim to
eradicate LSCs through affecting mechanisms that control
their survival, self-renewal, differentiation, proliferation and
cell cycle progression. Some LSC targeting therapies have
already been proven successful in pre-clinical studies and they
are now being tested in clinical studies, mainly in combination
with conventional treatment regimens.

Conclusions A growing body of evidence indicates that the
selective targeting of LSCs represents a promising approach to
improve disease outcome. Beyond doubt, the CSC hypothesis
has added a new dimension to the area of anticancer research,
thereby paving the way for shaping a new trend in cancer
therapy.
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Abbreviations
HSCs Hematopoietic stem cells
HPCs Hematopoietic progenitor cells
LSCs Leukemic stem cells
AML Acute myeloid leukemia
CML Chronic myeloid leukemia
ALL Acute lymphoblastic leukemia
CML Chronic myeloid leukemia
CFCs Colony-forming cells
CDC Complement-dependent cytotoxicity
ADCC Antibody-dependent cellular cytotoxicity
ATP Adenosine triphosphate
FLT3 Fms-like tyrosine kinase 3
ATRA All-trans retinoic acid
LXR Liver X receptor
DFO Deferoxamine
DFX Deferasirox
EP Eltrombopag
TPO-R Thrombopoietin receptor
RNS Reactive nitrogen species
BCL-2 B-cell lymphoma 2
HDAC Histone deacetylase
DNMT DNA methyltransferase
PRC2 Polycomb repressive complex 2

Electronic supplementary material The online version of this article
(doi:10.1007/s13402-016-0297-1) contains supplementary material,
which is available to authorized users.

* Monica L. Guzman
mlg2007@med.cornell.edu

* Sadegh Babashah
sadegh.babashah@gmail.com; s.babashah@modares.ac.ir

1 Oncology Research Unit, National Medical Center, IMSS, Oncology
Hospital, Mexico City, Mexico

2 Department of Molecular Genetics, Faculty of Biological Sciences,
Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran

3 Department of Medicine, Weill Medical College of Cornell
University, 1300 York Ave, Box 113, New York, NY 10065, USA

Cell Oncol. (2017) 40:1–20
DOI 10.1007/s13402-016-0297-1

http://dx.doi.org/10.1007/s13402-016-0297-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s13402-016-0297-1&domain=pdf


NF-kB Nuclear factor kappa B
PTL Parthenolide
PI3K Phosphatidylinositol 3 kinase
DNA-PK DNA-dependent protein kinase
MRP1 Multidrug resistance-associated protein 1
FOXOs Forkhead transcription factors
HSPs Heat shock proteins
GMPs Granulocyte macrophage progenitors
Hh Hedgehog
PTCH Patched
TICs Tumor-initiating cells
TKIs Tyrosine kinase inhibitors

1 Normal hematopoietic stem cells

The hematopoietic system is organized in a hierarchical order
of cell populations with different capacities to proliferate, dif-
ferentiate and self-renew. Hematopoietic stem cells (HSCs)
are found at the apex of this system and are defined by their
ability to self-renew and to give rise to all hematopoietic lin-
eages. HSCs can be identified through the expression of CD34
on their surface and a lack of expression of CD38 and other
markers associated with terminal differentiation, such as CD2,
CD3, CD4, CD8, CD14, CD15, CD16, CD19, CD20, CD56,
CD66b and glycophorin A (CD235a). In healthy individuals,
HSCs represent less than 0.1 % of the hematopoietic compart-
ment in the bone marrow (BM). HSCs give rise to multi-
potent hematopoietic progenitor cells (HPCs) that can differ-
entiate into lineage-committed precursors and, ultimately, ma-
ture blood cells. En route to differentiation, the cells acquire
lineage-specific markers and the capacity to perform lineage-
specific functions [1, 2]. Hematopoiesis is a tightly regulated
process that is controlled by complex cellular signaling net-
works, transcription factors, cytokines and interactions with
the BM microenvironment. Alterations that perturb this pro-
cess may result in hematologic malignancies such as
leukemia.

2 Leukemia stem cells

In analogy to the normal hematopoietic system, it has been
found that different types of leukemia, which are characterized
by a predominance of immature abnormally proliferating
blood cells, can originate from and be maintained by leukemia
stem cells (LSCs). Specifically, it has been shown for myeloid
leukemias (both chronic and acute) that the process of leuke-
mogenesis is driven by a hierarchical route and is sustained by
a small, self-renewing population of LSCs. LSCs give rise to
leukemic progenitors with a reduced capacity to self-renew
which, in turn, yield leukemic blasts without a capacity to
self-renew. Similar to their normal counterparts, acute myeloid

leukemia (AML) and chronic myeloid leukemia (CML)-de-
rived LSCs express CD34, but not CD38, in most patients. It
has also been reported that some patients may exhibit
CD34+CD38+ [3] or CD34− [4] surface marker phenotypes.
Although these markers alone may not be sufficient to specif-
ically identify LSCs, they have been used to define a clinically
relevant population of cells that correlate with a poor disease
outcome [5]. In addition to the phenotypic markers men-
tioned, LSCs may also be defined by their function. They
are, for example, capable of both self-renewing and giving
rise to leukemic progeny. The functional characterization of
LSCs is typically performed in vitro using colony forming
assays, or in vivo using xenotransplantation models.

Another important feature of LSCs is their ability to remain
in a quiescent state. It has been shown that quiescent LSCs
from both AML and CML patients are able to retain the self-
renewal capacity in vivo and to recapitulate leukemias in
xenografted animal models [6]. Furthermore, it has been
found that quiescent LSCs may be protected in osteoblast-
rich areas (niches) of the BM [7–9]. Importantly, quiescent
LSCs are able to evade the action of chemotherapeutic agents
[10], which is due to the fact that most of these agents are
aimed at targeting rapidly cycling cells. Thus, LSCs represent
a chemotherapy-resistant reservoir of cells that may give rise
to relapse.

Recently, a growing number of antigens associated with the
LSC phenotype has been described for AML. These antigens
provide the possibility to distinguish LSCs from HSCs and
include CD123, CD25, CD32, CD44, CD47, CD90, CD96,
CD117, TIM-3, CLL1, ALDH1, CD99 and IL-1RAP
[11–17]. IL-1RAP and CD26 are LSC-associated markers that
can be used to distinguish LSCs from HSCs in CML [18, 19].
Although not all of these markers are expressed by LSCs in all
patients, it has been reported that patients with a higher num-
ber of cells that express these markers exhibit a poorer out-
come [20–22].

In view of the critical role played by LSCs in the pathogen-
esis of hematologic malignancies, increasing efforts have been
devoted at developing approaches to eradicate them. The fun-
damental tenet of these approaches is to establish methods that
effectively target neoplastic LSCs and spare normal HSCs.
This becomes particularly important since several commonal-
ities exist between HSCs and LSCs.

3 Survival of pre-leukemic HSCs after chemotherapy
and their persistence during remission

LSCs are heterogeneous in terms of origin. Although
progenitor-derived LSCs are similar to committed progenitors
from which they have emerged, LSCs execute a self-renewal-
associated program that is also present in normal HSCs [23]. It
has been shown that pre-leukemic HSCs are resistant to
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chemotherapy, thus representing a potential reservoir for dis-
ease relapse in at least some AML patients. Pre-leukemic
HSCs are genetically distinct from normal germ-line HSCs,
but they may be considered as antecedent to leukemic cells
[24, 25]. Recently, a pattern of acquired mutations in AML
cells and a concomitant persistence of pre-leukemic HSCs in
patients with a complete remission have been reported [25].
The authors concluded that mutations in Blandscaping^ genes
involved in chromosomal modifications may occur early in
HSCs, whereas mutations in Bproliferative^ genes may occur
late. The so-called pre-leukemic HSCs (stem/progenitor cells)
may persist during remission and contribute to relapse through
the acquisition of additional genetic and/or epigenetic
alterations.

4 Targeting leukemia stem cells

In the past, several strategies have been developed to eliminate
LSCs. In Fig. 1 different approaches are depicted that can be
used for the treatment of leukemia via LSC targeting. These
approaches aim to specifically kill LSCs by interfering with
different molecular mechanisms that underlie their survival,
growth and multiplication. Accordingly, adverse effects asso-
ciated with treatment are minimized and therapeutic efficacies
are maximized. Overall, it has been shown that CSC targeting
therapies exhibit a higher efficacy in cancer elimination than
conventional anticancer therapies [26]. In the following

sections, the targeting of LSCs through different routes will
be discussed.

4.1 Cell surface antigens

Although LSCs share a CD34+CD38− phenotype with HSCs,
there are also cell surface antigens that are selectively
expressed by LSCs. These antigens demarcate a specific
LSC phenotype and have, therefore, the potential to be used
as targets for therapies directed against hematologic
malignancies.

4.1.1 CD33

CD33 was the first antigen to be approved by the US FDA as
target for the treatment of AML. CD33 is an attractive target
since in normal hematopoiesis its expression is restricted to
advanced stages of myeloid differentiation and, therefore, it is
not expressed on normal HSCs. CD33 is highly expressed by
LSCs in AML. The strategy applied to target CD33 implies
the use of CD33-specific monoclonal antibodies (mAbs) con-
jugated with cytotoxic agents, including radioisotopes, ricin,
gelonin and calicheamicin. Gemtuzumab ozogamicin (GO) is
composed of calicheamicin linked to the humanized anti-
CD33 antibody hP67.6. This antibody-drug conjugate was
found to inhibit the growth of AML colony forming cells
(CFCs) and to significantly reduce the in vivo growth of
AML-derived HL-60 xenografts. These antitumor effects
were found to be triggered by a selective cytotoxicity against
CD33+ AML stem cells [27]. Toxic side-effects caused by this
drug have, however, led to its withdrawal from the market.
The high potential of CD33 as a therapeutic target has, never-
theless, inspired researchers to design new trials in which GO
is combined with other chemotherapeutic agents [28].
Additionally, tumor-specific chimeric antigen receptor-
modified T-cell (CART) approaches are currently being devel-
oped to target CD33 expressing cells [29, 30].

4.1.2 CD123

Another antigen highly expressed on bulk and CD34+CD38−

AML cells is the alpha subunit of the interleukin-3 receptor
(IL-3Rα). IL3 binding is known to lead to receptor activation
and to promote cell proliferation and survival. Based on this
knowledge, a human interleukin-3 diphtheria toxin fusion pro-
tein (DT388IL3) has been engineeredwith the purpose to target
and kill AML cells. Treatment of AML xenografts with
DT388IL3 has indeed led to the elimination of leukemias from
three of six poor prognosis AML patient samples [31].
Combination treatments of cytarabine or tyrosine kinase in-
hibitors (TKIs) with DT388IL3 have been shown to act syner-
gistically in eliminating AML and CML stem/progenitor cells
that express IL-3R [32]. Anti-CD123 monoclonal antibody-
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Fig. 1 Different strategies for the treatment of hematologic malignancies
through the targeting of LCSs. These approaches cover a diverse range of
therapeutic modalities that affect a variety of mechanisms underlying the
survival, growth, differentiation, self-renewal and amplification of LSCs
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based strategies, such as those using the neutralizing antibody
7G3, have also been tested. Ex vivo and in vivo treatments
with 7G3 revealed a selective targeting of AML cells, while
avoiding their normal counterparts. Importantly, tests in pri-
mates have shown that a chimeric variant of 7G3 (CSL360)
exhibits no significant toxic side-effects [33]. The mecha-
nisms of action of this anti-CD123 antibody may involve (i)
inhibition of IL3-mediated signaling, (ii) complement-
dependent cytotoxicity (CDC) or (iii) recruitment of effector
cells resulting in antibody-dependent cellular cytotoxicity
(ADCC). To improve the ADCC effect, a second generation
anti-CD123 mAb, called CSL362, has been developed. This
antibody showed an increased in vivo cell killing capacity in
mouse xenograft models [34]. Application of the CART strat-
egy (see above) against CD123 has also yielded promising
results in in vivo xenograft AML models [35, 36].

4.1.3 CD44

The adhesion molecule CD44 mediates interactions between
hematopoietic cells and their BM microenvironment in end-
osteal regions. CD44 is a transmembrane glycoprotein with a
ubiquitous expression pattern and can be alternatively spliced
into many variant isoforms (CD44v). The expression of
CD44v is associated with a poor prognosis in AML. CD44-
specific mAbs are able in vitro to reverse differentiation
blocks, to inhibit proliferation and to induce apoptosis of
AML cells [37, 38]. One CD44-specific mAb (H90) has been
shown to effectively and selectively eliminate LSCs in vivo by
reducing the trafficking and homing of LSCs into its support-
ive microenvironments [39].

4.1.4 CD25

CD25, the alpha chain of the IL-2 receptor (IL-2Rα), has been
reported to serve as a LSC marker. In support of this, gene
expression profiles of CD25+ AML cells have revealed corre-
lations with those of LSCs. Currently, daclizumab (a human-
ized anti-CD25 mAb) that blocks the formation of the high
affinity IL-2 receptor on T-cells, has been tested with some
success in phase II trials in patients with newly diagnosed T-
cell lymphoma and refractory T-cell and B-cell lymphomas
[40]. Given the significance of CD25 as a marker for LSCs,
anti-CD25 therapies are of potential use for the treatment of
AML. CD25 expression has been related to an adverse prog-
nosis in AML patients, and its association with internal tan-
dem duplication (ITD) mutations in the Fms-like tyrosine
kinase-3 (FLT3) gene has been found to be indicative for a
poor overall and relapse-free survival [21, 41, 42]. CD25 is
regulated by STAT5, and its high expression likely results
from STAT5 hyper-activation. Therefore, approaches that in-
hibit the JAK-STAT pathway are of major interest for the
treatment of CD25+ AML patients [43].

4.1.5 Other phenotypic markers with therapeutic potential

Other phenotypic markers that have been considered as ther-
apeutic targets for LSCs including CD47, CCL-1 and IL-
1RAP. CD47 contributes to phagocytosis and is expressed
by macrophages and dendritic cells. A high expression has
been reported in AML-derived LSCs. Treatment with
B6H12.2 or BRIC126 antibodies has been found to result in
an enhancement of phagocytic activity and an inhibition of
LSC engraftment in immune-deficient mice [13]. The C-type
lectin-like molecule-1 (CLL-1) plays a role in immune regu-
lation, is highly expressed in leukemic blasts and LSCs, and
its inhibition by 21.16 and 1075.7 antibodies can decrease the
size of HL-60 xenografts [44]. More recently, a novel
bispecific antibody, αCLL1-αCD3, has been generated that
can recruit cytotoxic T-cells (CTLs) to CLL-1+ AML cells,
leading to a potent and selective cytotoxicity in vitro [45].
The interleukin 1 receptor accessory protein (IL-1RAP) has
been found to be expressed in AML and CML stem cells. A
chimeric anti-IL-1RAP mAb (81.2) of the human IgG1 sub-
type has been found to elicit ADCC activity in both leukemic
blasts and stem/progenitor cells [46].

Taken together, targeting cell surface antigens, in particular
through receptor-specific antibodies, holds promise as a ther-
apeutic approach to eliminate LSCs (Supplementary Fig. 1).
All above-mentioned antigens also represent attractive targets
for CART strategies that have the capacity to kill aggressive
acute lymphoblastic leukemia (ALL) cells in vivo. The major
concern raised for this type of therapy may be the emergence
of sub-clones of cells that do not express the target antigen(s).
The putative presence of these cells emphasizes the need to
develop alternative approaches for the treatment of ALL.

4.2 Differentiation therapy

Differentiation therapy has been introduced since the early
1980s. This approach is based on forcing immature cancer
cells to terminally differentiate and to, ultimately, die
(Supplementary Fig. 2).

4.2.1 Retinoids

Retinoids are chemically related to vitamin A and its metabo-
lite all-trans retinoic acid (ATRA). The biological effects of
retinoids are mediated via activating the retinoic acid receptors
(RARα, RARβ and RARγ) [47]. ATRA has been shown to
efficiently induce the differentiation of acute promyelocytic
leukemia (APL) cells, which are associated with a balanced
translocation between chromosomes 15 and 17. As a conse-
quence of this translocation a PML- RARα fusion protein is
formed that triggers a differentiation arrest at the
promyelocyte stage [48]. Recently, it has been shown that
AML cells can also be induced to differentiate via a RAR-
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independent, RXR-dependent mechanism. The induction of
myeloid differentiation by RXR-specific ligands requires the
expression of PU.1, a member of the ETS family of transcrip-
tion factors. Liver X receptor (LXR) ligands have been found
to consistently enhance the RXR ligand effects, leading to
differentiation or cytotoxicity in primary AML cells, but not
in normal progenitor cells [49].

A combination of retinoic acid (RA) and arsenic trioxide
(ATO) is considered effective in the treatment of APL. This
combination has been found to increase APL cell death and to
reduce the number of bone marrow blasts through the induc-
tion of oxidative stress and interference with the translation of
mutant oncoproteins [50, 51]. In this context, El Hajj et al.
[47] found that RA and ATO can synergistically trigger the
proteasomal degradation of mutant nucleophosmin-1
(NPM1), the most frequently mutated protein in AML. They
showed that combined RA/ATO treatment can cause the dif-
ferentiation, growth arrest and apoptosis of AML cells harbor-
ing NPM1 mutations, as well as a reduction of bone marrow
blasts in NPM1 mutant AML patients. Additionally, they
found that ATO can abrogate the stem cell capacity of LSCs
that express the PML-RARα fusion protein. It appears that the
high rate of complete molecular remission (CMR) and long-
term relapse-free survival (RFS) induced by ATO in APL
patients may be attributed to its ability to efficiently target
LSCs [52].

4.2.2 Iron metabolism disruptors

Disruption of the iron metabolism may lead to differentiation
in AML cells. Iron chelators are able to trigger the differenti-
ation of leukemia blasts via the induction of reactive oxygen
species (ROS). Iron chelators with well-established differen-
tiation-inducing capacities in AML cells include deferox-
amine (DFO) and deferasirox (DFX) [53]. Interestingly, it
has been found that eltrombopag (EP), which is a
thrombopoietin receptor (TPO-R) agonist, can reduce free in-
tracellular iron levels in leukemic cells in a dose-dependent
manner and induce the differentiation of these cells through a
mechanism independent of TPO-R [54].

4.3 Mitochondria and other metabolic pathways

HSCs and LSCs are considered to be metabolically dormant
since they persist in low energy states. These cells favor in-
complete oxidation of glucose through uncoupling glycolysis
and oxidative phosphorylation, which leads to low levels of
endogenous ROS. The necessity to maintain low amounts of
endogenous ROS in LSCs, however, inevitably renders these
cells sensitive and vulnerable to changes in their intracellular
redox state. This distinctive characteristic of LSCs provides an
ideal opportunity for therapeutic intervention. Mitochondria
are critical for the generation of energy and the regulation of

redox homeostasis. These organelles control the production of
free radical species such as ROS and reactive nitrogen species
(RNS). These free radical species are known to play important
roles in cellular homeostasis, and their excessive production
may result in cell death [55, 56]. Based on these characteris-
tics, priming of mitochondria for apoptosis has been used as a
parameter to determine the sensitivity of AML cells to che-
motherapeutic agents [57]. Mitochondrial priming may be
assessed through the expression of Bcl-2 (B-cell lymphoma
2) family member proteins and their accompanying Bcl-2 ho-
mology 3 (BH3)-only family members. Cellular stress associ-
ated with chemotherapy may activate pro-apoptotic signals
that induce death in cells expressing high levels of BH3-
only family members (primed for death throughmitochondrial
priming). In contrast, cells with high amounts of anti-
apoptotic proteins do not die when they are exposed to thera-
peutic agents. Mitochondrial priming has been shown to dic-
tate the efficacy of topoisomerase II inhibitors in vitro.
Importantly, mitochondrial priming in AML samples derived
from patients prior to the onset of therapy has been correlated
with the efficacy of induction chemotherapy (5-year complete
remission, CR). These studies have also indicated that normal
HSCs rely primarily onMcl-1, while LSCs rely on Bcl-2. This
difference has provided a rationale for using the Bcl-2 inhib-
itor ABT-737 [57]. Additional studies in blast crisis CML
(bcCML) have emphasized the significance of the Bcl-2 fam-
ily members in LSCs [58]. Stem cells derived from bcCML
over-express several anti-apoptotic Bcl-2 family member
splice isoforms, such as Bcl-2L, Mcl-1L, Bcl-xL, and Bfl-
1 L, compared to chronic phase CML progenitors and normal
HSCs. Increased Bcl-xL expression levels have been found to
be associated with BCR-ABL fusion protein expression in
CML, suggesting another mechanism for over-expression of
Bcl-2L,Mcl-1L and Bfl-1L. A pan-active Bcl-2 protein family
antagonist, sabutoclax, has been found to affect the survival of
CML-derived LSCs. Sabutoclax treated LSCs exhibit a de-
creased survival, a decreased colony forming capacity and a
capacity for serial xenotransplantation. Importantly, dual treat-
ment with sabutoclax and the TKI dasatinib may result in
tumor shrinkage in established CML xenograft models com-
pared to dasatinib alone. Thus, the dependence of CML-
derived LSCs on pro-survival Bcl-2 family member signaling
is a key factor to be considered for patients exhibiting resis-
tance to TKIs [59]. Studies on AML-derived cell lines using a
specific inhibitor of Bcl-2 and Bcl-xL (ABT-737) have re-
vealed an up-regulation of Mcl-1 [60], which can be phos-
phorylated and stabilized through the MAPK/ERK pathway.
Combinations of MEK inhibitors and ABT-737 prevents the
up-regulation of Mcl-1, leading to an increased apoptotic rate
in LSCs from primary AML patient samples [60]. The rele-
vance of preventing Mcl-1 accumulation as a result of ac-
quired resistance to Bcl-2 inhibition has been underscored
by studies in which the efficacy of a BH3 mimetic, obutoclax,

Novel strategies for targeting leukemia stem cells 5



was found to be improved by sorafenib as a multi-kinase in-
hibitor [61]. It was found that this combination therapy results
in an increased killing of AML cells in vitro and a prolonged
survival of AML xenotransplants in vivo.

In addition to targeting Bcl-2 family members that reside in
mitochondria and play critical roles in deciding whether a cell
will live or die, it was recently found that mitochondrial trans-
lation also represents a target for ablating AML cells and
LSCs [62]. Tigecycline, a US FDA-approved antimicrobial
compound identified in a chemical screen, was found to effec-
tively reduce the engraftment capacity of LSCs in NOD/SCID
mice with minimal effects on normal HSCs. Tigecycline po-
tently blocks mitochondrial ribosomes, resulting in inhibition
of mitochondrial translation. Compared to HSCs, LSCs have
been found to possess a larger mitochondrial mass, a higher
mitochondrial DNA copy number, and an increased rate of
oxygen consumption. The sensitivity to tigecycline of AML
cells is directly associated with a higher mitochondrial mass.
This notion suggests that assessment of the mitochondrial
mass may be used to identify patients that benefit from thera-
pies targeting mitochondrial function. However, prior to using
mitochondrial mass assessment and mitochondrial translation
inhibition in the treatment of individual patients, it is impor-
tant to exactly determine to what extent disease outcomes
correlate with the mitochondrial mass [62, 63].

Aerobic glycolysis or the BWarburg effect^ entails that
most tumors predominantly favor glycolysis over oxidative
phosphorylation in their mitochondria for energy production
[64]. This process is followed by lactic acid fermentation in
the cytosol. These processes provide a growth advantage of
tumor cells over normal cells. The M2 isoform of pyruvate
kinase (PK) plays an essential role in maintaining aerobic
glycolysis. PKM2 catalyzes the final and rate limiting step
of glycolysis (Fig. 2). PKM2 deletion has been found to in-
crease oxidative phosphorylation over glycolysis.
Interestingly, HPCs are only affected under stress conditions
that drive HPC proliferation. PKM2 deletion does not affect
leukemia initiation, but rather appears to be important for the
progression of leukemias driven by BCR-ABL andMLL-AF9
fusion proteins [65]. PKM2 exists either as an active tetramer
or as an inactive monomer/dimer induced by allosteric regu-
lators such as metabolites or ROS, as well as by
phosphotyrosine modifications [66]. Such modifications limit
the flux of glucose carbons in the form of pyruvate to mito-
chondria for energy production and, instead, shunt them to-
wards anabolic processes. Some pharmacological PKM2 ac-
tivators have been generated that are able to decrease aerobic
glycolysis in cancer cells and to suppress tumor growth [66,
67]. CD34+ AML cells exhibit no significant differences in
total PKM2 levels compared to the bulk of AML cells.
However, CD34+ progenitor cells have been found to exhibit
significantly increased levels of phosphorylated PKM2 at
Tyr105, which is known to promote the less active non-

tetramer [68]. Consistently, PKM2 activity has been found
to be reduced in CD34+ progenitor cells compared to blasts
[69]. These data suggest that AML stem and progenitor cells
may contain more inactive PKM2 tetramers than mature pro-
liferating AML cells. Therefore, perturbation of the metabolic
state of AML cells with PKM2 activators may be considered
as a means to disrupt LSC homeostasis, thereby impairing the
growth of more differentiated AML cells.

4.4 Epigenetic regulators

Growing evidence indicates that epigenetic alterations may
contribute to malignancy. These alterations result in gene si-
lencing and activation as a consequence of a series of chro-
matin remodeling events [70]. Chromatin remodeling is driv-
en by a variety of modifications, including histone methyla-
tion, histone acetylation and DNA methylation. It has been
found that specific epigenetic profiles allow the stratification
of AML patients since they are often associated with specific
clinical features of the disease. Recent studies have focused on
investigating the epigenome of stem (CD34+CD38−), progen-
itor (CD34+CD38+) and mature (CD34−) AML cells. No con-
sistent differences in DNA methylation patterns were found
[71]. In contrast, differences in chromatin (histone) states as-
sociated with H3K4me3(K4) and H3K27me3(K27) were rec-
ognized in purified stem, progenitor and mature AML cell
subpopulations. Interestingly, enrichment for ERK/MAPK,
hypoxia and NRF2-mediated oxidative stress response path-
ways were noted in the lysine 4 (K4) regions of undifferenti-
ated populations. These pathways are consistent with those
found to drive LSCs towards a low ROS condition and may
be encountered in hypoxic areas of the BM [58, 72].
Obviously, larger cohorts are required to define epigenetic
profiles indicative of candidate druggable pathways with a
potential for ablating chemo-resistant LSCs.

Global epigenetic modifiers such as histone deacetylase
(HDAC) and DNA methyltransferase (DNMT) inhibitors are
currently being tested for their efficacy in AML, alone or in
combination with other therapeutic modalities. Patients under-
going treatment with sodium valproate and 5′-azacitidine
(VAL-AZA) who achieved a complete remission (CR) or a
CR with incomplete blood count recovery (CRi), have been
found to show significant decreases in LSCs, albeit that a
complete eradication of LSCs did not seem to occur [73].
Interestingly, an expansion of LSCs was observed just prior
to the occurrence of an overt relapse. The inability to ablate
LSCs with DNMT inhibitors and HDAC inhibitors, as well as
the intra/inter-patient heterogeneity found in epigenetic marks,
suggests a need to design inhibitors targeting specific patterns
of epigenetic alterations in individual AML patients.
Examples of newly emerging therapeutic targets are
DOT1L, LSD1, EZH2, IDH1/2, Menin and Brd4 [74–78].
In leukemia, DOT1L regulates genes that are critical for
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LSC self-renewal and survival. It has also been found to be
required for the initiation and maintenance of MLL-AF9 fu-
sion protein-associated leukemias. Therefore, specific
DOT1L inhibitors, such as EPZ004777, are currently under
investigation [78]. The tumor suppressor Menin is another
critical factor in MLL-driven leukemias, and is a highly spe-
cific binding partner of MLL and various MLL fusion pro-
teins. Menin is known to be required for the regulation of
MLL target genes, including HOXA9 and MEIS1 [79].
Disruption of interactions betweenMenin and theMLL fusion
proteins is essential for MLL-induced leukemia initiation.
Since the Menin-MLL interaction represents a potential ther-
apeutic target, small molecule inhibitors with the capacity to
affect this interaction have been developed and are currently
under evaluation. LSD1 (KDM1/AOF2), a lysine-specific
demethylase that is able to demethylate H3K4 and H3K9, is
required for sustaining LSCs in MLL-AF9 fusion protein-
driven leukemias. LSD1 is highly expressed in AML. Thus,
LSD1 may serve as a therapeutic target that can be used for
evaluating the effects of both reversible and irreversible LSD1
inhibitors [80]. It has been found that LSD1 targeting may
lead to restoration of RARα2 expression in a subset of AML
cells in which loss of RARα2 expression is associated with a
reduction in H3K4me2 on the RARA2 gene promoter, and
increased sensitivity to ATRA leading to the differentiation
and, ultimately, death of AML cells [77]. DZNep (3-
deazaneplanocin A), a histone methyltransferase inhibitor,
can disrupt the polycomb repressive complex 2 (PRC2),
resulting in apoptosis of AML cells [81, 82]. PRC2 is known
to mediate gene silencing through H3K27 trimethylation.
EZH2 plays a key role in the methyltransferase activity of
the PRC2 complex. DZNep treatment may also induce apo-
ptosis in LSC subpopulations via reactivation of the

thioredoxin binding protein 2 (TXNIP), which leads to en-
hanced ROS levels [82]. TXNIP reactivation by DZNep is
triggered by PRC2 depletion and a subsequent decrease in
H3K27me3. Small molecule inhibitors of EZH2 are currently
under investigation and represent promising anti-leukemia
stem cell agents. Isocitrate dehydrogenase 1 and 2 (IDH1
and IDH2) are frequently mutated in AML cells, thereby in-
ducing global changes in DNAmethylation [83]. IDH1-R132,
IDH2-R140 and IDH2-R172 mutations are commonly ob-
served in AML, resulting in an aberrant production of 2-
hydroxyglutarate (2HG). 2HG affects a DNA demethylase
called Tet methylcytosinedeoxygenase 2 (TET2) and gener-
ates DNA hypermethylation as well as other changes that
affect the quiescence and self-renewal capacities of HSCs as-
sociated with leukemic transformation [84, 85] Importantly,
new small molecule inhibitors are now available targeting
specific IDHmutations. These inhibitors provide a therapeutic
opportunity to target AML cells harboring these mutations.

4.5 Cellular signaling pathways

Intricate signaling pathways are known to regulate the differ-
entiation, survival, proliferation and cell cycle progression of
LSCs. A detailed understanding of these pathways has led to
the identification of LSC-specific signaling molecules, some
of which have been proposed as useful therapeutic targets.

4.5.1 Nuclear factor kappa B

Nuclear factor kappa B (NF-kB) comprises a conserved fam-
ily of transcription factors with five members (Rel A or p65,
Rel B, Rel C, p50 and p52) that form hetero-complexes
among each other. In untransformed or unstimulated cells,
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NF-kB is sequestered in the cytoplasm through binding to
inhibitory proteins such as IkB. Upon a variety of different
stimuli, IkB may be phosphorylated by the IKK complex,
resulting in NF-kB translocation to the nucleus where it can
regulate genes involved in cellular growth and proliferation,
the inhibition of apoptosis, and multidrug resistance [86, 87].

NF-kB is constitutively activated in LSCs, but not in nor-
mal HSCs [88], and represents one of the first unique thera-
peutic targets identified in LSCs. Recently, it was found that
NF-kB activity can be maintained through autocrine secretion
of TNF-α in LSCs [89]. The small molecule inhibitor
parthenolide (PTL), a known inhibitor of NF-kB, has been
found to preferentially induce apoptosis in LSCs and progen-
itor cells in AML via increasing ROS and activating p53 [90].
PTL has also shown efficacy against LSCs from pediatric
ALL patients [91]. Recently, a water-soluble analog of PTL,
DMAPT, has been generated [92] and this analog is currently
being evaluated in clinical trials. PTL’s ability to target LSCs
while sparing HSCs has been employed to identify diverse
chemical agents with similar biological activities using
chemogenomic approaches. These agents include celastrol,
4-hydroxy-nonenal (4-HNE) [93] and AR-42 [94]. An alter-
native approach to inhibit NF-kB using the IKK inhibitor
AS602869 has resulted in the induction of apoptosis in prima-
ry AML blasts and progenitor cells. Inhibition of NF-kB has
been found to be associated with mitochondrial transmem-
brane potential failure without affecting normal cells [86].
AS602869 has also shown activity against imatinib-resistant
primary CML cells [95]. Taken together, these data indicate a
therapeutic potential of targeting NF-kB in leukemia.

4.5.2 PI3K/AKT/mTOR pathway

The PI3K/AKT/mTOR network represents an intracellular
signaling pathway that plays an important role in normal and
malignant hematopoiesis. Phosphatidylinositol 3 kinase
(PI3K) can be activated in response to growth factors and
several hematopoietic cytokines leading to the activation of
downstream kinases such as the serine/threonine kinase Akt
(also known as protein kinase B or PKB) that, in turn, can
activate the mTOR (mammalian target of rapamycin) com-
plex. Activation of this network contributes to cellular surviv-
al, growth, apoptosis and proliferation. Malignant hematopoi-
etic cells may exhibit alterations in this pathway, which may
result in its constitutive activation and, thus, increased surviv-
al, growth and/or chemotherapy resistance [96, 97].

In AML, constitutive PI3K activation has been observed in
50 % of the cases, whereas constitutive Akt/PKB phosphory-
lation has been observed in nearly 80 % of the cases. These
activated states are associated with a poor overall survival
(OS). The PI3K/AKT pathway plays a key role in the prolif-
eration and survival of AML progenitor cells and blasts. Thus,
PI3K inhibition in these cells, using compounds such as

LY29402, may result in apoptosis. The exploitation of this
agent in combination with a topoisomerase II inhibitor called
VP16 has resulted in a reduction in cell proliferation, an in-
duction of apoptosis, a down-regulation of p-AKT and a con-
stitutive NF-kB activity in primary AML cells [98].
Wortmannin is a cell permeable irreversible inhibitor of
PI3K that also inhibits DNA-dependent protein kinase
(DNA-PK), mTOR and ataxia telangiectasia mutated (ATM)
kinase [99]. It has been found that AML cell treatment with
wortmannin up-regulates p53 and down-regulates the multi-
drug resistance-associated protein 1 (MRP1) [100].
Wortmannin also sensitizes cells to MRP1 substrate drugs
such as etoposide [101], suggesting that PI3K/Akt activation
leads to an increased chemoresistance in AML. Perifosine,
another PI3K/Akt inhibitor, is known to target cellular mem-
branes and to modulate membrane permeability as well as
lipid composition. These functions ultimately trigger the dif-
ferentiation and growth inhibition of AML-derived cell lines
and primary AML cells. Perifosine also reduces the
clonogenic activity of AML progenitors without having any
impact on normal CD34+ cells [102]. Interestingly, perifosine
has also been found to induce protective autophagy in CML
cells [103]. Rapamycin (sirolimus) is a macrolide derived from
the bacterium Streptomyces hygroscopicus that acts as an alloste-
ric inhibitor of mTOR. This inhibitor has been shown to block
the growth of AML-derived cell lines and to reduce the colony
forming capacity of CD34+ AML cells while sparing normal
progenitors [104, 105]. Rapamycin has also been found to elicit
an efficient clinical response in 4 out of 9 refractory/relapsed
AML patients tested [86]. In addition, a combinatory strategy
based on common and novel anti-leukemia agents in conjunction
with PI3K/mTOR/Akt inhibitors has shown efficacy against
LSCs in AML and CML. Some examples of these anti-
leukemic agents include etoposide [105], clofarabine [106], the
water soluble analog of parthenolide [107], PIMkinase inhibitors
[108] and dasatinib [109]. Based on the anti-leukemia activities
observed for inhibitors of the PI3K/Akt/mTOR pathway, dual
inhibitors for PI3K and mTOR have been developed such as
NVP-BEZ235, GDC-0980 and XL-765 [110–112], of which
NVP-BEZ235 has been found to exhibit activity against AML
blasts and progenitor cells with a minimal toxicity to normal
progenitor cells.

4.5.3 Reactive oxygen species

Reactive oxygen species (ROS) contain hydrogen peroxide
(H2O2), hydroxyl radicals (OH-) and superoxide anion radi-
cals (O2-). These agents are essential for various biological
processes in normal cells where they act as second messen-
gers. Physiologically, ROS are reduced by anti-oxidizing
agents including superoxide dismutase (SOD), glutathione
(GSH) and catalase. High ROS levels may, however, confer
cellular damage to DNA, proteins and lipids. In hematopoietic
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cells it has been found that deficiencies in forkhead transcrip-
tion factors (FOXOs) may give rise to increased ROS levels
and, consequently, defective long-term repopulating activities,
terminal differentiation and cell cycle progression [113].
Germline loss of FOXO3 may also result in p38/MAPK acti-
vation in HSC compartments. This observation suggests that
low oxygen levels in the BMmay provide a long-term protec-
tion of HSCs from ROS, whereas high oxygen levels may
limit the lifespan of HSCs [114]. In AML, constitutively acti-
vated Akt inhibits FOXO and increases ROS levels. Enhanced
ROS signaling causes damage to nuclear and mitochondrial
DNA, compromises the DNA repair system and, thereby, in-
creases mutation rates [115]. CML stem and progenitor cells
contain high levels of ROS and concomitant oxidative DNA
damage compared to their normal counterparts, and it has
been found that increased ROS levels may contribute to the
generation of imatinib-resistant LSC clones [116]. In recent
years, ROS perturbation has gained interest as a strategy to
eliminate cancer cells [55, 56]. As such, anti-LSC activity via
ROS up-regulation has already been observed using agents
such as (i) PTL [90] and/or piperlongumine through transient
GSH depletion [117], (ii) DZNep through inhibition of
thioredoxin [82], (iii) auranofin (AF), which is clinically used
for the treatment of rheumatoid arthritis, through inhibition of
thioredoxin reductase [118], (iv) retinoid fenretinide through
the oxidative/endoplasmic reticulum stress-mediated pathway
[119] and (v) the iron chelator deferasirox through induction
of cellular differentiation [53].

4.5.4 Heat shock proteins

Heat shock proteins (HSPs) constitute a family of highly
conserved proteins involved in catalyzing the proper fold-
ing and, thereby, aggregation of proteins. Hsp90 and
Hsp70 are highly sought-after therapeutic targets in can-
cer and, consequently, small molecule inhibitors targeting
these HSPs have recently been developed. Hsp90 has
housekeeping functions and ensures the proper folding
of proteins involved in cellular growth, differentiation,
DNA damage and apoptosis. Specific co-chaperones and
post-translational modifications can shunt Hsp90 into an
alternative form (known as oncogenic or tumor enriched
Hsp90) with specialized oncogenic functions, including
blocking the degradation of oncogenic proteins that are
often associated with Hsp90. Oncogenic Hsp90 forms
have been found to sustain BCR-ABL activity and active
STAT5 signaling in CML [120]. In AML, Hsp90 is highly
expressed which correlates with high levels of CD34 and
Bcl2, autonomous growth, increased colony formation
and a poor survival [121]. In addition, bioinformatic anal-
yses have revealed that Hsp90 is enriched in patients har-
boring FLT3 internal tandem duplications (FLT3-ITD)
[122]. Hsp90 has also been correlated with the disease

state in CML and, thus, has been proposed to serve as a
risk factor [123]. In vitro exposure of primary CD34+

AML cells and AML-derived cell lines to the Hsp90 in-
hibitor 17-N-allylamino-17-demethoxygeldanamycin (17-
AAG) has been found to inhibit growth, apoptosis and
cell cycle arrest without affecting normal CD34+ cells
[124]. Interestingly, a phase I clinical trial for 17-
DMAG (a synthetic analog of 17-AAG) has reported 3
complete remissions out of 17 patients that were evaluat-
ed [125]. Several small molecule Hsp90 inhibitors are cur-
rently under investigation for their efficacy in different tumor
types. One of these, PU-H71, which is a novel agent that
preferentially binds to Hsp90, has been shown to possess po-
tent anticancer activities in animal models for several types of
tumors [126–128]. This compound is currently being tested in
a phase I clinical trial for metastatic solid tumors and lympho-
mas (www.clinicaltrials.gov).

4.5.5 Bcl-6

Bcl-6 is a transcriptional repressor that has been found to play
an important role in the acquisition of chemo-resistance by
CML and ALL stem cells. Bcl-6 is a member of the BTB-
POZ protein family whose members mediate transcriptional
silencing. In BCR-ABL+ B-ALL and CML, Bcl-6 has been
found to be essential for the acquisition of imatinib resistance
through p53 and ARF-mediated pathways. Bcl-6 inhibition by
RI-BPI (peptidomimetic inhibitor) has been found to lead to
the ablation of LSCs in B-ALL and CML cases in which the
LSCs could not be eliminated by imatinib [129–131]. These
observations suggest that simultaneous targeting of BCR-
ABL and Bcl-6 may represent a therapeutic strategy to ablate
LSCs and to prevent TKI resistance and relapses in BCR-
ABL+ leukemias.

4.6 Self-renewal pathways

Self-renewal pathways have also been suggested as candidate
targets to ablate LSCs. The canonical Wnt (Wnt/β-catenin),
Notch and Hedgehog pathways are self-renewal pathways
with a high potential to serve as therapeutic targets in
leukemia.

4.6.1 Wnt/β-catenin pathway

β-catenin, when activated by Wnt, is protected from degrada-
tion and accumulates within cells. This process leads to trans-
location of β-catenin to the nucleus where genes associated
with self-renewal are regulated [132]. The Wnt/β-catenin
pathway is active in HSCs, but not in granulocyte macrophage
progenitors (GMPs), as well as in a variety of leukemias.
Activation of β-catenin signaling by, for example GSK3β
mis-splicing, results in the transformation of progenitor cells
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[133, 134]. Microarray-based expression analyses have re-
vealed that Wnt/β-catenin pathway deregulation may contrib-
ute to CML progression driven by BCR-ABL kinase activity
[135, 136]. In AML, the expression of β-catenin has been cor-
related with a poor prognosis. Since β-catenin is not required for
adult HSC self-renewal, targeting the Wnt/β-catenin pathway
may be a therapeutic option for eradicating LSCs in AML and
CML patients [137, 138]. In pre-clinical studies on AML cases
with MLL translocations, β-catenin targeting has revealed a suc-
cessful killing of LSCs [139]. Interestingly, it has been found that
iron chelators such as acyl hydrazones can inhibit Wnt signaling
via destabilization of β-catenin and decrease the expression of
Wnt in samples derived from AML patients [140].
Homoharringtonine has shown the capacity to disrupt WNT/β-
catenin signaling, thereby reducing the growth and inducing the
apoptosis of LSCs in AML and CML, alone or in combination
with other agents [137]. In CML, the application of Wnt/β-
catenin inhibitors such as indomethacin or AV65 has been found
to enhance the degradation of β-catenin and to reduce the num-
ber of LSCs [138]. It has, however, also been found that despite
the presence of an aberrant Wnt/β-catenin pathway, LSCs may
not be dependent on this pathway for their survival in all leuke-
mias [141]. Therefore, the identification of predictors of response
to Wnt/β-catenin inhibition is of particular importance for the
execution of successful clinical trials.

4.6.2 Notch pathway

The notch signaling pathway is evolutionarily conserved and
plays an important role in processes such as self-renewal, cell
fate, proliferation and survival. The Delta and Jagged ligand
family members bind to Notch receptors, which leads to their
proteolytic cleavage mediated by metalloproteases and the γ-
secretase complex. This cleavage results in release of the in-
tracellular domain into the nucleus where it controls the tran-
scription of its target genes. Notch1 plays a central role in T-
cell acute lymphocytic leukemia (T-ALL) and, based on this,
γ-secretase inhibitors (GSIs) are currently being tested for
their efficacy in both pre-clinical models and clinical trials
[142]. However, GSIs also inhibit the cleavage of other pro-
teins such as CD44. In AML, gene expression profiling stud-
ies have revealed over-expression of Jagged-2 in LSCs.
Consistently, treatment of AML cells with GSIs has been
found to lead to decreased colony formation [19]. In addition,
the Notch signaling network has been demonstrated to be
silenced in human AML samples and in LSCs derived from
animal models. Interestingly, Notch inactivation has been
shown to cooperate in vivo with loss of TET2 (frequently
mutated in AML) [143]) for the induction of AML-like dis-
eases [144]. These data suggest that Notch receptor agonists
provide therapeutic potential for AMLs in which the Notch
pathway is silenced.

4.6.3 Hedgehog pathway

The Hedgehog (Hh) pathway is an important mediator of nor-
mal organ development and hematopoiesis, cell fate determi-
nation, differentiation, proliferation and survival. In mam-
mals, Hh signaling has been found to be ligand-mediated
and to be initiated by Hh ligand binding to its surface receptor
Patched (PTCH). In a resting state, PTCH is expressed on the
plasma membrane and acts to repress Smo activity. Upon
binding, PTCH is internalized and Smo is no longer repressed,
which results in the activation of Gli transcription factors.
Loss of Smo has been suggested to cause decreased transfor-
mation of HSCs expressing the BCR-ABL fusion protein
[145]. Additionally, inhibition of Hh signaling by
cyclopamine (a Smo inhibitor) supports the notion that Hh is
required for the maintenance of CML stem cells [9]. Unlike
CML, Hh signaling is not essential for MLL-AF9 fusion
protein-driven AML. Importantly, it has been shown that Hh
inhibition has no major effect on normal hematopoiesis.

4.7 Microenvironment disruption

The BM microenvironment comprises a variety of cellular
elements that, in combination with non-cellular matrix ele-
ments, provide numerous signals for regulating the activity
of HSCs. Similarly, LSCs send to and receive signals from
their microenvironment. Molecules such as CD44 and N-
cadherin, as well as those from the CXCR4-CXCL12 axis,
have been shown to regulate LSC survival and BM retention.

During normal hematopoiesis, HSCs interact trough
CXCR4 wi th the s t romal ce l l -de r ived fac to r 1
(SDF1/CXCL12) to remain within their BM niche. Several
lines of evidence imply that LSCs use the same axis to home
to their niche [146]. The BCR-ABL fusion protein is able to
inhibit CXCR4 expression in CML cells, and it has been
found that treatment of these cells with TKIs can restore
CXCR4 expression, thereby promoting their migration to the
BM, triggering cell cycle arrest and enhancing the quiescence
and survival of CML stem/progenitor cells [147]. In AML,
high levels of CXCR4 expression have been associated with
a poor prognosis. Recent studies have also revealed that
CXCR4 serine339 phosphorylation is correlated with
chemo-resistance and retention of leukemic cells in the BM
[148]. Inhibition of CXCR4-CXCL12 interactions with
CXCR4 antagonizing agents such as perixafor has been found
to mobilize leukemic cells and to reduce drug resistance in
animal models [149]. Additional strategies to inhibit the
CXCR4/SDF1 axis in AML cells include the use of neutral-
izing CXCR4 antibodies, neutralizing CXCL12 antibodies, or
the application of AMD3465 (a CXCR4 antagonist) [150].

Other molecules that regulate interactions of LSCs with
their microenvironment are surface antigens such as CD44
(discussed above) for which monoclonal antibodies have been
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shown to reduce the homing, retention and/or maintenance of
LSCs in the BM. Recent evidence has revealed that a hypoxic
microenvironment is of particular importance for maintaining
normal BM functions, in which the hypoxia-inducible factor
1α (HIF-1α) makes an essential contribution to the survival
and quiescence of HSCs. Even though HIF-1α plays an im-
portant role in normal HSCs, it has been found that treatment
of BM with the HIF-1α inhibitor echinomycin may selective-
ly hamper the colony forming capacity of lymphoma cells
without affecting normal murine BM cells. In addition, it has
been revealed that echinomycin shows activity against LSCs
in AML [151]. E-selectin is another important adhesion mol-
ecule that is now being pursued as a therapeutic target.
Primary AML blasts and LSCs express an E-selectin ligand
[5] thought to enhance the survival of leukemia cells and to
increase their chemo-resistance in the BM niche. Blocking E-
selectin interactions results in enhanced sensitivity to chemo-
therapeutic agents and the mobilization of LSCs. Currently, E-
selectin inhibitors and dual E-selectin-CXCR4 inhibitors are
under investigation to mobilize and sensitize LSCs to chemo-
therapeutic agents.

In Table 1 the therapeutic approached described above,
along with the agents used in each approach for targeting
LSCs, are listed. This table provides a snapshot of the treat-
ment modalities that may target LSCs and that are available
for the (pre)clinical management of hematologic
malignancies.

4.8 CML and tyrosine kinase inhibitors

As outlined above, tyrosine kinase inhibitors (TKIs) represent
a group of small molecules that can specifically block the
kinase activities of its target proteins. Imatinib, a first genera-
tion TKI, is a 2-phenylamiropyrimidine (PAP) derivative that
competitively blocks the adenosine triphosphate (ATP) bind-
ing site of the BCR-ABL fusion protein, thereby preventing
ATP from interacting with its catalytic domain [152]. This
inhibitory activity impairs BCR-ABL auto-phosphorylation
and its downstream signaling, leading to reduced proliferation
and apoptosis-mediated cell death. Imatinib treatment results
in durable cytogenetic remissions in CML with minimal dam-
age to normal cells. However, one-third of the patients may
develop resistance or intolerance to imatinib. These patients
can be treated with second generation TKIs, i.e., nilotinib,
dasatinib or bosutinib [138, 153]. Nilotinib is an
aminopyrimidine that has been engineered to increase its bind-
ing to the ATP pocket of BCR-ABL. It is 20 to 50 times more
potent than imatnib and is active in imatinib-resistant cells
harboring various kinase domain mutations, except T315I.
Dasatinib can bind to both the active and inactive conforma-
tions of BCR-ABL and is able to inhibit downstream Src
family kinases. Dasatinib is 300 times more active than ima-
tinib but, similar to nilotinib, is inactive in cells harboring the

T315I mutation. Its adverse effects are similar to the other
TKIs mentioned [154].

Despite the positive clinical effects of TKIs, there are im-
portant clinical aspects that need to be considered, i.e., long-
term tolerability, resistance in case of the T315I mutation and
interruption during pregnancy. Although imatinib, nilotinib
and dasatinib are able to reduce the number of tumor cells,
induce apoptosis and decrease self-renewal, it has been found
that they fail to kill quiescent CD34+CD38−lin− cell popula-
tions in animal models [155–157]. A recent assessment of
CML mouse models and patient-derived stem cells has re-
vealed that CML-derived stem cells may not be dependent
on the presence of BCR-ABL for their survival. These data
suggest that therapeutic approaches should also be aimed at
targeting BCR-ABL independent mechanisms governing
LSC resistance and survival [158, 159].

Table 1 A snapshot of therapeutic approaches aiming at leukemic stem
cells that are available for themanagement of hematological malignancies

Target Compound References

Cell surface
antigens

Gemtuzumab, DT388IL3,
7G3 antibody, H90
antibody, Dacluzumab,
B6H12.2 or BRIC 126,
21.16 and 1075.7,αCLL1-
αCD3, 81.2 antibody

[13, 27, 33, 39, 40,
44–46, 160]

Differentiation
therapies

ATRA, DFO, DFX, EP,
Sabutoclax

[48, 53, 54]

Mitochondria and
metabolic
pathways

Sabutoclax, MEK inhibitor
with ABT-737, obutoclax
with sorafenib, tigecycline,
PKM2

[59–63, 66, 67]

Epigenetic
regulators

VAL-AZA, DOT1L, LSD1,
EZH2, IDH1/2, Menin,
Brd4, menin-MLL inhibi-
tors, LSD1 inhibitors,
DZNep

[73–78, 80–82,
161]

Cell signaling
pathways

PTL, DMAPT, Celastrol, 4-
HNE, AR42, AS602869,
LY29402, VP16,
Wortmannin, Perifosine,
Sirolimus, etoposide,
clofarabine, NVP-
BEZ235, GDC-0980,
XL-765

[86, 90, 92, 94, 98,
99, 102, 105,
106, 110–112]

Reactive oxigen
species

PTL, piperolongumine,
DZNep, AF, Fenretinide,
Deferaxirox

[53, 82, 90, 117,
119]

Heat shock
proteins

17-AAG, 17-DMAG,
PU-H71

[124–127]

Self renewal
pathways

Hydrazones,
Homoharringtonine,
AV65, Indometacin,
GSI, cyclopamine

[9, 137, 138, 140,
142]

Microenvironment
disruptions

Perixafor, neutralizing
CXCR4 or CXCL12
antibodies, AMD3465,
echinomycin, E-selectin
ligand

[5, 149–151]
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The development of resistance against TKIs may be
either BCR-ABL dependent or independent. Dependent
mechanisms involve mutations in the ATP binding do-
main of BCR-ABL and/or amplification of its encoding
fusion gene. Independent mechanisms include reduced ex-
pression of the cation transporter hOCT1, which is in-
volved in the influx of imatinib into the cell, increased
expression of efflux pumps such as P-glycoprotein (P-
gp), sequestration of imatinib by the serum alpha-1-acid
glycoprotein (AGP) in plasma, activation of BCR-ABL
independent signaling pathways (Src, STAT, Wnt/beta ca-
tenin, among others) and LSC-quiescence [153].

5 Conclusion and future perspectives

Although substantial progress has been made in recent
years in the development of anti-cancer therapeutic ap-
proaches, treatment failure is still a common problem.
The main reason of this failure is therapeutic resistance
leading to relapse. It has now become widely accepted
that current therapies are often capable of eradicating the
general population of cancer cells and shrinking the bulk
of the tumor, but are not able to uproot a particularly
stubborn subpopulation of cells called CSCs. These cells
are characterized by high degrees of tumorigenic activity,
self-renewal capacity, propagation and multi-lineage dif-
ferentiation potential through symmetrical and asymmet-
rical cell divisions that result in a hierarchical heteroge-
neity among the cells within a tumor. CSCs arise from
normal cells with acquired mutations that lead to the de-
regulation of self-renewal or the dedifferentiation of dif-
ferentiated cells. While the exact mechanisms underlying
the birth and burst of CSCs are not yet fully understood,
they are believed to play critically important roles in the
pathogenesis of cancer. A large body of information has

revealed that these auto-regenerating tumor-initiating cells
(TICs) may be the main suspects of tumor formation in a
variety of tumor types and, in addition, may be responsi-
ble for tumor progression, metastasis, drug resistance and,
importantly recurrence. The dormancy of CSCs is an at-
tribute that turns them refractory to conventional antitu-
mor drugs, the action of which largely depends on cell
cycle functions. CSCs have a property of robustness,
which is defined by several biological features including
a slow cell cycle progression, a raised capacity for the
efflux of cytotoxic anticancer drugs through ATP-
binding cassette transporters, a rapid response to the re-
pair of damaged DNA, a resistance to oxidative stress and
an adaptation to hyper-inflammatory or hypo-nutritious
microenvironments. All these characteristics may account
for the development of therapeutic resistance and subse-
quent disease relapse.

Targeting CSCs, rather than the bulk of the tumor cells,
is a highly promising scenario for eradicating hematopoi-
etic malignancies and for preventing disease relapse
(Fig. 3). This type of treatment eradicates the causes rath-
er than the symptoms and, therefore, may trigger a long-
lasting clinical response. The identification of key cell
surface markers and the appreciation of molecular attri-
butes involved in controlling the CSC phenotype have
made major contributions to the design of CSC targeted
treatment options. Although these novel options have
shown promise in the treatment of cancer, some of them
turned out to be non-specific and, therefore, to elicit off-
target effects. Thus far, multiple strategies have been de-
veloped to selectively target LSCs and to alter their
supporting microenvironment. These strategies include
targeting LSC-specific cell surface markers, modulating
various cellular signaling cascades, adjusting micro-
environmental signals, blocking drug efflux pumps, acti-
vating anti-apoptotic pathways and inducing cellular

CSC-targeted therapy

Conventional cancer 
therapy

Tumor relapse 
Surviving CSCs

Cancer stem cells (CSC)

Bulk cancer populationTumor elimination

Fig. 3 Cancer stem cell targeted
cancer therapy versus
conventional cancer therapy.
Conventional cancer therapy
targets tumor cells in general, but
does not selectively kill CSCs.
Therefore, there is a high chance
for relapse. When the therapeutic
approach is targeted towards
CSCs, these tumor-initiating cells
are killed. As a result, the tumor
loses the capacity to regenerate
and, thus, is more unlikely to
recur
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differentiation. Some of these CSC targeting strategies
have turned out to be successful in preclinical and clinical
studies, mostly in combination with traditional anticancer
strategies, while others are still under preclinical and clin-
ical evaluation. Although LSC targeting seems to be a
promising approach for the treatment of leukemia, there
are still challenges that need to be met. LSC cell surface
marker profiles may not be universal, i.e., not all LSCs
may express certain markers whereas other markers may
also be expressed by non-LSCs. Therefore, the identifica-
tion of novel markers has resulted in repeatedly redefining
LSC populations. The currently identified markers can be
applied to recognize LSC-rich subpopulations, but may
not be suitable to precisely isolate and define all LSCs
within a tumor mass. Some cellular signaling pathways
responsible for the maintenance of self-renewal and
stemness are shared by LCSs and normal HSCs. So, by
manipulating these pathways it is difficult to selectively
destroy LSCs. Furthermore, the inhibition of a specific
signal transduction pathway in LSCs may become ineffec-
tive owing to the activation of (an) alternative pathway(s).
This phenomenon, which is called adaptive response, un-
derscores the importance of simultaneously interrupting
multiple signaling pathways (Supplementary Fig. 3).

The development of therapeutic approaches which se-
lectively target LSCs, while minimizing toxicity to normal
HSCs, is urgently needed. Most treatment modalities have
been tested in vitro or in vivo in animal models. Clearly,
precisely controlled clinical trials need to be carried out
before the results can be translated to the clinic.
Characterization of LSCs at the single cell level,
unraveling the genetic, epigenetic and biochemical mech-
anisms that regulate distinct features of LSCs, as well as
advancing our understanding of the role played by stem
cell niches in controlling the biological function of LCSs
may offer novel clues for the design of better LSC
targeted therapeutic approaches. These modalities may in-
clude combinations with other existing or novel antican-
cer therapeutic modalities. In the end, combination thera-
py may turn out to be the most powerful option for the
management and eradication of different leukemias. There
is no doubt, however, that the CSC concept has opened up
new frontiers in the area of anticancer research and
shaped a new doctrine of cancer therapy.
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