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Abstract
In the present study, the performance of dual chamber microbial fuel cells (MFC) was investigated employing sludges col-
lected from drains, a textile effluent treatment plant, and the Buriganga river as the sources of microbes, while a mixed liquor 
prepared from dustbin waste and gruel was used as substrates for the growth of bacteria. Six experiments were carried out 
under aerobic conditions throughout the study and inspected for seven days. Agar salt bridge was used instead of the typical 
membrane for proton exchange. For analyzing the electrical parameters of the MFCs such as voltage, current density and 
power density were recorded for each experiment. Reduction of Biological Oxygen Demands  (BOD5) of the sludges was 
also observed in this study. Regarding electrical performance, the Buriganga sludge afforded the best results demonstrating 
maximum voltage, current density, and power density as 244.88 mV, 35.16 mA/m2, and 8.61 mW/m2, respectively. However, 
the  BOD5 reduction was found to be 50.15%, 43.64%, 47.32%, and 35.20% for sludges collected from a drain of a residential 
area, a textile effluent treatment plant, a tannery, and the Buriganga river, respectively. Counts of aerobic Escherichia coli 
and Bacillus subtilis in different sludges were also documented.

Keywords Agar salt bridge · Aerobic decomposition · Biological Oxygen Demands  (BOD5) · Current density · Power 
density · Proton exchangeable membrane

1 Introduction

The necessity to reduce carbon emissions globally has 
gained considerable attention in recent times, leading to the 
implementation of stricter policies and regulations [1]. As 
conventional fuel sources are of confined origins and a num-
ber of environmental issues are being brought on by carbon 
emissions, which pose a major threat to human existence 
and health, it is high time for the exploration for renewable 
energy sources [2, 3]. Biofuels can be the alternate sources 
to meet up the energy demand [4]. Microbial fuel cell (MFC) 
technology has found immense interest in recent years as a 
promising approach to mitigate energy scarcity globally [5]. 

MFC is a unique bio-electrochemical system, which can uti-
lize different substances of organic origins as energy source 
[6], is able to generate electricity from wastes and reducing 
organic contaminants from wastewater, and is representing a 
sustainable technology for the future [7]. Exoelectrogens, a 
specific species of bacteria possessing the catalytic activity, 
are used in MFC for producing electricity from biomass. 
This type of bacteria is capable of transferring electrons also 
[8–10]. In a typical MFC, an anode chamber is fed with 
microbes and substrate; anode and cathode chambers are 
separated by proton exchangeable membrane (PEM) (Fig. 1). 
Available bacteria in the anode chamber usually function 
as catalysts [11–14]. Electrons generated due to the oxida-
tion of organic substrates are transported from the anode to 
cathode through an external wire, while the liberated protons 
transfer through PEM [10]. Nowadays, ionogels are used 
in PEMs. Ionic liquids possess special characteristics com-
posed of organic cations, and inorganic/organic anions are 
enclosed in a solid structure within hybrid materials called 
ionogels. Through the creation of nanochannels and the crea-
tion of extensive hydrogen bonding networks with matrix 
materials and other proton conductors, ionogels in PEMs 
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provide increased conductivity [15, 16]. Thus, in MFC, bio-
degradation of organic matters and production of electricity 
take place by the microbes [17, 18]. For example, fermenta-
tion of glucose in the presence of Clostridium butyricum 
produces  CO2, electron, and protons as shown in Eq. 1 [19].

In the cathode compartment, electrons coming through 
an external load are recaptured by oxygen molecules, which 
combine with protons to form water [19]. The potential dif-
ference coupled to electron flow generates electricity in the 
fuel cell. Anaerobic MFC is also possible where electrons 
are generated by bacteria through the anaerobic oxidation of 
organic matter (by non-fermentative reactions) and passed 
to the respiratory enzymes in the inner cell membrane of the 
bacteria [17, 21].

The PEM is employed to separate the substrate molecules 
in the anode from electron capturing molecules  (O2) in the 
cathode while permitting transfer of  H+ from the anode to 
the cathode compartment. This allows the maintenance of 
charge balance and eliminates cross-contaminating reactions 
[20]. The PEM plays vital role in MFC construction. In recent 
years, many research groups are devoted in developing arti-
ficial PEM. Aromatic polymers such as poly (arylene ether 
ether ketone) (PEEK), poly (arylene ether sulfone), and their 
derivatives are generally used as high-performance PEMs 
[22]. Salt bridge has been used as an alternative to PEM by 
different research groups [23–28]. Salt bridges are generally 
made up of a mixture of agar  (C14H24O9), salt, and water 
which are less expensive than Nafion membranes and have a 
higher amount of self-resistance to proton transportation [28]. 
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The effect of mediators likeanthraquinone-2,6-disulfonate 
(AQDS), neutral red, and humic acids to shift electrons to an 
external electrode from inside the cell was also studied [17, 
21]. The laboratory-scale version of an MFC has been still 
lower than what is shown in an ideal case. The efficiency of 
an MFC is affected by several parameters [29]. Electrodes 
are important components of an MFC that help to improve its 
efficiency [30]. Carbon materials containing graphite fiber 
brush, carbon cloth, graphite rod, carbon paper, reticulated 
vitreous carbon (RVC), and carbon felt are the most com-
monly used materials in anodes because of their stability in 
microbial cultures, high electric conductivity, and large sur-
face area [10, 31–35]. Furthermore, heterogeneous fabrica-
tion methods and modification methods incorporating nano 
materials have been tested for increasing the power density 
and expanding the electron accepting capability [36]. As 
cathode electrodes, carbon paper, carbon felt, carbon brush, 
carbon fiber, graphite of various types, Pt (Pt is commonly 
used as a cathode catalyst, while alternative polymer bind-
ers such as perfluoro sulfonic, Cu, Cu–Au, tungsten carbide, 
granular graphite, reticulated vitreous carbon (RVC) have 
also been tested [37–39]. A number of factors which control 
the release of electrons from substrate molecules in solution, 
their shifting through an external load, and their recapture by 
oxygen molecules. Fluctuations of temperature affect device 
kinetics, mass transfer (activation energy, mass transfer coef-
ficient, and solution conductivity) [40], thermodynamics 
(free Gibbs energy and electrode potential), and microbial 
community existence and dispersion [40, 41]. Temperature 
has been shown to be a significant parameter for electricity 
generation [42, 43]. Temperature increases power generation 
of MFC exponentially owing to anodic biofilm growth, which 
impacts bio catalytic activity and therefore efficiency [44–46]. 
An MFC can operate at temperatures ranging from 5 to 40 °C, 
with an optimal working range of 18 to 35 °C [47–49].

As a process for both wastewater treatment and electric-
ity production, MFCs are being studied in recent years [50]. 
Different types of wastewaters, which include wastewater 
from food production, swine wastewater, and sanitary waste, 
comprise numerous biodegradable natural materials that 
could be used to run MFCs [50]. MFCs have been first used 
to purify wastewater in 1991 [52].

In this study, two types of MFC were constructed, one 
using PET bottles and the other of acrylic box, and in both 
cases, agar salt bridge was used instead of PEM, and sludges 
from drains, textile effluent treatment plant, and Buriganga 
river were used under aerobic condition. Mixed liquor pre-
pared from dustbin waste and starch of boiled rice was used 
as source of carbohydrates (substrate) for the growth of bac-
teria. The Biological Oxygen Demand  (BOD5) of the sludges 
was also recorded before and after conducting each experi-
ment. The counts of Escherichia coli and Bacillus subtilis 
(CFU/ml) in different sludges were also made.

Fig. 1  A conventional model of MFC [10]
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The novelty of the current study is the use of cheap agar 
salt bridge instead of expensive nafion membrane, dustbin 
waste as substrate, and different types of sludges as the 
source of microorganisms. Moreover, MFCs were operated 
at ambient temperature and without agitation in the cathode 
chamber, so there was no external power consumption.

2  Materials and methods

Agar  (C14H24O9) and sodium chloride (NaCl) were used 
for constructing salt bridge, and Sorbitol MacConkey 
agar (SMAC) and NaCl-Glycine-Kim-Goepfect (NGKG) 

were used for microbiological study. All analytical grade 
chemicals were purchased from Merck, Germany, and used 
as received. Copper mesh and brass mesh (shown in Fig. 2) 
were collected from local market (Dhaka, Bangladesh) and 
used as cathode and anode, respectively. An air compressor 
(Model no. SEBO Air Pump-348A) was used in experiment 
6 to provide external air supply in the anode chamber.

Figure  3 illustrates the configuration of MFC that 
was used during this study. Two types of MFCs were 
constructed; one was H-shaped and the other was box type. 
Plastic (PET) bottles were utilized to construct anode and 
cathode chambers of H-shaped MFCs (experiments 1 to 4) 
shown in Fig. 4. For other types, acrylic boxes were used to 
construct anode and cathode compartments (experiments 5 
and 6) as shown in Fig. 5. A cylindrical salt bridge having 
surface areas of 0.00025  m2 was used for H-type MFC while 
in the box-type MFCs the salt bridge had surface area of 
0.006  m2 and 38.1-mm-thick membrane of agar placed 
between anode and cathode compartments. The dimensions 
of different components of MFCs are mentioned in Table 1.

2.1  Preparation of substrate

The non-degradable components (e.g., plastic products) 
were segregated manually from the waste collected from 
a dustbin and used without further processing. Gruel, a 
waste produces during cooking rice (1 l) was mixed with 
dustbin waste and blended for 10 min. The same propor-
tions of starch and dustbin waste were used for the prepa-
ration of the substrate for all the studies.

2.2  Preparation of salt bridge

For H-shaped MFCs, agar salt bridges were prepared 
following a procedure reported previously elsewhere [23]. In 
brief, agar (4 g), sodium chloride (22 g), and water (180 ml) 
were mixed in a conical flask, and the mixture was heated 

Fig. 2  Electrode materials: a brass mesh and b copper mesh

Fig. 3  Structure of microbial 
fuel cell (MFC) imitated in 
this study
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with stirring at 95 °C for 10–12 min, and the hot solution 
was poured into a PVC pipe (4 inches, 0.1016 m long and 0.5 
inches, and 0.0127 m diameter). Then it was cooled to room 
temperature. For box-type MFCs, the same procedure was 
followed to prepare the solution using 15 g agar, 90 g sodium 
chloride, and 450 ml water. The hot solution was poured 
into the empty area created in between the boundaries of the 
anode and the cathode chamber.

2.3  Amounts of ingredients

Four types of sludges and same organic substrate were fed in 
an anode chamber, and water was taken as an electron accep-
tor in the cathode chamber. Different amounts of sludge, 
substrate and electron acceptor in different experiments of 
this study is mentioned in Table 2.

2.4  Measurement of electrical parameters

A multimeter (Model no. DT-9205A) was used the 
measurement of electrical parameters. All the cells were 
kept in aerobic condition, and readings were taken for seven 
days across 101 Ω, 261 Ω, 472 Ω, 991 Ω, 1950 Ω, 4910 Ω, 
and 9850 Ω external loads [23]. The current density was 
obtained from the current that was calculated using the 
Ohm’s law (Eq. 2).

where I = current, V = measured voltage, and R = resistance.

2.5  BOD measurement

Biological Oxygen Demand  (BOD5) values of sludges before 
and after the experiment were recorded using Lovibond BD 
600 measuring system.

(2)I =
V

R

Fig. 4  H-type MFC for experi-
ments 1–4 (left) and for box-
type MFC for experiments 5–6 
(right)

Fig. 5  Change in open-circuit voltage (OCV) with time for different 
experiments

Table 1  Physical parameters of 
constructed MFCs

a External air supply in the anode chamber was made

Expt. No Chamber (anode & 
cathode) area  (m2)

Electrode (anode & cathode) Salt bridge

Length (m) Width (m) Surface area  (m2) Length (m)

1 0.069 0.1524 0.0762 0.00025 0.1016
2 0.069 0.1524 0.0762 0.00025 0.1016
3 0.069 0.1524 0.0762 0.00025 0.1016
4 0.069 0.1524 0.0762 0.00025 0.1016
5 0.248 0.1524 0.1524 0.006 0.0305
a6 0.248 0.1524 0.1524 0.006 0.0305



Biomass Conversion and Biorefinery 

2.6  Microbiological study

The amount of aerobic Escherichia coli and Bacillus subtilis 
was also inspected in this study. Sorbitol MacConkey Agar 
(SMAC) and NaCl-Glycine-Kim-Goepfect (NGKG) medium 
were applied for determination of the presence of aerobic 
Escherichia coli and Bacillus subtilis in the sludges.

2.6.1  Escherichia coli count

Sorbitol MacConkey Agar (SMAC) (51.5 g) was mixed 
with distilled water (1 l), and the solution was sterilized by 
autoclaving at 121 °C for 15 min. After that, the medium 
was cooled down to 50 °C and poured on Petri dishes in 
a laminar flow. After drying, the samples of the sludge 
were dispersed on the surface of the plate, and the plates 
were incubated at 30 °C for 24 h. After 24 h, the colonies 
of Escherichia coli were visually inspected and counted 
manually.

2.6.2  Bacillus subtilis count

NaCl-Glycine-Kim-Goepfect (NGKG) (13.3 g) was mixed 
with distilled water (450 ml), and the solution was sterilized 
by autoclaving at 121 °C for 15 min. After that, the medium 
was cooled down to 50  °C followed by the addition of 
100 ml 20% egg yolk with the solution. 20% egg yolk was 
prepared adding egg yolk (20 ml) with sterilized saline 
solution (80 ml) aseptically. Next it was poured on Petri 
dishes in a laminar flow. After drying, the samples of the 
sludge were dispersed on the surface of the plate, and the 
plates were incubated at 30 °C for 24 h. After 24 h, the 
colonies of Bacillus subtilis were visually inspected and 
counted manually.

3  Results and discussion

3.1  Performance of MFC

Total six experiments were carried out in this study; experi-
ments 1–4 were conducted in H-shaped MFCs) whereas 
experiments 5–6 in box-type MFCs (Fig. 4). In experiment 
1, experiment 2, experiment 3, and experiment 4, sludges 
collected from drain, textile effluent treatment plant, drain 
adjacent to tannery, and the Buriganga river were used as 
the source of microorganisms respectively. In experiments 
5 and 6, drain sludge was used and external air supply was 
provided with experiment 6.

For each experiment, the open-circuit voltage (OCV) and 
voltages across different loads (e.g., 101 Ω, 261 Ω, 472 Ω, 
991 Ω, 1950 Ω, 4910 Ω, and 9850 Ω) were measured for 
seven days. First reading of open-circuit voltage (OCV) was 
taken after 4 h of starting the MFC and data were recorded at 
a fixed interval of 24 h (Fig. 5). At the beginning OCV for all 
the experiments were close to 100–200 mV. For experiment 
1 (drain sludge), OCV decreased steadily from days 1 to 
7, while for experiments 2 (textile effluent treatment plant 
sludge) and 4 (Buriganga sludge) OCV slowly increased to 
a maximum of 500 mV on day 3 and then reduced steadily 
to 204 mV. For experiment 3 (tannery drain sludge), OCV 
was almost constant at 119 mV from day 1 to day 7. For 
box-type MFCs, OCV reached a maximum of 922 mV on 
day 5 then started to decay (experiment 5). For experiment 
6, OCV increased until day 6 and reached at 1496 mV and 
then reduced. This phenomenon could be explained with the 
fact that under additional air supply and nutrients contents 
microbial growth was enhanced and after 6 days nutrients 
were not sufficient for the growth although air supply was 
continued. Another interesting finding was that tannery drain 
sludge (experiment 3) demonstrated the lowest output which 
may be due to the presence of different types of fungicides 
used in tanning hindered the growth of microorganisms.

Polarization curve is also widely used for analyzing the 
performance of MFC, which is the representation of the cell 
voltage and power density in terms of current (or current 
density) [9]. In the present study, after 48 h (2 days) of operation 
MFCs, the output voltage was almost constant for the following 
72 h (day 3, day 4, and day 5). Figures 6, 7, and 8 represent 
the polarization curve on day 3, day 4, and day 5, respectively. 
Polarization curve was propagated by varying loads as 101 
Ω, 261 Ω, 472 Ω, 991 Ω, 1950 Ω, 4910 Ω, and 9850 Ω after 
obtaining stable voltage. Among the H-shaped MFCs (expt. 
1–4), the highest output was provided by the Buriganga sludge 
on day 3 which produced maximum current density and power 
density of 35.16 mA/m2 and 8.61 mW/m2, respectively (Fig. 6). 
This may be attributed to the presence of some bacterial strains 
in Buriganga sludge, which are more effective in bioenergy 

Table 2  Amount of ingredients used in different experiments

Expt. No Sludge type Amount of 
sludge (ml)

Amount of 
substrate 
(ml)

Amount 
of electron 
acceptor (ml)

1 Drain 1000 200 1000
2 Textile ETP 

(effluent 
treatment 
plant)

1000 200 1000

3 Tannery 1000 200 1000
4 Buriganga 

river
1000 200 1000

5 Drain 8000 800 8000
6 Drain 8000 800 8000
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production. In case of box-type MFCs, experiment 6 with 
external air supply gave better results compared to experiment 5 
providing 16.4 mA/m2 and 6.74 mW/m2 as peak current density 
and power density, respectively, at day 5 (Fig. 8). The value 
of electrical parameters (voltage, current density, and power 
density) started to decrease after a certain period of time for each 
experiment where there was no air supply, while experiment 6 
with air supply demonstrated upward trend (Table 3). The reason 
behind is that the amount of oxygen and inside the chamber 
started to reduce from day one and consequently hindered the 
growth of aerobic bacteria in the sludges.

Table 3 represents the comparison for electrical param-
eters obtained from different MFCs constructed in this study 
with previous research works.

3.2  Reduction of  BOD5 of the sludges

Figure 9 illustrates the change in  BOD5 of the sludges before 
and after conducting the experiments. In H-type MFCs, the 
 BOD5values for drain sludge, textile ETP sludge, tannery 
drain sludge, and the Buriganga sludge had been reduced by 
48.47%, 43.64%, 47.32%, and 35.20%, respectively (experi-
ments 1, 2, 3, and 4), while for box-type MFCs, the reduc-
tion of  BOD5 value for drain sludge was found to be 46.88% 
and 50.15% (experiments 5 and 6) respectively. The maxi-
mum  BOD5 reduction in this study was found for experiment 
6 where additional air was pumped into the anode chamber. 
The organic substances were decomposed during the bacte-
rial growth and thus  BOD5 of each sludge reduced signifi-
cantly. When there was an additional air supply in experi-
ment 6, the  BOD5 removal was highest (50.15%) which 
further supports the aerobic decomposition of the substrates.

3.3  Microbiological studies

The colonies of bacteria were visually inspected. The measuring 
unit was colony-forming unit per milliliter (CFU/ml). Figure 10 
shows the microscopic view (using 40 × lens) of Escherichia coli 
and Bacillus subtilis in the drain sludge. Figure 11 represents 
count of Escherichia coli [log(CFU/ml)] and Bacillus subtilis 
[log(CFU/ml)] in different types of sludges, respectively.

Significant counts of Escherichia coli and Bacillus subti-
lis were found in all sludges except the one collected from a 
drain close to a tannery. Although the tannery drain sludge 
contained a good number of Bacillus subtilis, it contained a 
negligible number of Escherichia coli. The maximum elec-
trical output from the Buriganga sludge (voltage 244.88 mV) 
and the minimum output from the tannery drain sludge 
(84.44 mV) indicated that both Escherichia coli and Bacil-
lus subtilis played a significant role in energy production of 
the MFCs studied in the present investigation, and the results 
were in good agreement with previous study [57]. However, 
the best result for the Buriganga sludge may be attributed to 

Fig. 6  Polarization curve on day 3

Fig. 7  Polarization curve on day 4

Fig. 8  Polarization curve on day 5
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the presence of some more effective microorganism which 
were not identified in the current investigation.

4  Conclusion

A total number of six experiments were investigated through-
out the project, and all of them were maintained under aerobic 
conditions and observed for seven days. Among six experi-
ments, only experiment 6 was provided with external air sup-
ply, which facilitated the bacterial growth and consequently 
stable outputs were attained. Besides this, two types of bacteria 
were detected and counted in the sludges which were Escher-
ichia coli and Bacillus subtilis. The reduction of  BOD5was 
also measured, and the maximum reduction was 50.15% for 
drain sludge (expt. 6) where additional air played a vital role 
to reduce  BOD5 due to ease of oxidation of the substrates. The 
result in the current investigation revealed that organic waste 

Table 3  Comparison of 
electrical parameters of different 
MFCs of this study with 
previous works

a Nafion membrane was used
b Bipolar membrane was used
c Micro filtration membrane was used
d Agar salt bridge was used

No System configuration Max. voltage (mV) Max. current 
density (mA/
m2)

Max. power 
density (mW/
m2)

References

1a Two-chamber 679 1.67 × 10−3 315 53
2a Two-chamber 575 6 × 10−3 77 54
3b Two-chamber 742.3 3145 539 54
4c Two-chamber 408 0.65 770 55
5c Two-chamber 560 0.552 × 103 214 56
6d Two-chamber 192.01 27.55 5.29 Expt. 1 (this study)
7d Two-chamber 229.10 32.83 7.52 Expt. 2 (this study)
8d Two-chamber 84.44 12.20 1.03 Expt. 3 (this study)
9d Two-chamber 244.88 35.16 8.61 Expt. 4 (this study)
10d Two-chamber 341.64 13.64 4.66 Expt. 5 (this study)
11d Two-chamber 431 17.19 7.41 Expt. 6 (this study)

Fig. 9  Change in  BOD5 (mg/l) for different sludges

Fig. 10  Microscopic view of a 
Escherichia coli and b Bacillus 
subtilis using 40 × lens in drain 
sludge
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can be used as a substrate and different sludges can be used 
as the sources of microorganisms in MFC. The reduction of 
Biological Oxygen Demand  (BOD5) of the sludge implied that 
in MFC both power generation and effluent treatment can be 
done simultaneously.

However, due to lack of laboratory facilities and financial 
support, it was not possible to identify the proportion of par-
ticular carbohydrate (e.g., starch, glucose, and sucrose) in 
organic substrate, and biochemical test of the sludge was not 
done to identify the composition of the sludge.
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