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Abstract
The objective was to produce microfibrillated cellulose (MFC) and microfibrillated lignocellulose (MFLC) from waste 
materials, specifically coffee parchment. Additionally, the objective was to perform the characterization of the microcel-
luloses. Three MFCs were produced from kraft pulps (K#60, K#25, and Bleached), utilizing the conditions: pulp hydration 
and defibrillation using an ultra-refiner. The MFCs presented a chemical composition that is similar to the original pulps 
because they were produced through a purely mechanical process. It was obtained MFCs of highly viscous (5357 to 15,587 
cP), even at very low consistencies (1.5%). The length of the samples ranged from 39 to 47 µm, and the measured diameters 
were 6820 nm (MFLC-K#60), 5600 nm (MFLC-K#25), and 5280 nm (MFC-Bleached). Due to these measurements, these 
materials were named microcelluloses. The crystallinity values were 52.5%, 58.8%, and 65.1% for the MFLC-K#60, MFLC-
K#25, and MFC-Bleached samples, respectively. The thermogravimetric degradation curves were similar for the suspensions 
of MFC. The maximum degradation temperatures varied in the range of 322 to 339 °C. The infrared profiles of microfibril-
lated cellulose exhibited similar patterns, with distinct bands corresponding to the stretching and deformation of C-H, O–H, 
and C-O. The Zeta potential values obtained for MFLC-K#60, MFLC-K#25, and MFC-Bleached were − 19.8 mV, − 15.8 mV, 
and − 27.4 mV, respectively. The water retention values for MFLC-K#60, MFLC-K#25, and MFC-Bleached were 792, 849, 
and 1032%, respectively. The pulp fibers from the parchment proved to be a viable alternative for the production of MFLC 
and MFC, as they presented comparable properties to microcellulose produced from wood.
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1 Introduction

The growing demand for sustainability has encouraged 
the development and research of materials produced from 
renewable and sustainable sources. The primary objective is 

to reduce the environmental impact associated with the dis-
posal of petrochemical polymers [1–5]. In this context, bio-
mass stands out as the most appealing raw material, given its 
status as the largest renewable resource on the planet [4, 6].

Lignocellulosic materials are predominantly composed 
of carbohydrates (cellulose and hemicelluloses) and lignin. 
Various sources of lignocellulosic materials can be found 
around the world. However, utilizing agro-industrial residues 
as a source of lignocellulosic biomass can help reduce the 
use of forest resources. This is particularly beneficial for 
regions with limited wood production, as it allows them to 
produce alternative pulps [1]. Therefore, it is important to 
emphasize the significance of studying alternative materials 
to wood in order to develop new biodegradable products.

Coffee is an important agricultural product, and it is esti-
mated that 170.83 million bags (60 kg each) of coffee were 
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produced globally in 2022/23 [7]. Brazil, in particular, has 
a robust coffee industry thanks to favorable conditions for 
coffee cultivation and advanced agricultural technology and 
infrastructure. In the country, the sector’s compound annual 
growth rate (CAGR) is projected to reach 3.51% from 2023 
to 2025, indicating a positive and steady market outlook [8].

During the processing of coffee beans, more than half of 
the fruit is discarded, which generates considerable waste 
[9]. Finding applications for this residue is attractive, as it is 
possible to add market value to by-products that were previ-
ously discarded and had caused environmental problems [6, 
10]. Recent studies have revealed the potential for valorizing 
coffee waste.

In fact, Reichembach et al. [11] conducted a study on 
coffee wastes for the development of pectin-chitosan films. 
Laili et al. [12] explored coffee waste management and the 
possibility of creating a coffee-based eco-industrial park. 
Kim et al. [13] investigated the conversion of waste coffee 
grounds into microporous carbon materials, which showed 
excellent  CO2 capture performance and other benefits such 
as eco-friendliness, energy efficiency, and scalability. Král 
et al. [14] highlighted the bioactive compounds found in 
coffee husk and pulp, which have various applications such 
as food pigments, gelling agents, stabilizers, and extracts for 
enzyme production. Besides that, coffee by-products showed 
antimicrobial and antioxidant properties of phytochemicals 
[14, 15].

Coffee, cotton linter, bagasse, rice husk, and wheat straw 
generate different agricultural waste during their processing, 
rich in cellulose [4, 5, 16]. Cellulose is a biopolymer made 
up of anhydroglycopyranose units connected through β-1,4-
glycosidic bonds. As the main component in the cell wall 
of plants, cellulose has the advantage of being renewable, 
biodegradable, and chemically versatile [1, 17].

Cellulose chains are joined by intra- and intermolecular 
hydrogen bonds and van der Waals forces between adjacent 
hydroxyl groups to form elementary fibrils. The elementary 
fibrils are held together to form microfibrils, with diameters 
ranging from 5 to 50 nm and lengths of several micrometers 
[18]. Cellulose fibrils are surrounded by lignin and hemicel-
luloses [19], forming a three-dimensional structure of the 
cell wall present in lignocellulosic biomass [1].

Natural polymers produced from renewable resources, 
including cellulose, are presently being as an alternative 
to plastics due to their biodegradability, benign properties, 
widespread availability, and biocompatibility [20]. Cellulose 
obtained from different raw materials has diverse applica-
tions. Madivoli et al. [21] developed stimuli-responsive cel-
lulose films for the detection of dimethyl amines. Joyline 
et al. [22] produced carboxymethyl cellulose from coconut 
fibers, which can be used to produce emulsifiers and supera-
bsorbent polymers. Madivoli [23] demonstrated the potential 
of using natural polysaccharide, such as cellulose, in various 

applications including wound dressings, tissue engineering, 
smart delivery vehicles for pesticides, fertilizers, therapeutic 
drugs, peptides, and proteins. Devarajan et al. [24] produced 
a hybrid AgNPs-TEMPO-mediated oxidation cellulose com-
posite from jackfruit peduncle agro-waste, which can be 
applied in electronic devices.

In recent years, with the concept of biorefinery, interest 
in cellulose-based nanoparticles has been growing. These 
materials are biocompatible and feature excellent chemical, 
mechanical, and optical properties. In addition, they are 
highly reactive due to the hydroxyl groups present on their 
surface. Thus, micro- and nanocelluloses are highly attrac-
tive biopolymers for several applications [25–28].

Micro- and nanocelluloses are produced through the pro-
cessing of lignocellulosic biomass. Depending on the extrac-
tion method, these materials can be categorized into three 
types: cellulose nanofibrils (CNF)/cellulose microfibrils 
(CMF), cellulose nanocrystals (CNC)/cellulose microcrys-
tals (CMC), and bacterial cellulose (BC) [5, 29]. Nanocel-
luloses have a diameter of less than 100 nm [30]. Micro- 
and nanocelluloses can be classified as cellulosic materials, 
moderately degraded. This degradation process results in an 
expanded surface area and is achieved through mechanical 
disintegration, without the use of hydrolysis [16, 25].

Micro- and nanocelluloses have a wide range of applica-
tions in science and technology. They can be used in the 
production of films, automotive components, biomedical 
devices, and food. They are also utilized in water treatment 
and other various applications [1, 18, 31]. Madivoli et al. 
[32] demonstrated that hybrid antimicrobial composite films, 
produced with cellulose nanofibrils from sugarcane bagasse, 
silver nanoparticles, and polyvinyl alcohol can be an excel-
lent alternative to for petroleum-based packaging material. 
Otenda et al. [33] produced starch-hibiscus-cellulose nanofi-
brils composite films for food packaging. Raghav et al. [34] 
also studied the application of hybrid AgNPs-carboxyl nano-
cellulose in active food packaging. Additionally, Rajan et al. 
[35] reported on the potential use of silane-treated cellulose 
nanofibers in civil and transportation applications.

The effective separation of biomass components is one of 
the main challenges in the use of renewable resources. To 
obtain nanocellulose, it is necessary to isolate the cellulose 
and prepare nanocellulose from the isolated cellulose [1, 4, 
36]. Nano and microcellulose can be produced by mechani-
cally fibrillating them via high-shear microgrinding, micro-
fluidization, high-intensity ultrasonication, or high-pressure 
homogenization [37]. The steam explosion process [38] and 
ionic liquids [39] can also be used. Enzymatic treatment 
and surface modification through catalytic oxidation of the 
hydroxyl groups using 2,2,6,6-tetramethylpiperidine-1-oxyl 
(TEMPO) radical to carbonyl groups are commonly used for 
isolating CNFs [33, 37]. Micro- and nanofibrils obtained 
by mechanical defibrillation are economically viable [40]. 
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Furthermore, this process does not involve the use of chemi-
cals, making it environmentally friendly.

Other studies have already managed to produce cellulose 
nanofibrils from coffee parchment. Panyamao et al. [41] used 
a pretreatment process based on a natural acidic deep eutec-
tic solvent for to isolate cellulose-rich materials from coffee 
parchment for nanocellulose production. Henao Rodríguez 
et al. [42] adopted hydrolysis (acid and alkaline) and bleach-
ing to produce cellulose microfibrils from coffee parchment. 
Reis et al. [38] used parchment fiber to obtain microfibril-
lated cellulose by the alkaline treatment process followed 
by a steam explosion assisted by mechanical high shear-
ing. Malarat et al. [43] used ground coffee and produced 
pulp with alkali treatment (NaOH) and bleaching treatment 
(acetate buffer solution, sodium chlorite, and water).

Campuzano et al. [44] used ethanol, sodium hydroxide, 
and hydrogen peroxide to treat ground coffee pulp. Addition-
ally, a bleaching refinement using sodium hypochlorite was 
carried out to obtain the desired pulp. Currently, the major-
ity of pulps produced worldwide are generated through the 
kraft process [45]. This process involves the use of sodium 
sulfide and sodium hydroxide under high pressure and tem-
perature conditions to solubilize lignin and individualize fib-
ers. Kraft pulps can undergo a bleaching process to produce 
bleached kraft pulps. Wood and other biomass pulps have 
already been mechanically disintegrated to produce nano- 
and microcelluloses. However, no reports have been made 
regarding the production of cellulose micro and nanofibrils 
from coffee parchment using the kraft process.

The efficient conversion of renewable raw material (cof-
fee parchment) into a product with high added value (MFC) 
significantly benefits the agro-industrial sector. In addition, 
it introduces a new alternative fibrous resource, making the 
coffee agroindustry a more sustainable and competitive sec-
tor. The conversion of coffee parchment, a renewable raw 
material, into a high-value product called MFC, brings sig-
nificant benefits to the agro-industrial sector. This process 
not only introduces a new alternative fibrous resource but 
also makes the coffee agro-industry more sustainable and 
competitive. However, further research is needed to study 
the pulps and the production processes of micro- and nano-
celluloses. Additionally, it is crucial to emphasize the impor-
tance of employing characterization techniques to under-
stand the behavior of particles at the micro- and nanometric 
scale [36].

The present work utilized the kraft process for chemi-
cal delignification, followed by mechanical disintegration 
to obtain microfibrillated cellulose from coffee parchment. 
The produced MFCs were then characterized for a better 
understanding of their physical and chemical properties, 
which may be useful to guide their potential applications 
in the future.

2  Material and methods

2.1  Material

The parchment was obtained from the production of Coffea 
canephora in the city of Santa Teresa (19° 55′ 53″ South, 
40° 35′ 43″ West), Brazil. It is a beige/yellow cartilaginous 
membrane that surrounds each coffee seed, known as the 
endocarp. Pulps were obtained from the kraft pulping pro-
cess of coffee parchment, a residue of the coffee industry.

The kraft process was conducted based on previously 
optimized parameters to obtain pulps with two kappa num-
bers, kappa 25, and kappa 60 [46]. Operational conditions 
for the Kraft process were liquor/biomass ratio (5/1), sulfid-
ity (32%), and residual effective alkali (6–8 g/L) for both 
kappa numbers. The kappa number 25 used an H-factor of 
1140 and effective alkali of 22.5%, while the kappa number 
60 used an H-factor of 492 and effective alkali of 20.5%. 
The pulp with kappa 25 was submitted to an elemental 
chlorine-free (ECF) bleaching sequence to obtain bleached 
pulp with a 90% ISO brightness. The bleaching sequence 
involved oxygen delignification  (O2), chelating (Q), chlorine 
dioxide  (DHT and D), and alkaline extractions with hydrogen 
peroxide (EP and P) stages, in the order  O2QDHT(EP)DP. 
The three pulps were then analyzed for contents of carbohy-
drates (SCAN-CM 71:09) [47], acid-soluble lignin (TAPPI 
UM250) [48], acid-insoluble lignin (TAPPI T222 om-02) 
[48], uronic acids [49], and hexenuronic acids (TAPPI T282 
pm-07) [48], and used for the production of microfibrillated 
cellulose.

2.2  Production of microfibrillated celluloses (MFC)

The MFC suspensions were produced at the Center of Tech-
nology for the Chemical and Textile Industries (Senai CET-
IQT, Rio de Janeiro, Brazil). Defibrillation was performed 
in a SuperMassColloider ultra-refiner (MKZA10-15 J IV, 
Masuko). The disks used in this process (model MKE10-46) 
are made of ceramic material (aluminum oxide and resin) 
without porosity to avoid any infiltration of nanometric par-
ticles and to allow a better fit between the disks.

The cellulosic pulp suspension used for the production of 
MFC was prepared by adding 150 g (dry basis) of cellulosic 
pulp to 9516.13 g of water, as the dry content of the cellu-
losic pulp was 31%. In other words, 483.87 g of cellulosic 
pulp (wet basis) was dispersed in 9516.13 g of water, result-
ing in a total of 10 L of suspension. More precisely, 150 g 
(dry basis) of each pulp was weighed and dispersed in 50% 
of the total deionized water. The suspension was left to stand 
for 72 h to allow for the complete hydration of the pulp. 
Then, the additional volume of water needed to reach a total 
volume of 10 L was added. The suspension was stirred for 
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2 h at a rotation speed of 650 rpm, using a mechanical stir-
rer (Heidoph). It is important to note that there are no losses 
during the MFC production process, so the concentration of 
MFC is assumed to be the same as the concentration of the 
cellulosic pulp suspension (which was confirmed through 
moisture content analysis).

During the defibrillation process, one of the disks 
remained stationary and the other was in motion (1500 rpm). 
The distance between the disks was set at 100 μm and 32 
cycles were performed for each of the three suspensions. The 
initial position was determined by the noise generated by the 
contact between the disks, before loading the suspension. 
From this position, the ultra-refiner was loaded with the cel-
lulosic suspension, and the disks were immediately adjusted 
to the desired distance. The ultra-refiner was operated with a 
cooling system using water flow at room temperature.

2.3  Characterization of microfibrillated celluloses

The produced MFCs were analyzed for the contents of car-
bohydrates (SCAN-CM 71:09) [47], acid-soluble lignin 
(TAPPI UM250) [48], acid-insoluble lignin (TAPPI T222 
om-02) [48], uronic acids (Scott, 1979) [49], hexenuronic 
acids (TAPPI T282 pm-07) [48], ash (TAPPI 211 om-08) 
[48], and silica (TAPPI T245 cm-98) [48].

The analysis of viscosity was performed according to the 
dynamic viscosity technique, using the Viscometer from 
Lamy Rheology. The spindle R4 was coupled to the vis-
cometer with the rotation set at 20 rpm and the temperature 
was controlled at 25 °C using a water bath. The torque was 
measured simultaneously with the viscosity measurements, 
as recommended by the manufacturer. Each viscosity analy-
sis was conducted for 360 s. Fiber analysis was performed 
using the Valmet FS5 Analyzer, in order to obtain length 
and diameter dimensions. The samples were suspended in 
demineralized water for analysis.

The elemental composition, including carbon, hydrogen, 
nitrogen, and sulfur percentages, was determined using the 
LECO TruSpec CHNS Micro module, which is part of the 
CHNS-O model equipment. The percentage of oxygen was 
determined by the difference method. The combustion tube 
was maintained at a temperature of 1050 °C. Following com-
bustion, the gases were transported to the reduction tube and 
then to the detection column. Independent infrared detectors 
were used for simultaneous detection of carbon, hydrogen, 
and sulfur, while nitrogen was measured using a thermal 
conductivity detection system.

X-ray diffraction was performed using a Panalytical-Aeris 
Cu-Ka diffractometer (λ = 154,056 Å). Films with a gram-
mage of 30 g/m2 were formed and dried at room temperature 
for 48 h. The adopted configuration was the slit monochro-
mator mode, operating at 40 kV with a current of 30 mA. 
The scan range was set at 0–30° and continuous scans were 

performed for the θ–2θ range at a scan speed of 3 min-1, 
using Cu-Ka radiation with a wavelength of 0.154 nm. The 
crystallinity index was determined according to the method 
proposed by Segal et al. [50] using the ratio between the 
maximum intensity of diffraction and the minimum inten-
sity located between the two crystalline peaks of the dif-
fractogram (Eq. 1), where I002 is the maximum diffraction 
intensity, attributed to the crystalline regions (2θ between 
22 and 23°) and IAM is the minimum intensity, assigned to 
non-crystalline regions (2θ between 18 and 19°).

The thermogravimetric analyses were performed using a 
Hitachi thermal analyzer (model STA 7300). Films weigh-
ing 30 g/m2 were formed and dried at room temperature for 
48 h. The analyses were performed under a nitrogen gas 
atmosphere, at a constant flow rate of 50 mL/min. Ther-
mogravimetric (TG) curves were obtained from 25 °C to 
a maximum temperature of 800 °C. The heating rate was 
10 °C/min, conducted in an inert atmosphere. Thermal deg-
radation was obtained through the first derivative of the 
TG curve, which quantifies the mass loss as a function of 
temperature.

Fourier-transform infrared spectroscopy (FTIR) was per-
formed using a Bruker Vertex 80 FTIR spectrophotometer, 
with the attenuated total reflection (ATR) configuration. 
Films with a grammage of 30 g/m2 were formed and dried 
at room temperature for 48 h. The analyses were performed 
at room temperature, with a wavelength ranging from 400 
to 4000 cm-1 and 32 scans per spectrum at a resolution of 
4  cm−1.

Zeta potential was measured using the Litesizer 500 
equipment from Anton Paar. The samples of MFC were 
diluted in distilled water to a consistency of 0.1% (w/w) 
and homogenized in a mechanical agitator at 200 rpm for 
60 min. The analysis was performed at 25 °C and the refrac-
tive index of water was used for calibration.

Water retention value (WRV) was performed according to 
the TAPPI UM-256 standard [48]. The WRV indicates the 
capacity of fibers to swell and absorb water, and it was calcu-
lated according to Eq. 2. Whumid is the weight of the sample 
after centrifugation and Wdry is the dry weight of the sample.

Scanning electron microscopy (SEM) of the MFC sam-
ples was performed using a scanning electron microscope 
model JSM610LV. The operating parameters were set to 
20 kV voltage and filament current of 81.2 µA. In order 
to improve the electrical conductivity and minimize the 
effect of surface charge during analysis, the samples were 

(1)CI (%) =
I
002

− I
AM

I
002

x100

(2)WRV (%) =
Whumid −Wdry

Wdry

x100
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freeze-dried and coated with a thin layer of gold using a 
metallizer. The metallization process lasted for 2 min, result-
ing in a gold layer of approximately 60 nm thickness on the 
samples.

3  Results and discussion

3.1  Production of microfibrillated celluloses (MFCs)

Images of the pulp before and after defibrillation are pre-
sented in Fig. 1. Microfibrillated cellulose (MFC) can be 
considered as a cellulosic material, that is fibrillated, result-
ing in an expanded surface area. It can be obtained through 
a mechanical disintegration process without the use of 
hydrolysis [16].

To verify the variations inherent to the mechanical system 
of the defibrillation process in relation to the characteris-
tics of each cellulosic pulp, the three obtained suspensions 
were prepared and defibrillated in the SuperMassColloider 
under the same conditions of suspension consistency, disc 
rotation, distance between discs, and number of passes. The 
obtained MFCs were identified as MFLC-K#25, MFLC-
K#60, and MFC-Bleached, from K#25, K#60 and bleached 
pulps, respectively.

The yields were not measured in this work. However, it 
is known that the number of passages through the mill and 
the use of pulps with or without residual lignin can affect the 
final result, due to the loss of fibers during the bleaching pro-
cess. Ribes et al. [51] obtained a yield of 99.39% and 98.13% 
for nanofibril suspensions of eucalyptus pulps with and with-
out residual lignin, respectively. Reis et al. [38] reported that 
the yield of MFC obtained after consecutive treatments was 
20.5 g MFC/100 g of dried parchment (PAR).

3.2  Characterization of microfibrillated celluloses

3.2.1  Fiber size and viscosity

The dimensions of the fibers (length and diameter) and viscos-
ity of the MFCs are presented in Table 1. Changes in the size 
distribution profile were expected throughout the defibrillation 
process, especially in the longitudinal direction of the fiber [52]. 
Another anticipated outcome was the attainment of highly vis-
cous suspensions, even at very low consistencies [25].

Nanocelluloses generally present a diameter in the range 
of 20 to 100 nm and a length of several micrometers [25, 
53, 54]. The length of several micrometers measured in this 
study ranged from 39 to 47, and the measured diameters 
(nm) were 6820 (MFLC-K#60), 5600 (MFLC-K#25), and 
5280 (MFC-Bleached). In this study, the mechanical process 
allowed for the production of micrometers in diameter, hence 
the material was named microcelluloses. Malarat et al. [43] 
obtained nanocellulose (NCP) from coffee pulp in the form 
of cellulose nanocrystals with a diameter of 16.03 ± 4.70 nm.

Henao Rodríguez et al. [42] used hydrolysis (both acid 
and alkaline) and bleaching techniques to extract cellu-
lose microfibrils from coffee parchment. The research-
ers determined that the microfibrils obtained from acid 
hydrolysis had a size of 8 ± 2 µm, while those obtained 

Fig. 1  Pulp before and after 
defibrillation: A kraft pulps and 
B microfibrillated celluloses

Table 1  Evaluation of microfibrillated celluloses as to their dimen-
sions and viscosity

Parameters MFLC-K#60 MFLC-K#25 MFC-Bleached

Length, µm 39 47 47
Diameter, nm 6820 5600 5280
Viscosity, cP 5357 8336 15,587
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from alkaline hydrolysis had a size of 27 ± 2 µm. The 
bleaching process resulted in microfibrils with a size of 
23 ± 2 µm. Additionally, the authors employed the term 
“microcelluloses” to refer to these extracted materials.

The instrument used for fiber measurement, the Valmet 
FS5 Analyzer, considered that 98.2–99.5% of the MFC 
suspension consisted of smaller fiber particles known as 
fines. As a result, only 0.5–1.8% of the samples were sub-
jected to length and diameter measurements, as the dimen-
sions of the fines did not accurately represent the MFCs. 
Mechanical defibrillation produces a diverse material that 
contains fibers, fiber fragments, fines, and fibrils [55, 56].

The delignification and bleaching processes lead to 
pulps with varying amounts of hemicelluloses and lignin. 
Additionally, the degree of polymerization and crystallin-
ity of cellulose is reduced, which affects the properties 
of microfibrils [25, 57]. For instance, microfibrillated 
lignocellulose (MFLC) derived from unbleached pulps 
has longer fibers and produces less viscous suspensions 
compared to MFC obtained from bleached pulps [25, 58]. 
These findings are consistent with the results presented 
in Table 1 of the current study.

The viscosity of the MFC was measured to be 15,587 
cP at a solids content of 1.5%. The high viscosity is related 
to the hygroscopic nature of the cellulose, as well as the 
high aspect ratio and specific surface area of the microfi-
brils. As a result, it was anticipated that the fibers in the 
MFC suspension would exhibit stronger interactions, lead-
ing to the formation of highly viscous suspensions [25].

3.2.2  Chemical composition

The chemical composition of the pulps and MFC suspen-
sions is shown in Table 2. The suspensions presented a 
chemical composition that is similar to the original pulps 
because they were produced through a purely mechanical 
process. Unbleached pulps had a higher proportion of lignin 

than bleached pulp. The main objective of bleaching is to 
remove residual lignin and produce pulp with a brightness 
of 90%ISO.

Mechanical fibrillation affects the size of fibers, without 
changing their chemical components [25]. However, Jiang 
et al. [59] and Carvalho et al. [60] explain that as the fibrilla-
tion degree increases, lignin migrates out of the fibrils. This 
leads to the separation of lignin from microfibrils, which 
modifies their composition. Additionally, residual lignin 
affects the polarity and hydrophilicity of microfibrillated 
cellulose. Lignin has a lower polarity compared to carbo-
hydrates [61, 62]. These changes in properties expand the 
potential applications of microfibrillated cellulose.

The mechanical degradation showed a small reduction 
in the amount of lignin in MFCs, compared to pulps. It was 
observed that the higher the kappa number in the original 
pulp, the higher the content of lignin and hexenuronic acids 
(HexA) in the MFC suspension. Lignin and HexA are known 
to contribute to the measurement of the kappa number [63]. 
The total lignin contents for MFLC-K#60, MFLC-K#25, 
and MFC-Bleached samples were 9.34%, 3.04%, and 0.43%, 
respectively. HexA contents observed for MFLC-K#60, 
MFLC-K#25, and MFC-Bleached samples were 1.20%, 
1.10%, and 0.04%, respectively.

Higher percentages for glycans and xylans were also 
observed. Eucalypt and coffee, classified as hardwoods, 
have xylan as the main hemicelluloses [64]. Coura et al. 
[46] reported the chemical composition of coffee parch-
ment as follows: 36.8% glucan, 20.6% xylan, 0.4% man-
nan, 0.5% galactan, and 0.2% arabinan. This indicates the 
presence of other hemicelluloses in parchment. However, 
these carbohydrates are extensively degraded during kraft 
pulping, which justifies the absence or low content of man-
nan, galactan, and arabinan in pulps and microfibrillated 
celluloses. In a study by Demuner et al. [65], nanocellu-
lose samples produced from eucalyptus kraft pulp showed 
glycans and xylans percentages of 80.6% and 13.8% for 

Table 2  Characterization of 
kraft parchment pulps and MFC 
suspensions

Constituents Pulps Microfibrillated celluloses

K#60 K#25 Bleached K#60 K#25 Bleached

Acid-soluble lignin, % 0.93 0.78 0.46 0.84 0.64 0.43
Acid-insoluble lignin, % 8.75 2.49 - 8.50 2.40 -
Total lignin, % 9.68 3.27 0.46 9.34 3.04 0.43
Uronic acids, % 1.70 1.31 0.90 1.60 1.25 0.87
Hexenuronic acids, % 1.20 1.10 0.04 1.20 1.10 0.04
Sugars, % Glucan 62.40 67.30 64.40 64.40 67.50 70.80

Xylan 20.70 21.70 19.20 19.20 20.30 22.10
Mannan 0.00 0.00 0.00 0.00 0.00 0.00
Galactan 0.10 0.20 0.10 0.10 0.10 0.10
Arabinan 0.00 0.10 0.00 0.00 0.10 0.10
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lignocellulose nanofibrils (LCNF) and 83.3% and 14.2% 
for cellulose nanofibrils (CNF), respectively. The other 
sugars were between 0.0 and 0.3%.

Malarat et al. [43] conducted a study where pulp was 
produced from coffee using alkali treatment (NaOH) and 
bleaching treatment. They also produced nanocelluloses 
from coffee pulp (NCP) through acid hydrolysis. In the 
pulp treated with NaOH, the authors observed that cellu-
lose, hemicelluloses, lignin, and ash accounted for 76.32%, 
5.87%, 10.98%, and 0.14%, respectively. In the bleached 
pulp, the percentages of cellulose, hemicelluloses, lignin, 
and ash were 85.83%, 3.71%, 1.56%, and 0.04%, respec-
tively. These findings indicate that the process used to pre-
pare the pulp has an impact on the chemical characteristics 
of the resulting microcelluloses.

The glycan and xylan contents for MFLC-K#60, 
MFLC-K#25, and MFC-Bleached were 64.4 and 19.2%, 
67.5 and 20.3%, and 70.8 and 22.1%, respectively. In all 
samples, we observed a higher xylan content and lower 
glycan content. This result can be explained by the differ-
ence in the chemical composition of the used raw material 
[38, 66, 67]. Hemicelluloses are known to help the nanofi-
brillation by facilitating the release of individual fibrils, 
thereby reducing energy consumption during mechanical 
defibrillation [68].

The proportion of sugars increases as the other compo-
nents decrease. MFC-Bleached contains higher percentages 
of sugars due to the removal of lignin and HexA during the 
bleaching process. The higher levels of sugars in the MFLC-
K#25, compared to MFLC-K#60, can be explained by the 
more drastic process used to achieve a kappa number of 25, 
resulting in lower levels of lignin and HexA.

The contents of HexA ranged from 0.04 to 1.20%, and the 
contents of uronic acids ranged from 0.87 to 1.60%. A higher 
amount of residual lignin was observed in the raw mate-
rial due to its chemical composition. Although coffee has 
lower lignin content (10.1–26.6% compared to 27.1–31.3% 
in eucalyptus wood), its S/G lignin ratio (the ratio of lignin 
syringyl units to guaiacyl units) is 0.8. In contrast, studies 
report values of 2.5–3.1 for eucalyptus wood [69–71].

This S/G lignin ratio and the associated linkages between 
the units are crucial as they impact the reactivity of lignin 
during pulping [72]. The S-type lignin, with two methoxyl 
groups in the C-3 and C-5 positions of the aromatic ring, 
is more reactive [72], whereas G-type lignin, with the C-5 
position available for carbon–carbon bonding, contributes to 
a higher degree of lignin condensation [73, 74].

MFC samples primarily consist of organic compounds 
(cellulose, hemicelluloses, and lignin) with a small per-
centage of inorganic compounds, which can be quantified 
through ash content analysis [75]. MFLC-K#60, MFLC-
K#25, and MFC-Bleached presented ash values ranging 
from 0.85 to 1.63%, reflecting the characteristics of the raw 

material’s chemical composition (Table 3). Coffee parch-
ment generally contains higher ash content (0.5–7%) com-
pared to eucalyptus wood (0.1–0.3%) [38, 67, 69, 71]. The 
silica content was 0.41% in MFLC-K#60 and absent in 
MFLC-K#25 and MFLC-Bleached.

Elemental analysis of lignocellulosic biomass reveals that 
carbon, oxygen, and hydrogen are the main elements present 
(Table 3). These elements are found in organic substances 
like cellulose, hemicelluloses, and lignin [75, 76]. Sulfur 
and nitrogen are present in lower proportions, and may come 
from the protein residues present in coffee parchment [69, 
77]. Sulfur could also be present due to the kraft pulping 
process, which utilizes sodium sulfide as a reagent.

3.2.3  X‑ray diffraction (XRD)

X-ray diffraction (XRD) analysis was performed to deter-
mine the crystallinity of the MFLC and MFC samples, using 
the Segal empirical method, which employs the height of the 
main diffraction peak, referred to the crystallographic plane 
(200). The diffractogram presented in Fig. 2 shows diffrac-
tion intensity peaks around 18.2–18.8 for the amorphous 
peaks  (IAM) and 21.8–22.2 for the crystalline peaks  (I002), 
indicating that the samples present the typical polymorph 
of cellulose type-I. According to Ass et al. [78], the peak 
referring to the crystalline fraction at 22° ≤ 2θ ≤ 23° cor-
responds to cellulose type-I, while for cellulose type-II this 
peak occurs at 18° ≤ 2θ ≤ 22°. In terms of the regions cor-
responding to the amorphous fraction, for type-I and type-II, 
they occur at 18° ≤ 2θ ≤ 19° and 13° ≤ 2θ ≤ 15°, respectively. 
Li et al. [79] stated that the main distinction between cel-
lulose I and II is the antiparallel chain arrangement in the 
latter.

The crystallinity of microfibrillated cellulose increases 
by the successive dissolution of lignin and hemicelluloses 
during the pulp extraction step [4]. The delignification 
and bleaching processes affect the raw material by modi-
fying the content of hemicelluloses and lignin, reducing 
the degree of polymerization and crystallinity of the cel-
lulose [25]. The percentage of lignin, hemicelluloses, 

Table 3  Inorganic composition and elemental analysis of MCF sam-
ples

Parameters, % MFLC-K#60 MFLC-K#25 MFC-Bleached

Silica 0.41 0.00 0.00
Ash 1.63 1.19 0.85
Elemental 

analysis
C 49.10 46.30 46.30
H 6.18 6.34 6.20
N 0.06 0.02 0.05
S 0.17 0.16 0.15
O 44.49 47.18 47.30
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and cellulose varies in the produced MFCs, resulting in 
a varied distribution of the crystalline and amorphous 
components.

The crystallinity values were 52.5%, 58.8%, and 65.1% 
for the MFLC-K#60, MFLC-K#25, and MFC-Bleached 
samples, respectively. Raju et al. [80] achieved 82.31% 
crystallinity for nanofibres of E. tereticornis. Oliveira 
[81] reported 81.3% crystallinity for eucalyptus fibers, 
and 49.1% and 53.6% for unbleached and bleached coffee 
husk fibers, respectively. Campuzano et al. [44] reported 
a crystallinity of 75% for coffee parchment regenerated 
cellulose nanoparticles (RCNPs). On the other hand, 
Malarat et  al. [43] reported a crystallinity index (CI) 
of 80.55% for nanocellulose from coffee pulp. This CI 
is higher than what was found in this study, primarily 
because the chemical process employed by Malarat et al. 
removed the amorphous regions, leading to a higher crys-
tallinity index.

The difference in crystallinity between eucalyptus and 
coffee parchment can be attributed to the characteristics 
of each biomass. The coffee parchment pulp contains 
more lignin and hemicelluloses, and less cellulose, com-
pared to eucalyptus pulp. This means that it has a higher 
proportion of amorphous components and a lower propor-
tion of crystalline components in its composition.

3.2.4  Thermogravimetric analysis (TG/DTG)

Thermogravimetric analysis (TGA) is a crucial technique 
for understanding the thermal stability and decomposition 
behavior of materials, including MFC suspensions. This 
technique involves monitoring changes in the mass of a 

sample over time or temperature, which can be caused by 
physical processes like sublimation, evaporation, or con-
densation, as well as chemical processes like degradation, 
decomposition, or oxidation.

Thermal degradation occurs in three phases. The first 
phase occurs around 60–100 °C, during which the water 
absorbed on the surface of the microfibrillated cellulose 
and volatile compounds of low molar mass are generally 
released [4, 82]. The degradation peak of the second phase 
appears around 250–350 °C, depending on the size and 
length of the MFC. At this stage, the material starts to 
degrade, which usually depends on several factors, such 
as the nature of the feedstock [4, 82]. After 350 °C, the 
mass loss gradually decreases with increasing temperature, 
when the volatilization of the components is complete and 
any additional mass loss is related to the degradation of 
the residual coal. Moreover, an increase in temperature 
above 450–600 °C leads to complete degradation of the 
sample [4].

The thermal stability of MFLC and MFC is an important 
parameter for their use as reinforcing agents in thermoplastic 
materials, which typically require processing temperatures 
above 200 °C [38]. To assess the thermal stability of the 
prepared MFCs, thermogravimetric (TGA) analysis was per-
formed. Figure 3 displays the resulting thermogravimetric 
curves, indicating the mass loss with respect to temperature, 
as well as the first derivative of TG (DTG) curves, showing 
the change in mass over time as a function of temperature.

The degradation curves obtained from the three MFC 
suspensions can be characterized by several key param-
eters, which provide insights into their thermal properties 
(Table 4): the temperature at which the thermal degradation 

Fig. 2  X-ray diffractogram of 
the MFC suspensions
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began (Tonset), the temperature at which 50% mass loss 
of the analyzed sample occurred (T50%), the maximum 
degradation temperature, the final temperature of the ther-
mal composition (Tendset), and the residual ash content. It 
was observed that the maximum degradation temperatures 
(Tmax), which generally reflect the point at which the maxi-
mum decomposition rate of the sample components occurs, 
were higher for MFLC-K#60 (338.2 °C) and MFLC-K#25 
(338.2 °C) compared to MFC-Bleached (322.6 °C). In the 
thermogravimetric analysis, the mass loss between 200 
and 350 °C is associated with the degradation of hemicel-
luloses and the beginning of cellulose degradation [83]. 
According to Table 2, samples MFLC-K#25 and K#60 pre-
sent similar chemical compositions, especially in terms of 

hemicelluloses and cellulose content, which may result in 
similar thermal profiles in TGA and equal Tmax value.

The analysis reveals that MFLCs are more thermally sta-
ble compared to MFCs, which is consistent with previous 
studies. Reis et al. [38] reported a Tmax of 330 °C for cof-
fee parchment, attributed to the presence of lignin, which is 
known for its higher thermal resistance compared to hemi-
celluloses and cellulose [84]. Therefore, the improvement in 
thermal stability of MFLCs can be explained by the presence 
of lignin in their chemical composition, which contributes 
to the higher Tmax temperatures observed in thermogravi-
metric analyses.

Campuzano et al. [44] and Henao Rodríguez et al. [42] 
reported a similar thermal profile for coffee parchment 
regenerated cellulose nanoparticles (RCNPs) and cellulose 
microfibrils extraction from coffee parchment, respectively.

The significant mass loss of MFCs occurred in the range 
of 300–400 °C (Table 5). This mass loss is attributed to 
the dehydration of cellulose and thermal depolymerization 
of this polymer [84]. MFC-Bleached lost more mass in the 
200–300 °C range when compared to MFLC, which can be 
explained by the chemical composition. Generally, the ther-
mal degradation of cellulose occurs later than that of hemi-
celluloses, due to the greater amount of energy required for 

Fig. 3  TG/DTG curves of the 
MFC suspensions

Table 4  Marked temperature peaks during thermal degradation and 
residual ash content

Samples Thermal degradation ranges (°C) Residual 
ash content 
(%)Tonset T50% Tmax Tendset

MFLC-K#60 271.8 333.8 338.2 414.7 2.16
MFLC-K#25 275.0 333.6 338.2 405.9 1.51
MFC-Bleached 265.8 319.4 322.6 347.1 0.05

Table 5  Temperature ranges for 
loss of mass of the samples

Samples Loss of mass (%)

100–200 °C 200–300 °C 300–400 °C 400–500 °C 500–600 °C

MFLC-K#60 1.15 10.89 58.78 11.02 6.05
MFLC-K#25 1.83 9.55 59.82 10.95 7.26
MFC-Bleached 1.44 20.31 47.98 19.34 2.05



 Biomass Conversion and Biorefinery

depolymerization of the cellulose chain and for the break-
down of its monomers.

The crystallinity index (CI) represents the proportion 
of cellulose that is organized into crystalline domains. It is 
believed that cellulose crystallinity can vary according to 
the initial content of amorphous structures (hemicelluloses 
and lignin) [65, 83]. In other words, the breakdown of amor-
phous regions contributes to the increase in CI. On the other 
hand, higher hydrolysis values lead to a decrease in both 
molecular weight and Tmax values. This can be attributed 
to the hydrolysis effect on the crystalline part of cellulose 
as well as the amorphous regions [85, 86]. Berto et al. [83] 
demonstrated that a material with a lower CI also exhibited 
a reduction in Tonset. The contrasting behavior observed in 
the MFC-Bleached sample may be related to particle size. 
In addition to CI, it is expected that the thermal stability 
could may be influenced by the morphological aspect of the 
particles, such as their size and surface area. This is because 
smaller particle sizes result in larger surface areas exposed 
to heat [83].

3.2.5  Fourier transform infrared spectroscopy (FTIR)

FTIR analysis is a valuable tool for identifying the functional 
groups and bonds in cellulose. It was used in this study to 
determine potential changes in the functional groups of 
microcellulose fibers. In the case of microfibrillated cellu-
lose samples, the infrared profiles showed similar patterns 
with distinct bands (Fig. 4), corresponding to the stretching 
and deformation of C-H, O–H, and C-O.

Cellulose is composed of various bonds, including C–C, 
C-H, and C–O–C, as well as hydroxyl groups (-OH) on its 
surface. The band at 3330  cm−1 is attributed to the broad 
stretching and bond vibration of O–H and absorbed water, 
which includes hydrogen bonding. The band at 2890  cm−1 
corresponds to the vibration of C-H bonds, specifically CH 
and  CH2, which are present in both cellulose and hemicel-
luloses [39, 82, 87, 88]. The stretching of carboxylic acid 

bonds, such as C = O and C-O, which are found in hemicel-
luloses, can be observed at 1635  cm−1 [87, 88].

The vibration of the aromatic ring in lignin is attributed 
to 1559  cm−1 [37]. The deformation of the symmetric bond 
of the CH and  CH2 groups of cellulose and hemicelluloses 
is represented by 1428  cm−1 [87]. The angular deformation 
of C-O bonds of primary alcohols in cellulose and hemi-
celluloses, as well as the C–O–C bonding of asymmetric 
1,4-glycosidic bonds of D-glucose, were assigned to 1116 
and 1027  cm−1 [4, 38], respectively. The β-Glycosidic link-
ages between cellulose glucose units are represented by 
895  cm−1 [88].

Although the wavenumbers of the functional groups align 
across the samples, the peak intensity may vary due to dif-
ferences in raw materials and methods employed [4]. In the 
MFLC samples (K#60 and K#25), a peak at 1559  cm−1 was 
observed due to the presence of the aromatic ring in lignin. 
This peak was not evident in the MFC sample (Bleached).

Malarat et al. [43] characterized nanocelluloses from cof-
fee pulp (NCP) produced via acid hydrolysis and highlighted 
the bands at 3330, 2920–2848, and 1025  cm−1. Campuzano 
et al. [44] characterized regenerated cellulose nanoparticles 
(RCNPs) from coffee parchment through mechanical, cen-
trifugation, and dialysis into cellulose membranes processes. 
The authors observed bands at 3325, 2890, 1624, 1420, 1159, 
1039, and 895  cm−1, similar to those found in this study.

3.2.6  Zeta potential

Zeta potential is a characterization that evaluates the colloi-
dal stability of suspensions, taking into account the density 
of surface charges. The stability of suspensions is directly 
linked to the surface forces of particles and the interactions 
between them (repulsion or attraction). The strength of these 
characteristics defines the formation of particle clusters in 
suspension and their sizes, leading to sedimentation [89, 90].

Both the stability and electrostatic repulsion between 
the fibers increase as the zeta potential decreases. Usually, 

Fig. 4  FTIR spectra of the MFC suspension samples
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the system is considered moderately stable when it is lower 
than − 30 mV [90]. On the other hand, values between 10 
and 30 are considered unstable [89]. The zeta potential 
values obtained for MFLC-K#60, MFLC-K#25, and MFC-
Bleached were − 19.8  mV, − 15.8  mV, and − 27.4  mV, 
respectively. The results showed that the MFC-Bleached 
is the best in terms of colloidal stability and the MFLC-
K#25 sample is the most unstable.

Several factors can influence the zeta potential, includ-
ing the length of microfibrils, which can lead to the inter-
lacing of MFLC and MFC. The presence of residual hemi-
celluloses due to their binding capacity, and the sulfur 
content, which increases surface charges, are also impor-
tant factors [91].

To improve the fibrillation and quality of the suspension, 
the carboxyethyl reaction can be used as a pretreatment 
method for MFC preparation. Chen et al. [92] worked with 
bleached acacia kraft pulp and performed carboxyethyl pre-
treatment of pulp fibers. They fibrillated the fibers using a 
Supermasscolloider Type Disk mill to prepare microfibril-
lated cellulose (MFC). The results showed that the charge 
density, suspension stability, and transparency of MFC 
increased with the presence of carboxyethyl groups.

3.2.7  Water retention value (WRV)

The water retention value presents a measure of the fibers’ 
ability to absorb water, after centrifugation under standard 

conditions. This property is associated with the binding 
capacity of the fibers, since they have exposed free hydroxyl 
groups, and a larger surface area [17, 93, 94].

The WRV values for MFLC-K#60, MFLC-K#25, and 
MFC-Bleached were 792, 849, and 1032%, respectively. 
The different values obtained by the samples can be justi-
fied by their chemical compositions (Table 2). Xylans, which 
have negatively charged carboxylic groups, contribute to 
higher WRV [95]. On the other hand, a higher lignin content 
reduces the WRV due to its hydrophobic nature [57].

Demuner et al. [65] found higher WRV values for euca-
lyptus nanofibrils (1117% for LCNF and 1496% for CNF) 
compared to MFCs from coffee parchment. This difference 
can be explained by the smaller size and larger surface area 
of eucalyptus nanofibrils, which enhance water retention 
[96].

3.2.8  Scanning electron microscopy (SEM)

Scanning electron microscopy is a useful technique for ana-
lyzing the surface of nanomaterials… By examining these 
images, it is evident that the fiber walls have been decon-
structed through the mechanical process of defibrillation, 
thereby releasing the microfibrils from the interior of the 
fibers.

The pulp used for the production of MFLC-K#60 was 
obtained using milder kraft cooking conditions, which 
resulted in better preservation of the pulp compared to K#25 
pulps. In the case of the bleached pulp sample, the fibrils 

Fig. 5  SEM images at × 1000 
magnification—10 µm: A 
MFLC-K#60 and B MFLC- 
K#25 and C) MFC-Bleached
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are more exposed due to the bleaching process (Fig. 5C). 
Henao Rodríguez et al. [42] also observed differences in 
SEM images of cellulose microfibrils extracted from coffee 
parchment that underwent different treatments.

4  Conclusions

Cellulose fibers derived from coffee industry residues 
(parchment) can be utilized to produce microfibrillated cel-
lulose (MFC) and microfibrillated lignocellulose (MFLC), 
which exhibit comparable properties to microcelluloses pro-
duced from eucalypt.

The microfibrillated celluloses had a high content of 
lignin and hemicelluloses, which contributed to a reduction 
in their crystallinity. Specifically, MFLC-K#60, MFLC-
K#25, and MFC-Bleached showed crystallinity indexes of 
52.5, 58.8, and 65.1%, respectively. All the three samples 
demonstrated thermal stability, with MFLC-K#60 having a 
maximum degradation temperature of 339 °C, MFLC-K#25 
of 339 °C, and MFC-Bleached of 322 °C.

The FTIR spectra were similar for all microfibrillated cel-
luloses, showing peaks characteristic of cellulosic polymers. 
However, MFLC exhibits distinctive peaks associated with 
lignin, which are absent in MFC. Zeta potential values found 
for MFLC-K#60, MFLC-K#25, and MFC-Bleached samples 
are − 19.8 mV, − 15.8 mV, and − 27.4 mV, respectively. The 
suspensions of MFCs are unstable and present the tendency 
to agglomerate. Scanning electron microscopy confirmed 
that the fibers are deconstructed due to the mechanical defi-
brillation process in all three samples.

The characterization of MFLC and MFC is quite similar, 
making MFLC more advantageous when a colorless sus-
pension is not required or when the presence of lignin con-
tributes to the desired product, such as in sunscreens where 
lignin aids in UV protection. Additionally, the production 
cost of MFLC is lower than that of MFC due to the lower 
alkali load and less drastic pulping conditions, resulting in 
a higher yield. Moreover, the production of MFLC elimi-
nates the need for the bleaching step used to remove residual 
lignin present in the pulp from the cooking process.
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