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Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a
lethal disease with a dismal prognosis for which new thera-
peutic strategies are desperately needed. Non-coding RNAs
(ncRNAs), especially microRNAs (miRNAs) and long non-
coding RNAs (lncRNAs), may yield new therapeutic concepts
for the treatment of PDAC. A vast number of miRNAs, in-
cluding the well-studied miR-21, miR-155 and miR-34, has
been shown to regulate PDAC growth, invasion and metasta-
sis in vitro and in vivo by targeting members of key signaling
pathways. In addition, other miRNAs and lncRNAs, such as
HOTTIP and MALAT-1, have been shown to influence the
malignant behavior of PDAC cells.
Methods Here, we discuss several ncRNAs that may be used
either as new therapeutic agents or as targets of new therapeu-
tic agents. Furthermore, we discuss the problem of proper
delivery of nucleotide-based agents and novel methods that
may be used to circumvent this problem.
Conclusions Although the number of reports addressing
the role of ncRNAs in PDAC virtually grows by the
day, there are still many steps to be taken before the
application of ncRNA-based therapies will become reality
in clinical practice.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a devastating
disease with a poor prognosis. Each year more than 40,000
PDAC-related deaths occur in the European Union, making it
the fourth most common cause of cancer death in men and
women [1]. The main reasons for its devastating character
are the late occurrence of clinical symptoms and the intrinsic
malignant nature of the disease [2]. Since curative treatment in
the form of radical surgery is only possible in a minority of
patients, novel therapeutic options are urgently needed [2].
Common genetic alterations include mutations in the KRAS
(>90 %), TP53 (> 50 %), SMAD4 (> 60 %) and CDKN2A (>
80 %) genes [2–4]. Moreover, studies in murine models have
shown that TP53 and KRAS mutations, when occurring in a
rapid sequence, underlie the development of PDAC in 75% of
the cases [5]. The introduction of the FOLFIRINOX and
Gemcitabine plus Nab-Paclitaxel chemotherapy regimens
has resulted in a successful prolongation of the survival of
PDAC patients, but with frequent and sometimes considerable
adverse effects, such as severe rashes [6]. Even though prelim-
inary data show efficacy of small molecule agents such as the
tyrosine-kinase inhibitor Erlotinib, successful targeted thera-
pies for the treatment of PDAC have yet to be developed [6].

Non-coding RNAs (ncRNAs) are RNA molecules that are
involved in translation, DNA replication, RNA splicing and
epigenetic regulation. They are not translated into proteins
[7–11]. ncRNAs comprise transfer RNA (tRNA), ribosomal
RNA (rRNA), small interfering RNA (siRNA), Piwi-
interacting RNA (piRNA), microRNA (miRNA), Y-RNA
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and small Cajal body-specific RNA (scaRNA). As a group,
ncRNAs are believed to be ancient relics of evolution, where-
as in modern animals and plants, different mechanisms by
which ncRNAs regulate gene expression and DNA
replication have evolved. Within the human genome, genes
encoding ncRNAs are more than five times as numerous as
those encoding proteins. ncRNAs may be transcribed in
intergenic regions or regions overlapping with genes encoding
proteins [12]. Moreover, mutations in ncRNA genes may un-
derlie disease development, analogous to mutations in protein
coding genes [13]. Interestingly, some chemotherapeutic
agents, such as Metformin or Vorinostat, are believed to func-
tion at least partly through modifying the expression of
ncRNAs [14, 15]. Especially miRNAs and lncRNAs have
shown therapeutic potential, as they can be introduced into
cells via viral-vector transfection or mechanical transfection,
conceptually resembling ‘classical’ gene therapy. Delivery of
therapeutics to the proper site is important, and methods have
been reported that provide the possibility of local application.
Of these, endoscopic ultrasound-guided fine-needle injection
(EUS-FNI) or computer-tomography (CT)-guided delivery of
therapeutic nucleotides have proven to be successful in
PDAC-patients [16].

1.1 MicroRNA characteristics

MicroRNAs (miRNAs) represent a subgroup of 19 to 25
nucleotides-long ncRNAs that post-transcriptionally regulate
gene expression by a series of steps referred to as RNA inter-
ference [17, 18]. miRNAs are evolutionarily conserved and
constitute an important part of epigenetic gene regulation,
affecting up to 60 % of all mammalian genes, and have been
subject to intensive research in recent years [19–25]. From an
evolutionary perspective, miRNAs may have facilitated the
development of higher complexities in organisms and con-
comitant biologic functions, making life as we know it now
possible [26]. The biogenesis of miRNAs is achieved by the
processing of RNAs transcribed by RNA polymerase II
(RNAP-II) [27] and the processing of hairpin-shaped pre-
miRNAs to miRNAs by the enzymes Drosha and Dicer in
the nucleus and the cytoplasm, respectively [28–30].
Subsequently, single stranded miRNA molecules associate
with argonaute proteins to form the RNA-induced silencing
complex (RISC), which then binds to complementarymessen-
ger RNA (mRNA) to either block translation initiation or to
initiate mRNA degradation [31]. RISC and its associated
miRNAs usually bind to the 3′ untranslated region (3′-UTR)
of the complementary mRNA [31]. Perfect complementary
binding of a miRNA with its target mRNA leads to mRNA
cleavage and degradation [32]. In mammals, miRNA binding
to its target mRNA is mostly imperfect. This imperfect bind-
ing leads to a blockade of translation of the target mRNA [33].
However, the seed region of a miRNA, which represents a 7

nucleotide long region (nucleotides 2-8) in the 3′-UTR, still
needs to bind perfectly to its mRNA target in order to block
translation. Some mRNAs may have multiple seed regions
complementary to a variety of miRNAs [34]. Hence, a single
mammalian miRNA may inhibit the expression of hundreds
of genes, while a single gene may undergo translational inhi-
bition by numerous miRNAs [34]. This notion may provide a
rationale for the development of future therapeutic strategies,
as agents with multiple targets may act synergistically and, as
such, may preclude the development of therapy resistance.
Related to their function, miRNAs that promote aggressive-
ness in tumors are termed Bonco-miRs^, whereas miRNAs
that have the opposite effects are termed Btumor-suppressor-
miRs^. Onco-miRs may inhibit the translation of tumor sup-
pressor genes such as PTEN, while tumor-suppressor-miRs
may inhibit the translation of oncogenes such as KRAS [35].
Also, the expression of onco-miRs and tumor-suppressor-
miRs itself is subject to specific regulatory mechanisms. It
has for example been found that KRAS enhances the expres-
sion of onco-miRmiR-21 while, conversely, the expression of
KRAS is reduced by miR-217 [35, 36]. Thus, teleologically,
loss of miR-217 function may increase the expression of miR-
21 through increased KRAS signaling. This notion adds an-
other layer of complexity to the traditional concept of tumor-
suppressor genes and oncogenes. A recent study revealed that
at least 500 miRNAs are aberrantly expressed in PDAC [37].
Next to PDAC, the role of some of these miRNAs has also
been investigated in the two major precursors of PDAC, i.e.,
pancreatic intraepithelial neoplasia (PanIN) and intraductal
papillary mucinous neoplasm (IPMN) [38–40].

1.2 Long non-coding RNA characteristics

Long non-coding RNAs (lncRNAs) are transcripts defined by
a length of over 200 nucleotides that are involved in the reg-
ulation of gene transcription, post-transcriptional gene regula-
tion and epigenetic gene regulation [41–43]. lncRNAs are
transcribed by RNAP-II, poly-adenylated and spliced similar
to mRNAs, but are not translated into protein [44]. lncRNAs
represent a heterogeneous group of RNAs that can be divided
into different subgroups. From a functional perspective,
lncRNAs may be assigned to archetypical categories, i.e., sig-
naling, decoying, scaffolding and guidance, although most
lncRNAs are multifunctional [45]. Signaling lncRNAs are
RNAs that regulate gene expression intrinsically, i.e., by bind-
ing to target genes or regulatory elements. A prime example is
the X-chromosomal inactivation-related lncRNA Xist. In fe-
male mammals, Xist is expressed from the inactive X-
chromosome and covers it to repress gene expression [46].
Subsequent gene silencing and guidance of chromatin modi-
fying enzymes to target locations on the X-chromosome is,
however, conducted by distinct RNA sequences, thereby
assigning it to both categories of lncRNA function [47].
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Decoy lncRNAs affect gene expression in an indirect manner
by binding to RNA-binding proteins (RBPs). Decoy lncRNAs
consequently titrate away proteins such as transcription fac-
tors and chromatin modifying enzymes [45]. Examples of
decoy lncRNAs are metastasis-associated MALAT-1 and
mTOR pathway-associated Gas5 [45, 48]. Scaffolding
lncRNAs serve as platforms for complexes of different effec-
tor molecules, analogous to the function of scaffolding pro-
teins [45]. A good example of a scaffolding lncRNA is
HOTAIR, which has been implicated in pancreatic carcino-
genesis and acts by forming a complex with chromatin mod-
ifying enzymes [49]. Regarding their association with geno-
mic regions, lncRNAs may be divided into five classes:
promoter-associated lncRNAs (pRNAs), antisense and sense
gene body-associated lncRNAs (gsRNAs), enhancer-
associated lncRNAs (eRNAs) and intervening lncRNAs
(lincRNAs) [50]. In recent years, lncRNAs have been shown
to play essential roles in human diseases, such as cancer, en-
docrine disorders (e.g. diabetes mellitus) and cardiovascular
diseases [51–53]. lncRNAs have also been found to be in-
volved in the pathophysiology of PDAC [37] and some of
them appear to show potential for diagnostic and/or RNA-
based gene therapeutic purposes.

2 ncRNA-based therapy of PDAC

In the search for putative novel therapeutic targets, miRNAs
have been studied intensively in recent years. On the one hand
as drug targets in the form of miRNA antagonists such as
antisense oligonucleotides (ASOs), and on the other hand as
miRNA mimics [39, 54] or miRNA-encoding plasmid cDNA
(pcDNA) that can restore miRNA or lncRNA function [55].
ASOs are single-stranded RNAmolecules that share the same
sequence as their target mRNA or ncRNA, but in a reversed
order. Binding to their complementary RNA leads to degrada-
tion of ASO-mRNA or ASO-ncRNA complexes by RNase H
[56]. ASOs that target miRNAs are usually called anti-miRs or
antagomiRs. miRNA mimics are synthetic double-stranded
RNA molecules that are homologous to endogeneous
miRNAs. Similar to miRNAs, lncRNAs have been targeted
experimentally, both in vitro and in vivo. It has been found
that over-expression of lncRNAs can be achieved by introduc-
ing gene-carrying pcDNAs in target cells. lncRNA silencing
can, on the other hand, be brought about using siRNAs or
shRNAs. Also, methods to target lncRNAs with ASOs have
been developed. The latter confers the advantage of nuclear
inhibition of lncRNAs rather than cytoplasmic inhibition [57].
A notable exception is lncRNA H19, which is central to a
different therapeutic approach and is discussed in more detail
under 2.2.8 [58]. Here, emphasis is put on well-investigated
ncRNAs in PDAC, some of which have been successfully

tested in vitro and in vivo and may serve as candidates for
RNA-based gene therapy.

2.1 Potential therapeutic miRNAs

2.1.1 KRAS-related miRNAs

A number of miRNAs has been shown to regulate KRAS
expression in PDAC. This is an interesting finding since
KRAS is mutated in>90 % of PDAC precursor lesions and
PDACs (see above) and, as such, is thought to be one of the
driving oncogenes in pancreatic carcinogenesis [2, 59].
Inhibition of the MAKP/ERK-pathway, of which KRAS is
an upstream member, has shown anti-oncogenic effects in
PDAC cells [60].MutantKRAS, in turn, has shown to regulate
miRNAs in PDAC-derived cell lines, as well as in human
Nestin-expressing cells (HPNE) derived from non-neoplastic
epithelium (NNE) of pancreatic ducts harboring a KRAS mu-
tation [61].KRAS is a known target of tumor-suppressor-miRs
that are deregulated in PDACs. These include miR-217, miR-
206, miR-143, miR-145 and Let-7 [35, 55, 62, 63]. It has been
shown that transfection with miR-217, which is lowly
expressed in PDAC cells, significantly down-regulates
KRAS expression and upregulates phosphorylated-AKT1
levels in PDAC-derived cell lines. Additionally, in vitro re-
duced anchorage-independent colony formation and in vivo
reduced tumor growth in xenograft models has been reported
[35]. Active KRAS exerts its oncogenic function through up-
regulation and repression of miRNAs. miR-31 is a recently
discovered KRAS-regulated miRNA that represses RASA1 in
a MAPK-dependent manner, leading to increased RhoA-
GTPase activity. It has been reported that exogenous expres-
sion of miR-31 leads to increased proliferation, migration and
invasion of PDAC-derived cells [64]. miR-143 and miR-145,
which are down-regulated in the presence of activated KRAS,
have been found to lead to inhibition of proliferation and to
mediate the induction of apoptosis in PDAC-derived cells in
vitro and in vivo [61, 63, 65]. Kent et al. observed down-
regulation of miR-143 and miR-145 in PDAC-derived cells
and showed that viral-mediated delivery of miR-143 andmiR-
145 resulted in decreased anchorage-independent growth
[61]. KRAS-mediated repression of miR-143 and miR-145
has also been observed in other tumor types, such as colorectal
carcinoma (CRC) [66–68]. It has also been found that miR-
206 re-expression has inhibitory effects, not only on tumor
growth and tumor vascularization in vitro and in vivo, but also
on the motility and invasive behavior of PDAC cells. These
effects are achieved at least in part through the inhibition of
pro-inflammatory and pro-angiogenic genes downstream of
the NF-κB pathway, such as those encoding chemokine (C-
X-C-motif) ligand 1 (CXCL1), granulocyte colony-
stimulating factor-2 (CSF2) and vascular endothelial growth
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factor A and B (VEGFA, VEGFB), but they may also be
achieved through direct inhibition of KRASmRNA itself [62].

2.1.2 miR-155

Activating KRAS-mutations may also lead to increased ex-
pression of onco-miR miR-155, mediated by MAPK and
NF-κB signaling, thereby promoting oxidative stress re-
sponses by inactivation of the tumor-suppressive transcription
factor Foxo3a [69]. miR-155 has been found to be over-
expressed in most PDAC cases and to correlate with a poor
survival of PDAC patients [70]. During pancreatic carcino-
genesis, miR-155 has been found to become over-expressed
with a gradually increasing frequency during the progression
of PanINs, the most important precursor lesions of PDAC,
with highest expression levels in PanIN-3 lesions [39]. miR-
155 is a known inhibitor of TP53INP1, which mediates apo-
ptosis uponDNA damage by promoting p53 activation [71]. It
is also involved in the creation of a tumor-growth promoting
microenvironment by transforming normal pancreatic fibro-
blasts into cancer-associated fibroblasts (CAFs) that allow
PDAC cell invasion, and by promoting tumor-angiogenesis
[72]. Anti-miR-155 has been shown to reduce the invasive
behavior and migration of PDAC cells by down-regulation
of the signal transducer and activator of transcription 3
(STAT3), which can be activated through various signaling
pathways, such as the EGF, Il-6 and interferon-related path-
ways [73, 74]. Hence, miR-155 may serve as a promising
target for experimental PDAC therapy, as it is a well-
investigated miRNA that has important implications both in
early pancreatic carcinogenesis and in advanced stages of
PDAC. Research aimed at the development of KRAS-
targeting strategies still awaits satisfactory results. The failure
so far to develop agents that target KRAS may be due to the
complex crystallographic structure of the KRAS protein [6], a
problem that may be circumvented by miRNA-based
approaches.

2.1.3 miR-21

miR-21 is one of the most extensively investigated miRNAs
in malignant tumors, and has been found to be involved in
many oncogenic pathways [75–77]. miR-21 has also been
investigated in PDAC, and it has been shown that its expres-
sion level correlates well with several prognostic parameters
and with resistance to Gemcitabine [78–81]. In PDAC it has
been found that miR-21 exerts its oncogenic function through
up-regulation of Bcl-2 [82], inhibition of PTEN and RECK
[83], FasL [80], p85α [84] and PDCD4 [85]. It has also been
found to be up-regulated by KRAS signaling, Gemcitabine-
induced histone-deacetylation of the MIR21 promoter [36]
and by hypoxia [86]. Consequently, miR-21 is a strong en-
hancer of PI3K-AKT signaling, thus promoting the growth,

invasion and migration of PDAC cells [87]. Moreover,
miR-21 is involved in creating a tumor-promoting environ-
ment by the recruitment of CAFs, which promotes the in-
vasion and metastasis of PDAC cells [88]. Several studies
have shown that inhibition of miR-21 via ASOs leads to
decreased invasion and metastasis [79], decreased prolifera-
tion and increased apoptosis [83] and Gemcitabine sensitiv-
ity in PDAC cells [79, 81, 83, 89]. In one study, mice
inoculated with tumor cells were treated with anti-miR-21
after palpable tumor formation. Twelve days after intra-
tumor injection the control group showed fast progressing
tumors, whereas the group of mice treated with anti-miR-21
showed little to no progression [89]. A combined use of
anti-miR-21 and the receptor tyrosine-kinase inhibitor
Sunitinib led to a synergistic decrease of cell viability,
which was more pronounced than with a combination of
Sunitinib and anti-miR-221, another highly up-regulated
miRNA in PDAC [90, 91]. In view of current data,
targeting of miR-21 appears a valid option in the treatment
of PDAC, as it is upregulated in most PDACs and interferes
with essential malignancy-associated signaling pathways.

2.1.4 miR-34

Recently, a number of studies has revealed an important
tumor-suppressive activity of miR-34 in PDAC through syn-
ergistic interaction with the p53 pathway. This holds true for
all three known homologues of miR-34, referred to as miR-
34a-c, respectively. Although these homologues all share a
seed sequence, their expression levels vary strongly among
different tissues, suggesting tissue-specific roles [92]. It has
been shown that miR-34a and b can inhibit PDAC growth and
viability, although different mechanisms underlying these in-
hibitions have been reported. Insight into the role of miR-34c
is still lacking. It has been reported that miR-34a exerts its
function partly by inhibition of target genes encoding Bcl-2,
Notch-1 and Notch-2 [93, 94], while miR-34b also inhibits the
expression of SMAD3, thereby repressing proliferative sig-
naling through the TGF-β pathway [95]. It has also been
found that p53 wild-type PDAC-derived cell lines show con-
siderably increased apoptotic rates when transfected with
miR-34 mimics [96]. Interestingly, inhibition of tumor growth
has also been seen in p53-deficient PDAC-derived cell lines,
suggesting the occurrence of p53-independent interactions of
miR-34 [94, 96]. Other investigators found that treatment with
the demethylating agent 5-Aza-dC and the HDAC inhibitor
Vorinostat resulted in re-expression of miR-34a and a consec-
utive up-regulation of p53. In addition, it was found that this
treatment may lead to an increased expression of the down-
stream signaling molecules p21, p27 and PUMA, while cell
proliferation, cell cycle progression and EMT (epithelial to
mesenchymal transition) were inhibited. Additionally, it was
found that stem cell characteristics were reduced [15].
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Vorinostat is already in clinical use for the treatment of refrac-
tory cutaneous T-cell-lymphoma and has an acceptable ad-
verse effects profile, which is probably due to its selective
targeting of tumor cells [97]. Also, a successful safety study
on PDAC patients has been performed [98]. The estrogenic
isoflavone Genistein has been shown to inhibit PDAC growth
and to induce apoptosis by enhancing the expression of miR-
34a [93]. Genistein has little to no side effects [99], rendering
it into an interesting therapeutic option. Clearly, the miR-34
family of miRNAs has therapeutic potential for PDAC, as the
p53 pathway is commonly altered in these tumors. Moreover,
miR-34 may also exert its tumor-suppressive function via
p53-independent pathways, such as the TGF-β pathway.
Since at least one of these pathways is altered in most
PDACs, miR-34 may be suitable for a broad-scale application
[2]. Since the targeted delivery of miRNAs is still challenging
(see below), the use of agents such as Vorinostat may support
the development of new targeted therapies. As miR-34 is
among the most strongly dysregulated miRNAs in different
malignancies such as hepatocellular carcinoma (HCC) or leu-
kemia [100, 101], efforts have already been made to utilize
miR-34 mimics for tumor therapy. MRX34, which will be
discussed in detail later in this article, is a miR-34-mimic-
based therapeutic that is currently evaluated for the treatment
of unresectable HCCs and has shown promising results in
murine models [102]. Apart from miR-34, miR-148 has also
been found to be efficacious in PDAC, in part via Bcl-2 inhi-
bition, leading to significant reduction in tumor growth and
invasive behavior both in vitro and in vivo [103]. A similar
mode of action has been reported for miR-345, although only
one study so far has dealt with PDAC [104].

2.1.5 TGF-β-related miRNAs

Other tumor-suppressor-miRs that have been reported to tar-
get the TGF-β pathway are miR-483 and miR-367. miR-483-
3p has been shown to inhibit PDAC growth through down-
regulation of SMAD4, leading to decreased growth-inhibitory
signaling of the TGF-β pathway [105]. The SMAD4 gene has
been found to be mutated in>60 % of the PDAC cases (see
above). Therefore, it is assumed that tumors that do not exhibit
SMAD4 mutations may over-express miR-483-3p in a higher
proportion, although this has so far not been documented.
Interestingly, the SMAD4 gene status poorly correlates with
its mRNA-level, suggesting that post-transcriptional regula-
tion by miRNAs may be at work [106]. It has been found that
miR-367 targets the inhibitory SMAD protein SMAD7, lead-
ing to an increased in vitro PDAC-derived cell growth [107].
As yet, however, data on the exact role of SMADs, including
SMAD7, in the pathobiology of PDAC are still conflicting,
although it has been suggested that down-regulation of
SMAD4 and SMAD7 is essential [106]. Fact is, nevertheless,

that the TGF-β pathway is highly deregulated in PDACs, and
that it may represent a pivotal target for targeted therapy.

2.1.6 MUC4-related miRNAs

MUC4 is a membranous high-molecular weight glycoprotein
that enhances the malignant behavior of PDAC cells by
repressing apoptosis and immune modulation, and by aggra-
vating chemoresistance. It has been shown thatMUC4 expres-
sion is regulated by miRNAs [108–111]. MUC4 and the
epidermal-growth factor receptor-2 (HER-2/neu) are proven
targets of miR-150, and they have been found to interact
closely to promote HER-2 activation. This interaction leads
to an increased stability of the HER-2/neu receptor, thus en-
hancing downstream signaling and tumor cell proliferation
[111, 112]. Restoration of miR-150 expression has led to de-
creased growth and invasiveness of PDAC-derived cell lines
in in vitro studies. The effect could mainly be attributed to
repression of MUC4 expression by miR-150, although other
targets of miR-150 have also been identified [111]. Another
miRNA that targetsMUC4 is miR-219-1-3p. It was found that
miR-219-1-3p over-expression in PDAC-derived cell lines
successfully reduced activation of the AKT and MAPK/
ERK pathways through inhibition of MUC4 expression.
Furthermore, it was found that injection of miR-219-1-3p
mimics reduced tumor growth and MUC4 expression in a
murine PDAC xenograft model [113]. The use of miRNAs
that target MUC4 seems promising, as MUC4 is a molecule
involved in oncogenic pathways essential for PDAC, such as
the MAPK/ERK and AKT signaling pathways. Moreover,
MUC4 and HER-2 have been found to be over-expressed in
most PDAC cases [2], suggesting that targeting these mole-
cules with miRNAs might be considered for the majority of
patients.

2.1.7 miR-200

MiR-200, comprising miR-200a-c and miR-141, is known to
exhibit tumor suppressive properties and is currently being
evaluated as therapeutic agent in a variety of tumors
[114–116]. MiR-200 exerts its tumor suppressive action by
inhibiting key steps in the EMT cascade, thereby inducing
epithelial characteristics in tumor cells [117]. Conversely,
miR-200 promotes MET (mesenchymal to epithelial transi-
tion), the last step of metastasis in which migratory tumor cells
form stable colonies [118]. The expression of miR-200a has
been found to be markedly decreased in PDAC cells, espe-
cially in its cancer stem-cells (CSCs). Moreover, it has been
found that a low expression of miR-200a correlates with
EMT-related traits such as a high expression of Vimentin
and a low expression of E-cadherin [119]. It has also been
found that re-expression of miR-200a using miR-200a-
mimics can restore epithelial traits in PDAC CSCs in vitro,
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while decreasing their invasive and migratory behavior [119].
Ma et al. showed that miR-200c mimics, when transfected
into PDAC cells, exhibited a negative effect on their metabo-
lism with a subsequent decrease in survival, invasive behavior
and colony forming capacity [120]. Furthermore, subpopula-
tions of CSCs typically expressing the stem-cell markers
CD44 and CD24, showed a pronounced dose-dependent de-
crease in cell viability upon Gemcitabine treatment [120].

2.1.8 miR-141

Another important member of the mir-200 family is miR-141,
which exerts its function through inhibition of the Yes-
associated protein-1 (YAP1), the transmembrane-4-L-6-fami-
ly-1 (TM4SF1) protein and the mitogen-activated protein ki-
nase isoform 4 (MAP4K4) [121–123]. A low miR-141 ex-
pression is frequently found in PDAC and has been shown
to correlate with an impaired overall survival and advanced
clinic-pathological features in PDAC patients [123, 124].
In vitro functional studies have shown that re-expression of
miR-141 using miR-141 mimics results in a reduced growth
and colony forming capacity and an increased apoptosis, ef-
fects that are largely attributable to YAP1 inhibition [124].
Lijian et al. showed that miR-141 mimics led to suppressed
PDAC cell migration and invasion, although no effect on cell
growth or apoptosis was observed [122]. Zhao et al. found that
in vitro miR-141 over-expression may lead to G1-phase cell
cycle arrest and induction of apoptosis in conjunction with
down-regulation of cyclin D1 and Bcl-2 expression. The col-
ony forming and invasive capacities of the respective cells
were markedly inhibited. In addition, it was found in murine
xenograft models that miR-141 can inhibit in vivo tumor cell
growth [123].

2.1.9 miR-375

miR-375 is a miRNA that is expressed especially in pancreatic
islet cells under conditions that are necessary for an appropri-
ate development of the endocrine pancreas and the regulation
of glucose-dependent insulin secretion [125, 126]. miR-375
has been found to be down-regulated in PDAC cells and to
function via the targeting of pyruvate dehydrogenase kinase-1
(PDK-1), Insulin-Like Growth Factor Binding Protein 5
(IGFBP5) and Caveolin-1 [127, 128]. It has also been found
that miR-375 signaling leads to reduced activation of the AKT
pathway in PDAC cells [128]. Furthermore, over-expression
of miR-375 has repeatedly been shown to inhibit PDAC cell
growth and to induce apoptosis [127–129]. Zhou et al. found
that miR-375 over-expression may lead to a significant in-
crease of cells in the G1/G0-phase of the cell cycle, a reduced
cell proliferation and an increased apoptotic rate [128, 129].
The same group showed that miR-375 over-expression may
be effective in suppressing tumor growth in xenograft models.

It was found that after 1 month mice with solid PDAC tumors
that were injected with miR-375 mimics showed significantly
smaller tumor volumes than the non-injected controls [130].

2.1.10 miR-221

miR-221 is one of the most strongly deregulated miRNAs in
PDACs and PanINs, and has been found to be over-expressed
in other tumor entities as well [127, 131, 132]. In PDAC, it
effectively enhances tumor viability and resistance to
Gemcitabine [83, 133]. It has been found that miR-221 exerts
its oncogenic function in PDAC through down-regulation of a
number of target genes, including PTEN, p27 (kip1), p57
(kip2), PUMA and tissue inhibitor of metalloproteinases-2
(TIMP-2) [83, 133, 134]. This mode of action may explain
its enhancing effects on proliferation, apoptosis and invasive
behavior. Xu et al. found that administration of miR-221
mimics inhibited apoptosis and promoted cell proliferation
and invasion in vitro, while an anti-miR-221 exhibited oppo-
site effects. These alterations were found to be accompanied
by a significant up-regulation of the invasion-associated ma-
trix-metalloproteinases -2 and -9 (MMP-2 and MMP-9) as a
result of TIMP-2 inhibition. TIMP-2 is crucial for maintaining
a proper ECM-homeostasis that affects the invasive capacities
of PDAC cells, and is a target of miR-221 [133]. It has been
shown that inhibition of miR-221, using an anti-miR-221,
leads to a slow growth, a shortened survival and an up-
regulation of tumor-suppressive molecules in PDAC cells in
vitro, while miR-221 mimics were found to induce opposite
effects [127, 134]. Basu et al. showed in a mouse model that
miR-221 expression is triggered by overactive KRAS, i.e.,
activating KRAS mutations, indicating that KRAS acts as an
upstream regulator of miR-221 [127]. Tumor suppressor-
miRs and onco-miRs that may be employed for targeted
PDAC therapy are listed in Tables 1 and 2, respectively. In
Fig. 1 the putative functions of these miRNAs in PDAC are
depicted.

2.2 Potential therapeutic lncRNAs

In comparison to miRNAs, there is a paucity of literature on
lncRNAs in PDAC but, nevertheless, pivotal roles of
lncRNAs in this tumor entity have been delineated as well
[240]. A recent next generation-based sequencing study re-
vealed that at least 319 lncRNAs may be deregulated during
pancreatic carcinogenesis [241]. In addition, it has been
shown that lncRNA deregulation constitutes an important as-
pect of the metastatic process [242]. The affected lncRNAs
often appear to be involved in (de)regulation of the MAPK
pathway [242], indicating that these ncRNAs may contribute
to PDAC metastasis formation by promoting uncontrolled
growth. In Table 3 lncRNAs that may potentially be useful
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Table 1 Potential therapeutic tumor-suppressor-miRs

microRNA Verified target genes in PDAC Prognostic influencea,b Investigated
In vitro/in vivoc

Chemo-resistance References

Let-7 HMGA1, HMGA2, KRAS – In vivo inhibited [55, 135–138]

miR-15 BMI1, BCLXL, FGFR2 – In vitro – [139, 140]

miR-20 STAT3 – In vitro – [141]

miR-29 RAN – In vitro – [142, 143]

miR-34 BCL2, CDK6, SIRT1, NOTCH1, SMAD3 SR, LNM, M In vivo inhibited [15, 93–96]

miR-96 NUAK1, HERG1, GPC1 SR, D, TS In vivo – [144–147]

miR-99 MTOR – In vitro – [148]

miR-100 FGFR3 – In vivo inhibited [149]

miR-101 HMGA2 – In vivo – [150, 151]

miR-107 CDK6 – In vitro – [152]

miR-124 RAC1 SR In vitro – [153]

miR-126 ADAM9 – In vitro – [154]

miR-130 STAT3 SR In vivo – [155]

miR-132 ARHGAP32 – In vitro – [156]

miR-135 BMI1 – In vitro – [157]

miR-138 VIM – In vitro Inhibited [158]

miR-140 PPP1R13L, MMP2, MMP9 – In vitro – [159]

miR-141 TM4SF1, YAP1, MAP4K4 SR, LNM In vivo inhibited [122–124]

miR-142 HSP70 – In vitro – [160]

miR-143 COX2, KRAS, GEF1, GEF2, IGF1R, RREB1 – In vivo – [61, 161, 162]

miR-145 NEDD9, MUC13, KRAS, RREB1 In vivo inhibited [61, 163, 164]

miR-146 EGFR, MMP16, IRAK1 – In vivo – [165–167]

miR-148 DNMT1, CCKBR, BCL2, AMPKα1, CDC25B SR, LNM, M, TS In vivo inhibited [103, 168–171]

miR-150 MYB, IGF1R, MUC4 – In vitro – [111, 172, 173]

miR-152 DNMT1 – In vitro – [168]

miR-183 BMI1 SR In vitro – [174]

miR-191 USP10 – In vitro – [175]

miR-193 STMN1, UPAR – In vitro – [176]

miR-198 PBX1 SR In vivo – [177]

miR-200 MUC4, MUC16, PTEN, EP300 SR In vitro inhibited [119, 120, 135, 178–180]

miR-203 CAV1, BIRC5 SR In vivo – [181–183]

miR-205 E2F2, E2F5, ERBB3, HRAS – In vivo inhibited [184]

miR-206 KRAS, ANXA2 – In vivo – [185, 186]

miR-211 RRM2 SR In vitro Inhibited [187]

miR-216 BECN1, JAK2 – In vivo – [188, 189]

miR-217 KRAS – In vivo – [35]

miR-218 ROBO1, UGT8 – In vitro – [190, 191]

miR-219 MUC4 – In vivo – [113]

miR-326 – – In vitro – [192]

miR-335 OCT4 – In vitro – [193]

miR-345 BCL2 – In vitro – [104]

miR-375 PDK1, IGFBP5, CAV1 LNM In vitro – [127–130]

miR-410 AGTR1 – In vitro – [194]

miR-491 BCL2L1, TP53 – In vitro – [195]

miR-494 MYC, SIRT1, FOXM1 – In vitro inhibited [196, 197]

miR-497 FGFR1, FGF2, IGF1R SR In vivo inhibited [198, 199]

miR-506 PIM3 – In vitro – [200]

miR-520 ABCG2 – In vitro – [141]
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for PDAC therapy are listed, whereas in Fig. 2 the functions
and effects of these lncRNAs are depicted.

2.2.1 Gas5

Growth arrest-specific 5 (Gas5) is a lncRNA that functions by
negatively regulating cell cycle progression. It is expressed at
a low level in several tumor entities such as B-cell lymphoma
and cervical cancer [243–245]. Gas5 is a downstreammember
of the mammalian target of rapamycin (mTOR) pathway,
which is currently subject of intense research in the field of
targeted therapy [48]. It has been found that in prostate cancer
mTOR inhibition leads to up-regulation of Gas5 while, in
reverse, silencing of Gas5 reduces the effect of mTOR inhibi-
tion [246]. In PDAC, Gas5 expression is reduced compared to
normal pancreatic ductal epithelium. Lu et al. showed that
inoculation of Gas5 pcDNA-containing vectors leads to a sig-
nificant in vitro reduction of G1/S-phase cells in the PDAC-
derived cell lines PANC1 and BxPC3 by negatively regulating
cyclin-dependent kinase 6 (CDK6) expression [247]. Based
on these observations, reintroduction of Gas5 may therapeu-
tically be beneficial. In addition, Gas5 may have potential as a
biomarker for clinical response in mTOR-targeted therapy in
PDAC as well as in other tumors due to the close relationship
between mTOR signaling and Gas5 expression. As such,
Gas5 may facilitate the selection of patients that are eligible
for mTOR-targeted therapy and, additionally, for monitoring
the efficacy of mTOR-targeted therapy in PDAC patients.

2.2.2 MALAT-1

The > 8000 nucleotides-long intronic ncRNA (lincRNA)
metastasis-associated lung adenocarcinoma transcript-1
(MALAT-1) is a highly conserved lncRNA with oncogenic
properties that was first detected in non-small cell lung cancer
(NSCLC) [248]. MALAT-1 is a lincRNA with a hitherto

poorly understood function. It is up-regulated in PDAC and
especially in PDAC-CSCs [249] and is located predominantly
in the nucleus. It has been shown that MALAT-1 expression
correlates with various clinicopathologic features and a poor
clinical outcome in PDAC patients [249]. Recent work has
revealed a beneficial effect of MALAT-1 inhibition in PDAC
through different molecular mechanisms. Silencing of
MALAT-1 leads to decreased cellular growth via a p21-
mediated cell cycle arrest at the G1/S-phase transition and
an increased p53-dependent apoptosis [250]. In addition,
MALAT-1 silencing has been found to result in decreased
migration and down-regulation of the expression of EMT-
associated mesenchymal markers [250]. MALAT-1 silencing
has also been found to decrease tumor vascularization and to
increase sensitivity to Gemcitabine [251]. These observations
provide promising outlooks for an assessment ofMALAT-1 as
therapeutic target in PDAC. Additionally, it certainly has po-
tential as a prognostic biomarker and as an indicator of metas-
tasis and chemoresistance in PDAC patients.

2.2.3 HULC

Highly up-regulated in liver cancer (HULC) is a cytoplasmic
482 nucleotides-long lncRNA. It was first described in HCC
where it regulates the expression of multiple genes associated
with the malignant behavior of tumor cells [252]. It has been
found to be up-regulated in the presence of Hepatitis B protein
x (HBx) and to promote HBV-mediated liver cirrhosis. In
PDAC, HULC expression has been found to correlate signif-
icantly with a reduced overall survival and time to recurrence.
In addition, HULC expression turned out to be highly sensi-
tive and specific in distinguishing cancer tissue from healthy
tissue. Silencing of HULC has been demonstrated to result in
a decreased viability and proliferation of PDAC cells by
blocking the G1/S-phase transition [253]. Thus, HULC may

Table 1 (continued)

microRNA Verified target genes in PDAC Prognostic influencea,b Investigated
In vitro/in vivoc

Chemo-resistance References

miR-545 DDX58 SR In vitro – [201]

miR-548 – – In vitro inhibited [202]

miR-615 IGF2 – In vivo – [203]

miR-630 IGF1R – In vitro – [172]

miR-655 ZEB1, TGFBR2 – In vitro – [204]

miR-802 TCF4 – In vitro – [205]

miR-1181 SOX3, STAT3 SR In vivo – [206]

miR-1247 NRP1, NRP2 SR In vivo – [207]

a Prognostic influence of microRNA expression in tumor samples
b SR Survival rate, LNM Lymph-node metastasis, M Metastasis, TS Tumor size, D Differentiation
c In studies listed with in vivo studies, in vitro results are always implied
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be used to monitor patients after curative surgery and, in ad-
dition, may serve as a potential therapeutic target.

2.2.4 HOTAIR

HOX transcript antisense RNA (HOTAIR) is an oncogenic
lncRNA and negative prognostic factor in a variety of solid
cancers including breast, colon and pancreatic cancer [254]. It
has been discovered that increased HOTAIR expression levels
correlate with more advanced tumor stages and a short overall-

survival in PDAC patients [255]. HOTAIR acts as a molecular
scaffold to coordinate the function of the chromatin modifying
enzymes Polycomb Repressive Complex 2 (PRC2) and LSD1
to propagate gene suppression of the HOXD locus. In human
embryogenesis, it is expressed predominantly in distal anatomic
regions, i.e. the head and tail of the embryo [256]. It has been
found that HOTAIR promotes themalignant behavior of PDAC
cells by different mechanisms [49]. HOTAIR promotes e.g. the
invasive behavior of PDAC cells by regulating the expression
of genes such as GDF15, although its effects appear to vary

Table 2 Potential therapeutic
onco-miRs microRNA Verified target genes in

PDAC
Prognostic
influencea,b

Investigated in
vitro/in vivoc

Chemo-
resistance

References

miR-10a HOXB1, HOXB3,
HOXA1, KLF4, SDC1,
NF1

– In vitro – [208, 209]

miR-10b TIP30 SR, M In vitro – [210, 211]

miR-17-5p BIM SR In vitro promoted [212, 213]

miR-21 BCL2, FASLG, PDCD4,
PTEN, RECK

SR, R In vivo promoted [79–83, 85, 88,
89, 214–216]

miR-27 SPRY2 – In vitro – [217]

miR-31 RASA1 – In vitro – [64]

miR-92a DUSP10 – In vitro – [208, 218]

miR-95 – – In vivo – [219]

miR-106 TIMP-2 – In vitro – [220]

miR-153 SNAI1 SR In vitro – [221]

miR-155 TP53INP1, SEL1L,
FOXO3, SOCS1

– In vitro promoted [71–73]

miR-181 CYLD – In vitro promoted [222]

miR-186 NR5A2 SR, LNM In vitro – [192]

miR-191 USP10 SR, M,
LNM

In vitro promoted [175, 223]

miR-192 SIP1 – In vitro – [224]

miR-194 DACH1 – In vitro – [225]

miR-196a NFKBIA, ING5 – In vitro – [226, 227]

miR-197 CTNND1 – In vitro – [228]

miR-208 – – In vitro – [229]

miR-221/
222

TIMP2, CDKN1B, PTEN,
CDKN1C, PUMA

SR In vitro promoted [83, 90, 127,
133, 134,
230]

miR-223 FBW7 – In vitro promoted [231, 232]

miR-301a NKRF, BIM – In vivo promoted [233, 234]

miR-301b CDH1 – In vitro – [235]

miR-365 SHC1, BAX – In vitro promoted [236]

miR-367 SMAD7 SR In vivo – [107]

miR-371 ING1 SR In vivo – [237]

miR-424 SOCS6 – In vitro – [238]

miR-483 SMAD4 – In vitro – [105]

miR-1246 CCNG2 SR In vivo promoted [239]

a Prognostic influence of microRNA expression in tumor samples
b SR Survival rate, LNM Lymph-node metastasis, M Metastasis, TS Tumor size, D Differentiation
c In studies listed with in vivo studies, in vitro results are always implied
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drastically between primary tumors and tumor-derived cell
lines, which may at least partly be explained by varying
PRC2 activities [49, 257]. Recent data indicate that HOTAIR
inhibition may reinforce the anti-proliferative and pro-apoptotic

effects of radiotherapy, in part by up-regulating Wnt inhibitory
factor 1 (WIF-1) [258]. Although HOTAIR may serve as a
potential therapeutic target in PDAC, future studies should be
aimed at identifying tumors that might benefit most of

Fig. 1 Figure 1 illustrates the function of hitherto investigated
microRNAs (miRNAs) in PDAC. In the PDAC cell, miRNAs are
involved in the regulation of important signaling pathways by inhibiting

expression of their target molecules at the mRNA level. miRNAs with
oncogenic function are marked in red, whereas miRNAs with tumor
suppressive function are marked in green

Table 3 Potential therapeutic
long non-coding RNAs lncRNAs Function Prognostic

influence
References

HOTTIP Epigenetic regulation of HOXA gene locus negative [263]

MALAT-1 Regulation of cell-cycle at G2/M-phase transition negative [249, 250,
277]

LOC389641 Inhibition of E-cadherin. Upregulation of TRAIL-
receptors, promoting tumor growth and metastasis.

negative [266]

ENST00000480739 Regulation of HIF-1α levels negative [265]

H19 Embryonic/Fetal development negative [58, 272]

HOTAIR Epigenetic regulation of HOXD gene locus negative [49]

HULC Not determined in PDAC negative [253]

GAS5 Cell-cycle regulation at G1/S-phase transition favorable [247]
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HOTAIR inhibition. Moreover, the effect of HOTAIR expres-
sion on the chemoresistance of PDAC should be evaluated, as
recent work has shown that HOTAIR may promote
chemoresistance in ovarian cancers [259].

2.2.5 HOTTIP

The lincRNA HOXA transcript at the distal tip (HOTTIP) has
been shown to up-regulate HOXA gene expression through
interaction with WDR5/MLL and subsequent histone methyl-
ation [260, 261]. Recently, HOTTIP expression has been
linked to an impaired survival in HCC patients and to overlap
with regulation of the HOTAIR gene, although the latter regu-
lates primarily HOXD genes [262]. HOTTIP has been identi-
fied as one of the most profoundly up-regulated lncRNAs in
PDAC cells compared to non-neoplastic pancreatic duct epi-
thelium [240]. Knock-down of HOTTIP has been found to
lead to cell cycle inhibition at the G1/S-phase transition, a
decrease in the expression of EMT-associated factors and en-
hanced sensitivity to Gemcitabine, both in vitro and in vivo.
HOTTIP exerts its effects on PDAC cells mainly via up-
regulation of HOXA13 expression, but also via up-
regulation of Aurora A kinase, which may promote

aneuploidy [263, 264]. HOTTIP over-expression has been
associated with a low degree of tumor differentiation, lym-
phatic metastases and early postoperative recurrences [240].
HOTAIR-targeted therapy may hold promise, especially in
early stage cancers. Since it is up-regulated especially in tu-
mors prone to recur early in the postoperative phase, it could
be used to select patients who might benefit from aggressive
adjuvant chemotherapy. These patients would benefit most
from simultaneous HOTTIP targeted therapies, as this may
enhance the chemosensitivity of PDAC cells.

2.2.6 ENST00000480739

The recently discovered lncRNA ENST00000480739 has
been shown to exhibit tumor-suppressive properties in
PDACs, and to be lowly expressed in>90% of primary tumor
samples as well as in a number of PDAC-derived cell lines.
Sun et al. found that a high ENST00000480739 expression
negatively correlates with the occurrence of lymph node me-
tastases and positively with an improved clinical outcome,
thus considering it as an interesting candidate PDAC biomark-
er. In addition, low ENST00000480739 expression was found
to serve as an independent risk factor for impaired

Fig. 2 Functions and potential therapeutic effects of long non-coding RNAs
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postoperative survival. Experimental work has shown that
ENST00000480739 over-expression results in suppression
of tumor cell invasion, both in vitro and in vivo. Its effects
were found to be mediated by up-regulation of osteosarcoma
amplified-9 (OS-9), which leads to a decrease in hypoxia in-
ducible factor-1-alpha (HIF-1α) expression levels and a sub-
sequent down-regulation of matrix-metalloproteinase (MMP)
expression levels [265]. Because of its anti-invasive effect on
PDAC cells, ENST00000480739 may have potential as a
therapeutic agent, i.e., its exogenous over-expression may re-
duce the likelihood of recurrence. Moreover, a low expression
after surgery may be considered as an indicator of metastasis
and, thus, as a need for re-evaluation of the patient’s TNM
status.

2.2.7 LOC389641

The newly discovered lncRNA LOC389641 was found to
play an important role in PDAC. Statistical analyses revealed
that LOC389641 expression closely correlates with the overall
survival and the occurrence of lymph node metastasis in
PDAC patients [266]. LOC389641 has been found to be
over-expressed in primary PDAC tissues and in PDAC-
derived cell lines and, in addition, to contribute to PDAC cell
proliferation through cell cycle-independent mechanisms.
Additional in vitro and in vivo studies have shown that
LOC389641 can increase the invasion and migration of
PDAC cells. The latter is caused by inhibition of E-cadherin
expression and a subsequent induction of EMT in the tumor
cells, indicated by increased expression of the mesenchymal
marker Vimentin and the EMT-associated transcription factor
Snail. In addition, it has been found that LOC389641 can up-
regulate the expression of TNFRSF10A, a gene encoding a
TRAIL-receptor, which is a mediator of metastasis-
promoting signals in TRAIL-resistant cancer cells [266].
Targeting LOC389641 may be considered as an actionable
approach, since the up-regulation of TRAIL receptors is high-
ly specific for tumor cells [267] and the damage of normal
cells, therefore, appears unlikely. Moreover, E-cadherin
down-regulation is commonly seen in PDACs, suggesting a
broad efficacy of the use of LOC389641 inhibition.

2.2.8 H19

lncRNA H19 is highly expressed in many human tissues dur-
ing embryogenesis until the time of birth, after which its ex-
pression levels drop to practically zero [268, 269]. Expression
in adult individuals appears to be confined to cancer cells
[269–271]. H19 has been found to be highly expressed in
PDAC cells, and seems to be involved in the modulation of
their migration, invasion and metastasis. This effect is at least
partially due to the antagonistic effects of H19 on let-7 activ-
ity, which results in up-regulation of HGMA2 expression

levels and, subsequently, tumorigenesis [272]. Recently, H19
has been subjected to targeted tumor therapy research. The
plasmid-based drug BC-819 that utilizes polyethylenimine-
coated plasmid DNA (also known as DTA-H19), induces ex-
pression of diphtheria toxin (DT) and cell death in the pres-
ence of H19-specific transcription factors, which are restricted
to malignant tumors in adults [273]. This drug has been shown
to be effective in the treatment of human bladder and ovarian
cancer in case studies [274, 275]. In a phase I/IIa trial the
effects of ultrasound-guided endoscopic or CT-guided injec-
tion of BC-819 (see below) were investigated in patients suf-
fering from PDAC. The results were promising with respect to
reducing tumor mass, even leading to resectability in one case
by tumor shrinkage. Although the trial was not powered to
provide statistically significant results, the safety of treatment
was confirmed [58]. Currently, a multicenter randomized
phase-IIb trial with the aim to assess the effect of BC-819 on
progression-free survival is under way [276].

3 Delivery systems for ncRNA-based therapeutics

Whereas many questions about the pharmacokinetic proper-
ties of ncRNA-based therapies remain, the major challenges
of ncRNA-based therapies lie in the development of reliable
delivery systems. Several systemic therapies with miRNA-
carrying viral vectors and non-viral agents have been studied
in recent years. Current therapeutic delivery methods that uti-
lize ncRNA can be divided into several different categories:
chemically modified ncRNAs, viral and non-viral vectors,
ncRNA Bsponges^, and endoscopic ultrasound and CT-
guided injections [230, 278, 279].

3.1 Chemically modified ncRNAs

It has been reported that by adding chemical backbone mod-
ifications to a miRNA mimic or anti-miR, its degradation can
be inhibited and its in vitro and in vivo activity can be im-
proved [280]. A recent study has shown that miR-155 could
be targeted more effectively when a pH-low insertion peptide
(pHLIP) was chemically conjugated with anti-miR-155 oligo-
nucleotides, enabling their accumulation specifically in aci-
dotic tumor tissues. Using this approach, the authors of this
study found that intravenous application of this combined
agent led to a significant reduction in tumor volume in mice
with solid lymphomas [279]. This seems to be an attractive
approach, as it overcomes the problems posed by systemic
introduction of unmodified oligonucleotides, which mainly
undergo hepatic accumulation and subsequent clearance
[56]. Moreover, hypoxia and acidosis are typical characteris-
tics of PDAC that could be used in this concept, whereas they
represent barriers for conventional therapeutics [281]. Even
though data showing that pHLIP-conjugated ncRNAs indeed
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do accumulate in PDAC tissue are lacking, PDAC-imaging
data from mouse models with multispectral optoacoustic to-
mography do suggest this [282].

3.2 Viral and non-viral vectors

The use of viral vectors may have potential for future thera-
peutic application, as tropism against cells that express certain
molecules can be established. Lentiviral, adeno-associated-
viral and adenoviral vectors have been used to express
ncRNA in target cells. Viruses possess a complex endogenous
machinery for gene processing, which makes them highly
effective in transferring nucleotides [283]. Disadvantages of
viral vectors are their complicated manufacturing process and
possible immunologic, hematologic or oncologic side effects.
Non-viral vectors have the advantage of permitting a larger
size nucleotide-cargo and an uncomplicated large scale pro-
duction [283]. The non-viral miR-34-mimic-based therapeutic
MRX34 is currently under evaluation in a phase-I clinical trial
for the treatment of HCC and, as such, represents the first
clinical application of miRNA-mimics [102]. MRX34 utilizes
the liposomal carrier-system Smarticles™ for delivery into
tumor cells, which has shown promising results in both in
vitro and in vivo studies [284]. Whether an analogous ap-
proach would lead to satisfactory accumulation in PDACs is
unlikely, because of the aforementioned hepatic clearance.
This obstacle may be bypassed by the use of poly-ethylene-
glycol (PEG)-coated liposomes, also called Bstealth^-lipo-
somes. Stealth-liposomes can evade degradation in the retic-
uloendothelial system and remain in circulation for up to 48 h.
The PEG-coats of stealth-liposomes can be chemically
equipped with functional groups to enable coupling with
tumor-specific antibodies and proteins to target tumor cells
or other cell types [285, 286]. Another interesting option that
has been known for almost a decade are Carbon nanotobes
(CNTs). CNTs are small versatile molecules of condensed
rings of carbon atoms. It has been shown that CNTs permit
the transport of nucleic acids in vitro and in vivo. In addition,
they have the advantage of a high transport capacity. They also
allow diverse surface modifications, turning them into inter-
esting candidate non-viral vectors. The specific targeting of
solid tumors after systemic delivery still remains a challenge
[287]. However, modifications that enable a pH-dependent
nucleotide-cargo release have been found to result in an ade-
quate accumulation in solid tumors [278].

3.3 ncRNA sponges

Yet another interesting system is the use of a transfectable
BmiRNA sponge^, as was recently demonstrated by Jung
et al. [230]. In this study, the authors simultaneously inhibited
five miRNAs, i.e., miR-21, miR-155, miR-10, miR-211 and
miR-222, by sequestration into a circular sponge carrying

binding sites for the respective miRNAs, which resulted in a
significant reduction in tumor growth and viability [230]. The
antiviral drug Miravirsen, which has been successfully tested
in humans for the treatment of hepatitis C-virus (HCV), has an
analogous function. It binds intracellular miR-122 to inhibit
the propagation of viral RNAwithout toxic side-effects [288].
An equivalent approach is, however, unlikely to work for the
treatment of PDAC without further modification, as oligonu-
cleotides are subject to hepatic clearance as outlined above.
Therefore, more work is needed to improve the applicability
of nucleotide-based therapies, which remains one of the big-
gest challenges of this research field.

3.4 Endoscopic ultrasound and CT-guided injections

Endoscopic ultrasound-guided fine needle injections (EUS-
FNI) for different diagnostic and therapeutic applications in
PDAC have been reported [289]. This method involves the
use of fine needles attached to an endoscope by which differ-
ent fluids can be injected into the pancreas during retrograde-
cholangiopancreatography (ERCP). The use of EUS-FNI for
celiac plexus neurolysis is an upcoming method to treat
PDAC-associated pain, whereas also the effect of local appli-
cation of chemotherapeutics is currently being investigated
[289]. CT-guided delivery is performed via a posterior percu-
taneous access to reach retroperitoneal organs. CT-guided in-
jections have also been used to treat PDAC-associated pain
with good results after unsuccessful celiac plexus neurolysis,
turning it into a back-up system or alternative method for
EUS-FNI [290]. Endoscopic ultrasound-guided or CT-
guided injection of BC-819 in PDAC patients has been shown
to improve clinical outcomes in case studies, but as yet with-
out statistical benefit [58]. Mouse model data have shown that
BC-819 is able to significantly reduce tumor growth and to
counteract metastasis in treated mice compared to untreated
controls [291]. As yet, however, limitations of this proce-
dure, such as its accuracy or chemoresistance to BC-819,
are not well defined. Intraperitoneal injection of miR-26-
carrying viral vectors has been proven to successfully
induce gene expression in pancreatic beta-cells in murine
models [292]. In humans, this approach may provide a
simpler, cheaper and less invasive access to the pancreas
than EUS-FNI or CT-guided injections, although ques-
tions regarding efficacy and side effects can be addressed
only by speculation at this point.

4 Perspectives of ncRNA-based therapies in PDAC

Recent research has revealed many ncRNAs that are involved
in the pathobiology of various human cancers [293].
Especially miRNAs and lncRNAs have been shown to regu-
late multiple crucial genes involved in cell cycle progression,

Non-coding RNAs in pancreatic cancer 307



apoptosis, invasion, migration and vascularization, often
in concert with ncRNAs regulating multiple genes
[34]. In PDAC, several miRNAs and lncRNAs have
been found to substantially affect tumor behavior by
regulating multiple target genes and pathways. This
was exploited by using ncRNA mimics or ASOs, deliv-
ered by viral or non-viral vectors, for the design of in
vitro and in vivo PDAC therapies. In addition, more
subtle methods have been employed to create ncRNA-
based therapeutics, such as the experimental agent BC-
819 and the chemical conjugation of pHLIP to ncRNAs.
It has also been found that drugs such as Metformin
and Vorinostat inhibit in vitro PDAC cell growth at
least in part via down-regulation of certain key
miRNAs [14, 15]. Additional more complicated systems,
such as the plasmid-based agent BC-819 that utilizes the
abnormally expressed lncRNA H19 in PDAC cells
resulting in DT production and cell death, may be
promising.

Whether combinations of different ncRNA mimics and
ASOs exhibit synergistic effects to positively interfere with
tumor biology, or whether simultaneous application of
ncRNAs may abrogate or enhance the anti-tumor effects of
each other is currently unknown, but it has been shown that a
combined approach may be superior [230]. This holds also
true for the combined use of therapeutic ncRNAs and conven-
tional chemotherapeutic agents such as Gemcitabine or 5-FU,
as also other agents such as the tyrosine-kinase inhibitor
Sunitinib [90], although clinical trials are still needed. Ye et
al. showed that interactions of miRNAs, mRNAs, lncRNAs
and transcription factors encompass an intriguing network of
regulation, in which several miRNAs and lncRNAs inhibit
each other and/or lead to degradation of mRNA [37], which
clearly indicates that the administration of several ncRNAs
may result in adverse effects. Further knowledge on the regu-
lation of ncRNAs in PDAC may lead to the identification of
pivotal ncRNAs that may serve as the most promising candi-
dates for therapeutic approaches and help to understand the
subtleties of PDAC biology in further detail.

An important aspect of personalized cancer therapy is
knowledge about the genetic and molecular differences be-
tween individual patients that result in different responses to
therapy. This holds true especially for PDAC, as only 25 % of
the patients respond well to Gemcitabine treatment, and the
overall survival is only marginally improved in responders
[294]. It has amply been shown that tumor-related miRNAs
may be easily identified in blood, stool or saliva [25, 295,
296]. This circumstance may enable us to create patient-
specific ncRNA profiles to guide tumor therapy. A recent
clinical study has shown that miR-21, miR-100 and miR-99
expression levels in tumor specimens after curative surgery in
patients with UICC stage II PDACs may predict the response
to adjuvant Gemcitabine therapy [297]. So, the measurement

of miRNA levels may become a useful tool to guide adjuvant
chemotherapy, since alternatives to Gemcitabine treatment
have proven more efficacious, but also since they carry the
risk of more severe side-effects that may not be acceptable.

5 Conclusions

To date, many ncRNAs have been identified that may
serve as targets for tumor therapy, but additional informa-
tion clearly needs to be gathered before clinical applica-
tion can be considered. The use of currently available
viral delivery systems may pose problems, such as ad-
verse effects or treatment failure due to unknown toxicity,
host immunity and the risk of genomic insertion and a
consequent risk of (secondary) cancer. Although, non-
viral delivery systems have shown promising results, it
still needs to be established whether systemic application
will result in adequate concentrations at the a priori target
site. The intravenously applied miR-34-based non-viral
therapeutic agent MRX34 is currently undergoing evalua-
tion in a phase I trial, which may be refined so as to
target PDAC cells. In case of insufficient efficacy, local
application via EUS-FNI or CT-guided injection may be
considered. However, systemic therapy should be the pri-
mary aim, as most PDACs are incurable by operation due
to the frequent presence of metastases at the time of dis-
covery [2].

As yet, little is known about the possibility of resistance to
ncRNA-based therapy, and how to chose the right ncRNA as
target out of a plethora of candidate ncRNAs. This connects
the search for potential ncRNA therapeutic targets with that
for ncRNA-based diagnostics. Studies aimed at early-stage
recognition of PDAC using miRNAs alone or in combination
with CA19-9 have yielded a higher sensitivity and specificity
than using CA19-9 alone [298]. In addition, it has been found
that a postoperative prognosis can be established precisely
through miRNA measurement [299]. The promising
miRNA-mimic-based therapeutic agent MRX34 and several
lncRNA-based therapeutics are currently being evaluated in
clinical studies, but it will require intensive additional research
to finally reach systemic therapy. Therefore, we anticipate that
the clinical role of ncRNAs in the near futuremay primarily lie
in its diagnostic use, such as the monitoring of response to
conventional chemotherapy, and their use as prognostic
markers, as they represent stable differentially expressed mol-
ecules that are amenable to sensitive detection. Interestingly,
recent high throughput studies have revealed that the
lncRNAs that are most widely deregulated in PDAC cells
have not been thoroughly investigated yet [241]. Therefore,
there may still bemany of them around ofwhich the biological
role and clinical applicability await discovery.
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