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Abstract
The study focuses on enhancing the efficiency of bioethanol production as a means to reduce reliance on crude oil and miti-
gate environmental pollution. A key aspect involves the optimization of bioethanol production through the application of 
an artificial intelligence approach. The Artificial Intelligence Decision-Making System (AIDMS) algorithm was developed 
using a machine learning algorithm, utilizing datasets derived from experimental results and published research. In the 
optimization process, a Pearson correlation coefficient matrix was established for 250 training datasets, revealing positive 
and negative correlation coefficient values. These values underscore the significance of each parameter in ethanol produc-
tion. Various biomass feedstocks, including cotton stalk, wheat straw, olive tree, potato peel waste, rice straw, and sugarcane 
bagasse, were selected for validation of the AIDMS algorithm. The validation process compared experimental results with 
predictions made by the AIDMS, demonstrating a commendable 94% accuracy. The weighted rank order aggregate analysis 
revealed that cellulose (%), s-temp (°C), acid conc. (%), lignin (%), s-time (min), and hemicellulose (%) show the importance 
of parameters in obtaining glucose yield. Similarly for ethanol yield, cellulose (%), f-temp (°C), f-time (h), lignin (%), and 
hemicellulose (%) show the order of rank and its importance. The artificial intelligence-based optimization method is suit-
able for bioethanol production.

Keywords  Machine learning · Optimization · Biomass · Dilute acid hydrolysis

1  Introduction

In the modern world, non-renewable energy sources like fos-
sil fuels are used to meet the world’s energy needs [1]. Fossil 
fuels do, however, have some significant drawbacks, such as 

an adverse impact on the environment [2, 3]. Fossil fuels are 
becoming less abundant due to rising industrialization and 
population, which is one of the primary contributors to cli-
mate change and greenhouse gas emissions. In light of this, 
it is essential to investigate and optimize the alternate energy 
sources including biodiesel, bioethanol, and hydrogen [4–6]. 
The cellulose consisting of polysaccharides and hemicel-
lulose plays an important role in bioethanol production 
[7, 8]. The conversion of cellulose into glucose and ethanol 
requires an efficient hydrolysis process [9]. Hence, bioetha-
nol production requires an effective pre-treatment [10]. The 
change in the structural components of the lignocellulose by 
pre-treatment is to remove hemicellulose and lignin. Several 
pre-treatment techniques such as enzymatic hydrolysis, acid 
hydrolysis, and alkali hydrolysis were used [11]. For the 
removal of lignin, it requires high chemical concentration 
and temperature. The development of metabolic inhibitory 
components is required, which is considered a drawback.

Hydrolysis of lignocellulose for bioethanol production 
can be carried out in enzymatic and acid hydrolysis [12–14]. 
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Pre-treatment of lignocellulosic materials can be done using 
acid hydrolysis. Conversion of hemicellulose into glucose 
with higher reactions and less cost by using sulfuric acid, 
hydrochloric acid, and citric acid. At moderate temperatures 
of acid hydrolysis, saccharification suffers because of the 
decomposition of glucose [15]. At high temperatures and 
low pH of acid hydrolysis, it is necessary to utilize high-cost 
equipment. So, neutralization of acid hydrolysis before the 
fermentation process is important [16]. Intelligent computer-
ized models connect the gap between research approaches 
and the latest methods by imparting the ability of optimiza-
tion to advanced experimental results [17, 18]. Compared to 
hard computerized models, intelligent user models offer high 
accuracy in predicting results [17, 19]. Thus, a user-friendly 
computerized model plays an important role in the optimiza-
tion of bioethanol production to predict the glucose and eth-
anol yields. A machine learning algorithm plays a better role 
when comparing another optimization algorithm [20, 21]. 
Firstly, food crops, lignocellulosic biomass, and waste are 
feedstocks of the first and second generations. Microalgae 
constitute the third and fourth generation of feedstock. In 
3rd and 4th generation feedstock, this AIDMS algorithm can 
be implemented in anaerobic digestion process parameter 
optimization to obtain biogas yield.

Machine learning is a favorable tool for modeling and 
optimizing bioethanol production. It can process and pre-
dict without prior knowledge, making the method useful for 
bioethanol production [22, 23]. AI models used in various 
processes have achieved better results [24]. With the devel-
opment of a machine learning algorithm, good results were 
obtained from the fermentation of glucose to estimate the 
bioethanol production [25]. A machine learning algorithm 
makes the system analyze the given inputs and change the 
process conditions to improve efficiency [26]. Machine 
learning algorithms can be applied in several applications, 
such as the chemical industry, petroleum industry, manufac-
turing industry, and climatic conditions [17, 27, 28].

In this work, an Artificial Intelligence Decision-Making 
System was proposed to obtain the optimal bioethanol yield 
from the given biomass characteristics and process condi-
tions. In Python programming, the simple linear regression 
(SLR) and the weighted rank order aggregate (WROA) func-
tion were developed. The SLR function categorizes the train-
ing dataset consisting of biomass, and the categorized results 
were stored in the cloud repository. The WROA function allo-
cates weighted rank to the biomass characteristics and pro-
cess conditions based on the importance of distance weight. 
The judgment block (JB) was created to admit data from the 
cloud repository and acts as a port with SLR and WROA 
functions. Using AIDMS in the optimization of biomass 
characteristics, saccharification conditions and fermentation 
conditions. Regression analysis was reported in other research 
articles. In this study, a ranking order was given to cellulose, 

hemicellulose, lignin, and saccharification and fermentation 
conditions based on the importance of bioethanol production. 
This AIDMS algorithm considers the importance according to 
the rank order aggregate and makes brilliant decisions.

2 � Materials and methods

This study was by relevant institutional, national, and inter-
national guidelines and legislation.

2.1 � Collection and preparation of biomass

The biomass feedstock such as cotton stalk, wheat stalk, rice 
straw, banana plant waste, corn cob, olive tree, potato peel 
waste, and coconut shells used in this study was collected 
from a farm around SSN College of Engineering, Kalavak-
kam, Chennai, Tamil Nadu, India a (12.7517° N, 80.2033° 
E). The biomass feedstocks collected were washed and dried 
in a hot air oven at 40 °C until the steady weight was accom-
plished and processed to a 70-mesh size and stored in plastic 
bags at a dry place until further use. The biomass character-
istics and saccharification and fermentation conditions act 
as the input. As per the standards of the American Society 
for Testing and Materials (ASTM D 2974-07a), the biomass 
feedstock was tested for their contents of moisture (%) and 
ash (%), and the biomass characteristics such as the cellulose 
(%), hemicellulose (%), and lignin (%) were analyzed using 
the Neutral Detergent Fiber (NDF) method [29, 30].

2.2 � Dilute acid hydrolysis

The upper and lower limits of various operational parameters 
such as dilute acid concentration, temperature, and retention 
time were fixed based on previous research works. For acid 
hydrolysis experiments, a constant solid-to-liquid ratio of 5% 
(wt/vol) was maintained throughout, and the acid concentra-
tion, temperature, and retention time were varied from 0.89 
to 5% (vol/vol), 70–120 °C and 20–120 min, respectively 
[31]. All experiments were carried out in screw-capped 
Pyrex bottles, and deionized water was added to the mixture 
to adjust the solid:liquid ratio. Further, the solid and liquid 
parts were separated by the Buchner funnel after cooling 
down to room temperature. The reducing sugar concentra-
tions of the hydrolysate (liquid fraction) were determined 
by Dinitro salicylic acid (DNS) assay with modification 
[32] method using a UV–Vis spectrophotometer (UV1800, 
Shimadzu, Japan) at 540 nm [33]. Finally, the hydrolysate 
required for fermentation for the production of ethanol was 
prepared by carrying out the above-mentioned acid hydroly-
sis process.
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2.3 � Fermentation

The hydrolysate obtained from the method described in Sec-
tion 2.2 was made to undergo a fermentation process, and 
ethanol production potential was analyzed. The fermenta-
tion process was carried out in Erlenmeyer flasks of 150 mL 
capacity, having a suitable media of 100 mL at 150 rev/min 
on a shaker. The operating temperature and retention time 
varied from 25–35 °C and 24–55 h, respectively. A 4% (v/v) 
of Saccharomyces cerevisiae was used as inoculum (10 ml) 
with a fermentation medium containing 3 g/L yeast extract, 
5 g/L peptone, 2 g/L KH2PO4, 0.2 g/L MgCl2, and 0.2 g/L 
CaCl2. Periodically, samples were withdrawn to estimate 
the amount of ethanol produced by the spectrophotometric 
potassium dichromate method [34].

2.4 � Dataset pre‑processing

Data pre-processing steps are applied to the training dataset.

2.4.1 � Cleaning of biomass dataset

This involves identifying and correcting errors in the data-
set by predicting the missing values using the oversampling 
method.

2.4.2 � Normalization of dataset

It splits the data into training and test datasets. By standard-
izing the range of independent variables or features within 
a dataset, data normalization enhances the consistency and 
comparability of the prediction model and produces more 
consistent and reliable output.

2.4.3 � Dataset feature scaling

Ensuring that every characteristic receives equal considera-
tion during the learning process is made possible by scaling 
features. Without scaling, learning could be dominated by 
features at a larger scale, leading to skewed results. Scaling 
ensures that each feature contributes equally to model pre-
dictions while also eliminating this bias. From these three 
data pre-processing techniques, the accuracy of the results 
is improved.

2.5 � Artificial intelligence algorithm

This algorithm architecture includes a supervised machine 
learning approach that may be applied to regression and 
classification problems called support vector machine 
(SVM). The primary goal of SVM is to identify the opti-
mal boundary, also known as a hyperplane, for classifying 
the data. It can handle smaller datasets and may effectively 

approximate decision boundaries even in the absence of a 
universal approximation theorem resulting in good accuracy 
[35]. The main reason for not including ANN in this study 
because it requires a larger number of labeled datasets for 
training resulting in less accuracy when compared to SVM. 
So SVM is an effective and simple tool in the optimization 
of the dilute acid hydrolysis process. The process parameters 
like temperature and time symbolize the change in time and 
temperature. For optimization of dilute acid hydrolysis pro-
cess parameters to obtain the glucose and ethanol yields, 
an Artificial Intelligence Decision-Making System was 
developed. The data containing biomass characteristics, sac-
charification conditions, and fermentation conditions were 
collected from various research articles. This study consists 
of four segments as shown in (Fig. 1), namely, the biomass 
characteristics segment, the pre-processing segment, the pro-
cess conditions segment, and the yield segment.

For tuning hyperparameters, the Bayesian optimization 
model was used because it improves efficiency by evaluat-
ing all possible hyperparameter combinations by building 
the probability model of the objective function [36]. This 
model also reduces the required evaluations by directing the 
search toward promising hyperparameters. It is more effi-
cient when compared to other hyperparameter tuning mod-
els like random and grid search [37]. This model’s main 
advantage is determining the next dataset to evaluate and 
automatic tuning [38]. The hyperparameters like cellulose 
(%), hemicellulose (%), lignin (%), acid concentration (%), 
saccharification–time (min), saccharification–tempera-
ture (°C), glucose (g/L), fermentation–time (h), fermenta-
tion–temperature (°C), and ethanol (g/L) were tuned using 
this model. It improves the AIDMS algorithm performance 
and interpretability and reduces the overfitting problems.

Biomass characteristics were compared with the training 
dataset with the help of an SLR function classifier and stored 
in the storage block called a cloud repository. The obtained 
results from the SLR act as the input to the bioethanol pro-
duction module via JB-1. WROA for process conditions is 
created and acts as the input to the JB-2. The optimum pre-
dicted glucose and ethanol yields were stored in the storage 
block (i.e.) cloud repository. The training dataset consists of 
biomass feedstock such as rice straw, rice husk, sugarcane 
bagasse, olive tree, and cotton stalk which was obtained 
from the tensor flow (“.csv”) file format and acts as the input 
to SLR function developed in Python [39]. Sqllite3 is used 
for operating the database. Pandas’ library package is used 
to manipulate the dataset and acts as the analyzing tool [40]. 
The nearest neighbor approach uses the function to produce 
the missing data.

The SLR function is considered for four biomass char-
acteristics such as cellulose (%), hemicellulose (%), lignin 
(%), and three process conditions for saccharification such 
as dilute acid concentration (%), temperature (T in °C), and 
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time (t in min), and two process conditions for fermenta-
tion such as temperature (T in °C) and time (t in h). This 
SLR function generates an integer subset. This subset con-
sists of cellulose (%) as C (%) = (C1, C2…Ci) where Ci is 
considered as the cellulose integer characteristics variable. 
Similarly, the same integer set is generated for hemicellulose 
(%) as H (%) = (H1, H2…. Hi) and lignin (%) as L (%) = 
(L1, L2…. Li). The acid hydrolysis process conditions such 
as saccharification and fermentation also have the integer 
condition variable. Saccharification process conditions also 
have integer variables such as Acid Conc., S-T, and S-t, 
(S- conc. as acid concentration, S-T as saccharification tem-
perature, S-t as saccharification time), and for fermentation 
conditions has F-T and F-t, (F-T as fermentation tempera-
ture, F-t as fermentation time). JB deals with the test dataset. 
WROA allocates rank order to the biomass characteristics 

and process conditions according to their importance in the 
production of bioethanol. The algorithm generated 250 data 
points, which are detailed in Table A1 (Annexure), desig-
nated for training purposes, alongside an additional 20 data 
points allocated for testing. Euclidean distance algorithm 
was used in this WROA to obtain the weighted rank for bio-
mass characteristics and process conditions, and the results 
were validated with the training dataset to obtain the output 
[41]. The Artificial Intelligence Decision-Making System 
algorithm analyses every parameter in the dataset to predict 
the glucose and ethanol yields. The predicted data using the 
AIDMS algorithm is stored in the storage block of the cloud 
repository as the additional training dataset. During the opti-
mization procedure, N datasets are predicted and stored in 
the cloud. This proves that this AIDMS algorithm improves 
the quality of the dataset.

Fig. 1   Artificial Intelligence 
Decision-Making System 
(AIDMS) used in the study
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3 � Results and discussion

3.1 � Influence of biomass characteristics and process 
conditions on glucose and ethanol yields

Biomass characteristics such as cellulose (%), hemicel-
lulose (%), and lignin (%) were considered the most effi-
cient parameters in glucose and ethanol yields. Figures 2 
and 3 represent the input statistical data analysis used 
in the study. Five responses such as glucose and ethanol 
yields were compared with the process conditions such as 
S-conc., S-T, S- t, F-T and F-t. Because of its higher glu-
cose yield, dilute acid hydrolysis is used in this AIDMS 
algorithm. Mineral acid like H2SO4 can be used in the 
hydrolysis of cellulose to obtain an ethanol yield. H2SO4 is 
96% by weight in an aqueous solution [42]. It also consists 
of a high concentration of H+ and it is considered a strong 
catalyst because of its lower water content and would drive 
the equilibrium towards the reactants [43]. The benefit of 
ethanol production from cellulose is the inexhaustibility 
and advantage of cellulosic biomass [44]. Acid hydroly-
sis of cellulose using sulfuric acid has two steps. In the 
first step, the acid breaks the β-1,4-glycosidic bond, and 
the second step is the conversion of cellulose to glucose 
[45–47]. Acid hydrolysis of hemicellulose consists of two 
steps. In the first step, 0.7% of H2SO4 was used at 190 °C 

to hydrolyze the hemicellulose. In the second step, 0.4% of 
H2SO4 was used at 215 °C to obtain the cellulose fraction. 
Finally, the hydrolyzates are removed before fermentation 
conditions [48, 49].

During acid hydrolysis, lignin contains more acid, which 
leads to difficulty in using it as a feedstock. So, lignin is 
left as residue [50]. Many previous research articles used 
in this study support this analysis. Cotton stalk biomass 
had cellulose (40.1%), hemicellulose (13.6%), and lignin 
(29.4%) content and upon bioethanol production, resulted 
in (29.4 g/L) of glucose yield [51]. The biomass of Curcuma 
longa comprised cellulose (50%), hemicellulose (11.2%), 
and lignin (12%) content resulting in (31 g/L) of glucose 
yields [52]. Cellulose is the important element that forms 
glucose units with polymerization available in glucose and 
ethanol yields. Hence higher amount of cellulose content in 
biomass characteristics is favorable. During the dilute acid 
hydrolysis-saccharification and fermentation processes, the 
cellulose (%) is directly proportional to the glucose and 
ethanol yields, whereas the hemicellulose (%) and lignin 
(%) are inversely proportional to the glucose and ethanol 
yields [53]. In the saccharification process, the glucose level 
attains its maximum at low temperature (70–84 ℃). If there 
is an increase in temperature with increases in acid con-
centration, the glucose yield decreases are reported in the 
literature [42]. At a time period of 20–32 min, maximum 

Fig. 2   Influence of biomass characteristics and saccharification conditions on glucose yield (S-saccharification)
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glucose yield was attained. In this analysis, the tempera-
ture < 120 ℃ and time < 120 min were taken to reduce the 
Hydroxymethyl furfurals (HMF) production. Below 120 ℃ 
temperature and time of 120 min, the production of HMF 
is less than 5% reported in the literature [31]. During the 
fermentation analysis, temperature and time are directly cor-
related to ethanol yield.

3.2 � Correlation coefficient parameters

Analyzing the correlation coefficient values between the 
biomass characteristics and process conditions and their 
influence on bioethanol production is important in deter-
mining the rank order by using the WROA function. Pear-
son matrix determines the correlation coefficient values by 
measuring the strength of the relationship between every 
variable present in the biomass dataset. It uses the value 
of one parameter to predict the value of the other param-
eter. Correlation coefficients are a quantitative assessment 
that measures both the direction and the strength of this 
tendency to vary together. It can be used to test whether 
the relationship between two variables is significant. It 
has + ve, −ve, and no correlation values. The positive cor-
relation values show the importance of biomass charac-
teristics and dilute acid saccharification and fermentation 
process parameters in optimizing bioethanol production 

to obtain yields. The negative correction acts as the det-
rimental effect that affects the production. This AIDMS 
algorithm uses the correlation coefficient values of every 
parameter to improve the performance of the AIDMS algo-
rithm. Figure 4 shows the Pearson correlation coefficient 
values for glucose yield. The cellulose (%) content present 
in the biomass characteristics is positively correlated to 
glucose, having a correlation coefficient value of 0.968. 
This correlation value shows the importance of cellulose 
in the production of bioethanol. The biomass characteris-
tics such as hemicellulose (%) and lignin (%) are inversely 
correlated to glucose yield, having coefficient values of 
−0.698 and −0.883 with (p > 0.05). The saccharification 
process conditions of temperature, acid conc., and time 
is inversely correlated to glucose yield with a coefficient 
value of −0.844, −0.798 and −0.768 with (p > 0.05). As 
time increases, the glucose yield decreases. Except for 
cellulose (%), all the other biomass characteristics and 
process conditions have negative correlation values. For 
saccharification, the cellulose (%) ranges from 0.968 to 
0.956, hemicellulose (%) ranges from −0.698 to −0.690, 
lignin (%) ranges from −0.877 to −0.883, acid concentra-
tion (%) ranges from −0.794 to −0.798, temperature (°C) 
ranges from −0.844 to −0.840, and time (min) ranges from 
−0.768 to −0.772.

Fig. 3   Influence of biomass characteristics and fermentation conditions on ethanol yield (F-fermentation)
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Figure 5 shows the fermentation conditions having a 
positive correlation coefficient value for cellulose (%) and 
temperature and time such as 0.904, 0.848, and 0.823 with 
(p < 0.05). The negative correlated coefficient values for 
hemicellulose (%) and lignin (%) were as follows: −0.551 
and −0.753 with (p < 0.05). For fermentation, the cellulose 
(%) ranges from 0.904 to 0.905, hemicellulose (%) ranges 
from −0.551 to −0.557, lignin (%) ranges from − 0.753 to 
−0.758, temperature (°C) ranges from 0.845 to 0.848, and 
time(min) ranges from 0.823 to 0.825.

3.3 � Weighted rank order aggregate (WROA)

Considering three biomass characteristics, three sacchari-
fication process conditions, and two fermentation process 
conditions, a total of 11 parameters were given rank order 
using the weighted rank order aggregate function. Based on 
the WROA, the first rank was given to cellulose (%) in both 
the glucose and ethanol yield analyses. Figure 6 shows the 

rank order for biomass characteristics and saccharification 
conditions. Cellulose (%) is considered an important factor 
with the first rank 232 times in the 250 training dataset. 
Temperature was ranked second with a weightage of 227 
times. The third rank was given to acid concentration (%) 
with the rank weightage of 224 times. High cellulose content 
will increase the glucose yield. It provides a good yield over 
a lower temperature and time. Figure 7 shows the WROA 
for biomass characteristics and fermentation conditions. 
Cellulose (%) has taken first place with a weightage of 229 
times. Second and third place were given to temperature and 
time with a weightage of 220 and 219 times. The Euclid-
ean distance method was used in this AIDMS algorithm. It 
calculates the distance between similar parameter data. A 
weighted rank was given to the data points having the same 
distance. If the distance between similar datasets varies, the 
weighted rank was given to the data according to the nearest 
neighbor distance. This process was repeated several times, 
for a total of 250 dataset runs in the WROA algorithm. The 

Fig. 4   Correlation coefficient of 
glucose analysis using Pearson )%(esolulleC
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outputs were generated after the number of trials fed to the 
JB-2 and finally stored in the storage block of the cloud 
repository.

3.4 � Prediction of biomass characteristics 
and process conditions

The JB-2 block makes the final decision. For optimizing the 
bioethanol production conditions, 20 datasets were given 
as the testing data. At the beginning stage of the AIDMS 
algorithm workflow, the testing dataset containing the bio-
mass characteristics as input, the obtained correlation values 
are stored in the SB of the cloud repository. Based on their 
similarity, rank order was given to the JB-2. In JB-2, the 
optimum process conditions were compared with the stored 
dataset to calculate the residuals. This process is repeated 
several times until the best result is attained for the given 
yield which should be similar to the test data. The predicted 
data was stored in the SB of the cloud repository as addi-
tional training data. So the residual fit is suitable. In this 
bioethanol production, the glucose and ethanol yield values 
can be calculated using the AIDMS algorithm.

Figure 8 shows the residue plot for biomass characteris-
tics and process conditions for bioethanol yield. From the 
figure, it is clearly shown that all the parameters fit well 
with an accuracy of > 94%. The AIDMS algorithm shows 
a higher R2 value and fits well with the experimental data. 
This algorithm predicts the process conditions by using the 
biomass name and characteristics as input when the glu-
cose yield is fixed. To evaluate the accuracy of the AIDMS 
algorithm, by using the coefficient of determination R2 
values were obtained by comparing the 20-test dataset 
with the predicted AIDMS dataset. The cross-validation 
step is used to evaluate the performance of the AIDMS 
model. It ensures the robustness and good generalization 
of the model chosen for deployment to new data. The per-
formance of the AIDMS algorithm for predicting ethanol 
production across different feedstock results is effective 
because it reviews the dataset several times until it attains 
the desired output. By comparing the AIDMS-predicted 
dataset with the experimental dataset, 94% accuracy was 
attained. The AIDMS algorithm can learn from several 
feedstock compositions. They are strong generalizers to 
novel feedstock types because they capture fundamental 
patterns. Because of the variations in process parameter 

Fig. 6   Frequency histogram plot of WROA for glucose yield
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conditions, this AIDMS algorithm can learn the relation-
ship between the conditions and the bioethanol yield by 
making them available across various setups, coming to 
scaling of AIDMS, this algorithm can adapt to industrial 
scale and lab-scale experiments by improving the accuracy 
during the validation.

Real-world industrial setting applications include the 
following:

1.	 Optimization of dilute acid hydrolysis process param-
eter to obtain glucose and ethanol yields by using the 
AIDMS algorithm.

2.	 Maintenance of the predicted dataset in the cloud reposi-
tory.

3.	 Efficiency can be improved by analyzing the process 
parameter dataset.

Potential impact on bioethanol efficiency includes the 
following:

1.	 Maximum glucose and ethanol yields due to optimiza-
tion of saccharification and fermentation process param-
eters.

2.	 Cost can be reduced by preferring this AIDMS algo-
rithm instead of using high-cost equipment.

3.	 This AIDMS algorithm can adapt to any feedstocks.

The limitations of this study are data collection, data 
quality, and interpretation of results. The limitations like 
data collection may affect the validity and scope of the find-
ings by taking time and resources. Similarly, data quality 
can be improved by supplementing the training dataset by 
implementing different copies of the minority classes. It can 
be done many times to improve the accuracy of the results. 
Similarly, interpretation of results can be reduced by using 
SVM for classifications and regressions. It improves the pre-
diction of the dataset using the AIDMS algorithm.

3.5 � Validation of AIDMS

The biomass characteristics and process conditions pre-
dicted by the AIDMS algorithm were validated using 
experimental results shown in Table 1. Five biomass feed-
stocks were used for validating the experiments, and their 
biomass characteristics and process conditions were given 
as the input in AIDMS. The process conditions were set 

Fig. 7   Frequency histogram plot of WROA for ethanol yield
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in experiments, and the glucose and ethanol yields were 
determined. Similarly, the AIDMS also obtains the glucose 
and ethanol yields for five biomass feedstocks. Accuracy 
% can be calculated from Eq. 1,

From Table 1, it is shown that

	 I.	 When the saccharification temperature increased, the 
glucose yield was reduced.

	 II.	 The AIDMS algorithm has biomass characteristics 
as a training dataset and the process conditions were 
predicted for the selected biomass.

	 III.	 If the cellulose is 44.95%, hemicellulose is 55.31%, 
lignin is 22.71%, and acid concentration is 5%, rice 
straw waste biomass yielded low glucose and ethanol 
because of its increase in hemicellulose, lignin, and 
acid concentration.

(1)Accuracy(%) = (100 −

(

Expt.data−predicted data from AIDMS

Experimental data

)

× 100

	 IV.	 Glucose and ethanol yields were low for banana 
plant waste biomass because of its cellulose content 
(30.13%) and high hemicellulose (42.01%), lignin 
(27%), and acid concentration (5%). As the sacchari-

fication time increases, the glucose yield decreases.

3.6 � Validation of targeted AIDMS

A targeted AIDMS model predicts the biomass characteris-
tics and process conditions for the glucose and ethanol yields 
by the user. Five biomass feedstocks such as cotton stalk, 
wheat straw, olive tree, potato peel waste, rice straw, cotton 
stalk, and sugarcane bagasse were selected from the vari-
ous studies for verification of this algorithm. The targeted 
glucose yield was set to determine the process conditions 
and ethanol yield. By comparing the targeted glucose yield, 

Fig. 8   Comparison of predicted data of acid hydrolysis—saccharification and fermentation conditions from the actual data available in the test 
dataset
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the results obtained are > 94%. Out of 250 acid hydrolysis 
biomass datasets, the training dataset contains the collected 
dataset as well as the AIDMS model-predicted dataset so 
the accuracy of the training dataset is higher than the test 
dataset accuracy [54]. The accuracy of the training data-
set obtained using this AIDMS algorithm is 96% which is 
more compared to the accuracy of the test dataset 94%. This 
proves that the Artificial Intelligence Decision-Making Sys-
tem performs well in this optimization of the dilute acid 
hydrolysis process.

4 � Conclusion

This study uses machine learning to develop an algorithm 
called the Artificial Intelligence Decision-Making System 
to optimize the production of bioethanol from different bio-
mass feedstocks. A hundred datasets act as training data and 
20 as test data. The Pearson correlation coefficient matrix 
shows the correlation between glucose and ethanol yields for 
biomass characteristics and process conditions. A weighted 
rank order aggregate was given to find the important factor 
in determining the yield. The accuracy % was determined 
using actual values and values predicted using the AIDMS 
algorithm and found to be more than 94%. For feedstock 
such as cotton stock, banana plant waste, 97% of accuracy, 
and for wheat straw 96% was attained through this algo-
rithm. This artificial intelligence-based system plays an 
important role in optimizing bioethanol production. In the 
future, using this AIDMS algorithm, a master data manage-
ment system was developed for bioethanol production for 
implementation in the industry. It can also be implemented 
to optimize Hydro Thermal Liquefaction and Hydro Ther-
mal gasification.
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