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Abstract
In this paper, we have synthesized ZnO nanoparticles namely ZnO (L5) and ZnO (L10) nanoparticles. Both ZnO (L5) and 
ZnO (L10) nanoparticles have been synthesized by biosynthesis methods using Madagascar periwinkle leaf extract. The 
biosynthesis method is simple, eco-friendly, and cheap. ZnO (L5) and ZnO (10) nanoparticles have been characterized 
by using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), UV- 
Visible Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy 
(FESEM), Brunauer–Emmett–Teller (BET), and Transmission Electron Microscopy (TEM). The Powder X-ray diffraction 
(PXRD) revealed that synthesized ZnO (L5) and ZnO (L10) consist of a typical hexagonal wurtzite phase. The size and 
morphology of synthesized ZnO (L5) and ZnO (L10) nanoparticles were determined using Scanning Electron Microscopy 
(SEM), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). The FTIR 
study reveals that phytochemicals from the leaf of the Madagascar periwinkle leaf extract are present on the surface of syn-
thesized ZnO (L5) and ZnO (L10) nanoparticles. The BET analysis shows that the measured surface areas of ZnO (L5) and 
ZnO (L10) nanoparticles are 10.202  m2/g and 38.762  m2/g respectively. The photocatalytic activity of both the synthesized 
nanoparticles was determined against methylene blue (MB) organic dye. It was evident from the results that ZnO (L10) is a 
better catalyst than ZnO (L5). Herein, MB dye was degraded (94.09%) in 600 min by ZnO (L5) photocatalyst and (97.92%) 
in 360 min by ZnO (L10) photocatalyst. Therefore synthesized ZnO (L5) and ZnO (L10) nanoparticles could be employed 
as an efficient photocatalyst for the degradation of toxic organic dyes.
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1 Introduction

Waste from various industrial and domestic sources con-
tains organic chemicals in high concentration. This waste 
when discarded in natural water makes it hazardous and 
non-consumable. Approximately 30% – 40% of these 
organic chemicals are composed of organic dyes which 
are released from various textile industries [1]. Azo dyes 
are widely used in textile, paper, fruit, leather, cosme-
ceuticals, and pharmaceutical industries, making up the 
majority of dyestuffs produced [2]. These organic dyes 
are carcinogenic and have complex aromatic structures 
which makes them stable against natural degradation [3]. 
They are toxic if inhaled; absorbed or swallowed it may 
lead to multiple eyes, skin, and respiratory problems [4]. 
Therefore, researchers made several attempts to treat these 
problems [5].

Researchers used various biological treatments to 
remove these organic dyes from wastewater but it was inef-
fective such as the microorganisms present in water were 
not capable of degrading the organic dyes [6]. They used 
various physical methods like coagulation, oxidation or 
reduction, membrane filtration, sorption, chemical precipi-
tation, photocatalysis, solvent extraction, and ion exchange 
to overcome these hazards [7]. Photocatalytic degradation 
is an important technique among them as it is economical, 
simple, safe, and efficient and it produces no secondary 
toxic byproduct [8, 9].

Flilissa et al. have used Bentonite/Sodium dodecylben-
zene sulfonate composite for methylene blue removal from 
wastewater [10]. Utami et al. have synthesized N-TiO2/
rGO using the hydrothermal method for the removal of 
organic dye and heavy metal from textile wastewater [11]. 
Yadav et al. synthesized microcrystalline calcium carbon-
ate particles using incense sticks ash and this synthesized 
microcrystalline calcium carbonate particles removed 
48.6% of methyl red dye from the aqueous solution within 
one hour [12]. Naik et al. used a silica matrix as a substrate 
for zinc oxide nanoparticles (ZnO NPs) to increase their 
photocatalytic activity in the degradation of methylene 
blue (MB) dye [13].

Fetimi et al. have spent decades developing environ-
mentally friendly advanced oxidation processes (AOPs) 
[14]. In recent times Advanced Oxidation Processes 
(AOPs) have also gained the attention of researchers for 
wastewater treatment as they involve the generation of free 
radicals [15]. Free radicals act as oxidizing agents and 
hence promote the oxidation of pollutants present in the 
water. It is a greener method used to convert the pollutants 
of wastewater into less toxic molecules [16].

Semiconductor-mediated photocatalysis is the most 
suitable method for the degradation of organic dyes [17]. 

They have low cost, high degradation efficiency, easy 
manipulation, broad usage, and relatively safer reaction 
conditions [18]. The basic principle of photocatalytic reac-
tion involves the absorption of photons by a photocatalyst 
(semiconductor) which leads to the excitation of electrons 
from the valence band to the conduction band which cre-
ates electron deficiency or a hole in the valence band and 
generating electrons in the conducting band. The electron/
hole moves towards the surface of the photocatalyst and 
undergoes a redox reaction thus generating radicals such 
as hydroxyl radicals which degrade the organic dyes [19].

Nanoparticles have been synthesized using wet chemi-
cal processes such as co-precipitation, microemulsion, 
chemical vapor deposition, hydrothermal, pyrolysis, radi-
ation-induced, solvothermal, and electrodeposition. These 
procedures have several disadvantages, including the use 
of dangerous and harmful compounds, increased prices, 
ecotoxicity, high consumption levels, and by-products with 
longer reaction times [20]. Plants are a natural source of 
different biologically active chemicals [21]. Biological syn-
thesis is a cost-effective and ecologically benign approach 
to producing nanoparticles. It employs biological reducing 
and stabilizing agents, as well as catalysts [22]. Bhusal et al. 
have synthesized trimetallic Cu/Fe/Zn nanoparticles (NPs) 
by using Catharanthus roseus leaf extract [23]. Idris et al. 
fabricated Silver–Zinc bimetallic nanoparticles using Acti-
nidia chinensis var. deliciosa (Kiwi) peel extract [24].

Semiconductors of various metal oxides such as  TiO2, 
 Fe2O3, CdS, ZnO,  V2O5, NiO, etc. were used as photocata-
lysts for the degradation of organic dyes [9, 19, 25, 26]. Zinc 
oxide (ZnO) has been used mainly due to its great intrinsic 
properties and high environmental remediation [27]. ZnO 
has low cost, high biocompatibility, excellent chemical sta-
bility, and a unique structure [28]. However, its application 
is inhibited due to broadband gap and recombination of pho-
tons with high speed [29]. Zinc oxide (ZnO) is a semicon-
ductor with a direct band gap of 3.37 eV and a high exciton 
binding energy of 60 mV at 300 K. Zinc oxides are nearly 
insoluble in water. It is also optically clear within the visible 
spectrum. We can overcome this by doping of ZnO structure 
with the help of metals or non-metals or by the formation 
of heterojunction with any other semiconductor [30]. Modi 
et al. have reported the ZnO nanoparticles in the remediation 
of MB dye from wastewater [31].

In this research article, we have reported Madagascar 
periwinkle leaf extract mediated green synthesis of ZnO 
NPs and evaluated their potential as the photocatalyst. Phy-
tochemicals found in leaves play a significant role in the 
synthesis of nanoparticles and affect the degradation of dyes. 
Catharanthus roseus, also known as the Madagascar peri-
winkle, is a native plant of Madagascar. The extract of its 
leaves contains various phytochemicals, mainly alkaloids 
such as Vincristine, Vinblastine, Vinpocetine, Reserpine, 



Biomass Conversion and Biorefinery 

Ajmalicine, Ajmaline, Yohimbine, Vindolidine, Catharan-
thine, Vindoline, Serpentine, Vindesine, Vindolicine, and 
Vindolinine, which contain different functional groups [32]. 
These functional groups on the surface of synthesized ZnO 
(L5) and ZnO (L10) nanoparticles play a crucial role in the 
adsorption of dye molecules on their active sites. When more 
dye molecules are adsorbed on the active sites of synthesized 
photocatalysts, it leads to multilayer adsorption, which fol-
lows the Brunauer–Emmett–Teller (BET) isotherm. There-
fore, the rate of degradation of MB dye molecules becomes 
high which leads to a decrease in the time of degradation.

2  Experimentation

2.1  Materials

Zinc acetate [Zn  (COOCH3)2] (pure minimum assay, 99.0%), 
sodium hydroxide [NaOH] (minimum assay, 97.0%), etha-
nol  [C2H5OH] (pure minimum assay, 99.9%), and methylene 
Blue (MB) (pure minimum assay, 96.0%) were purchased 
from Central Drug House (P) Ltd, India. The chemicals were 
used without further purification. All the experiments were 
performed in double distilled water.

2.2  Collection of plant’s leaves

Fresh healthy leaves of Madagascar periwinkle plant (Sada-
bahar) were collected from the garden of Miranda House, 
Delhi University.

2.3  Preparation of 10% Leaf Extracts (LE)

The collected Madagascar periwinkle plant’s leaves were 
further washed thoroughly and then blotted using a blotting 
paper. After that, they were kept for drying in an oven at 
80 °C for 3 h and were crushed manually.

The dried and powdered leaves of amount 3.0 g were 
taken in a beaker of 100 mL, after that 30 mL of distilled 
water was added and kept on a hotplate magnetic stirrer (at 
500 rpm) for 30 min at 40 °C. The freshly prepared leaf 
extract (LE) was filtered using Whatman filter paper.

2.4  Synthesis of Zinc oxide [ZnO] nanoparticles

Two sets of experiments were set up in order to synthesize 
ZnO nanoparticles (L5 and L10). In the first set 50 mL of 
0.5 M [Zn(COOCH3)2] and 5 mL of Madagascar periwinkle 
leaf extract were taken in one beaker. This reaction solution 
was kept on hotplate magnetic stirrer for 5 min. After 5 min 
50 mL of 0.5 M NaOH solution were added to precursor 
solution. The reaction solution was allowed to heat at 40 °C 
with constant stirring for 2 h. After 2 h, a white-colored 

colloidal solution obtained was washed using 50% ethanol 
solution several times and dried at 80 °C for 4 h in a hot 
air oven. Dried powders were then placed in a furnace for 
calcination at 700 °C for 8 h to get ZnO (L5) nanoparticles.

Similar process was performed for the synthesis of ZnO 
(L10) nanoparticles by using 10 mL of Madagascar peri-
winkle leaf extract instead of 5 mL leaf extract.

2.5  Characterization

The crystalline nature of both ZnO (L5) and ZnO (L10) 
nanoparticles formed was analyzed using the X-ray dif-
fraction technique [D8 Discover X-ray diffractometer 
(Brucker equipped with Cu K⍺) with X-ray source having 
a wavelength of 1.5406 Å. The morphology and the size of 
ZnO (L5) and ZnO (L10) nanoparticles were determined 
using Scanning Electron Microscope (SEM –JEOL, JAPAN: 
Model No.: JSM-6610LV), Field emission scanning elec-
tron microscope (FESEM, JEOL JSM7600 plus), and Trans-
mission electron microscope (TEM) (JEOL, JEM – 2100 
Plus electron microscope). The elemental composition of 
zinc oxide nanoparticles was analyzed using inbuilt energy 
dispersive X-ray spectroscopy (EDS). The optical proper-
ties of synthesized nanoparticles were analyzed through 
UV–visible spectroscopy (Spectramax M2e UV–visible 
spectrophotometer). Composition and functional groups of 
both the nanoparticles were analyzed through Fourier trans-
form infrared spectroscopy (FTIR) through Perkin Elmer 
(Model No.: SPECTRUM RXI-MID IR, IR range of 400 
to 4000  cm−1 having a resolution of 1  cm−1). Surface area 
was observed by Brunauer–Emmett–Teller (BET) (St 1 on 
NOVA touch 2LX [s/n:17018101201]). Nitrogen  (N2) gas 
was used as adsorbate and the range of relative pressure (P/
P0) was 0.01–0.99.

2.6  Photocatalytic behavior study of ZnO (L5) 
and ZnO (L10) nanoparticles

Two different sets of experiments were set up in order to 
study the photocatalytic behavior of ZnO (L5) and ZnO 
(L10) catalysts against Methylene Blue (MB) dye. 50 mL of 
10 ppm MB dye solution was prepared as a test solution for 
each experiment. Initially, we kept the MB dye in sunlight 
just to observe the photocatalytic degradation in the absence 
of a catalyst. Then we treated the MB dye with 50 mg of 
ZnO (L5) photocatalyst in one experiment and 50 mg of 
ZnO (L10) photocatalyst in another. Both chemical reactions 
were stirred using a magnetic stirrer for 30 min in the dark at 
room temperature before proceeding to the MB dye degrada-
tion process in order to maintain the absorption desorption 
equilibrium. The chemical reactions were then kept under 
intense sunlight so MB dye degradation could begin.
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3  Result and discussion

3.1  Powder X‑Ray Diffraction (PXRD)

The Powder X-Ray Diffraction (PXRD) determined the size 
of the crystallites and the crystalline nature of the synthe-
sized ZnO (L5) nanoparticles and ZnO (L10) nanoparti-
cles. The PXRD patterns of the synthesized ZnO (L5) and 
ZnO (L10) nanoparticles have been shown in Fig. 1(A) and 
Fig. 1(B) respectively. As shown in Fig. 1(A) ZnO (L5) 
exhibits peaks at 2θ values of 31.76°, 34.32°, 36.32°, 47.72°, 
56.60°, 63.12°, 66.40°, 67.88°and 69.22° which were corre-
sponding with (100), (002), (101), (102), (110), (103), (200), 
(112) and (201) hkl values respectively. Similarly, Fig. 1(B) 
exhibits peaks at 2θ values of 31.74°, 34.58°, 36.32°, 47.48°, 
56.80°, 62.92°,66.66°, 68.04° and 69.16° which were corre-
sponding with (100), (002), (101), (102), (110), (103), (200), 
(112) and (201) hkl values respectively.

PXRD patterns confirm that synthesized ZnO (L5) and 
ZnO (L10) nanoparticles consist of a typical hexagonal 
wurtzite phase (JCPDS card no. 36–1451) [33]. The crystal-
lite sizes of the synthesized ZnO nano-photocatalysts were 
calculated using the Scherrer equation (Eq. 1). The Scherrer 
equation is reported in the literature [34] which is given as 
follows.

where D is the crystallite size of synthesized material, k 
is the Scherrer constant (0.9), λ is the X-ray wavelength 
(0.154 nm), β is the full width at the half maximum inten-
sity of diffraction peak (FWHM), and θ is the Bragg angle 
of diffraction peak. The calculated average crystallite size 

(1)D =
k�

�cos�

of the ZnO (L5) and ZnO (L10) nanoparticles is 23.13 nm 
and 21.89 nm respectively.

3.2  Scanning Electron Microscopy (SEM), Field 
emission scanning electron microscopy 
(FESEM), Transmission electron microscopy 
(TEM), and Energy Dispersive X‑Ray Analysis 
(EDS)

The size and morphology of synthesized ZnO (L5) and 
ZnO  (L10) nanoparticles were determined using Scan-
ning Electron Microscope (SEM), Field emission scan-
ning electron microscope (FESEM), Transmission electron 
microscopy (TEM). The SEM, FESEM, and TEM images 
of ZnO (L5) and ZnO (L10) nanoparticles have been given 
in Fig. 2. ZnO (L5) nanoparticles are composed of rough 
surface with micro sized pores along with nanoflakes, and 
micro flakes. Dimensions of nanoflakes vary from ~ 100 nm 
to ~ 400 nm. Whereas, ZnO (L10) nanoparticles are com-
posed of nanorods and nanoflakes. The length of nanorods 
ranges from ~ 50 nm to ~ 60 nm while the width of nanorods 
ranges from ~ 20 nm to ~ 50 nm. Dimensions of nanoflakes 
vary from ~ 50 nm to ~ 100 nm. It is clearly visible from 
FESEM and TEM images that size of ZnO (L10) nanopar-
ticles is smaller than the size of ZnO (L5) nanoparticles.

The elemental composition of ZnO (L5) and ZnO (L10) 
nanoparticles was analyzed through EDS spectra. Fig-
ure 3(A) and Fig. 3(B) clearly shows the peaks of zinc and 
oxygen this indicates that zinc oxide nanoparticles were 
synthesized successfully. The peaks of zinc and oxygen 
only further confirm the presence of these elements in 
the nanoparticles. The atomic % ratios of Zinc and Oxy-
gen were obtained at 28.93% and 71.07% respectively for 
ZnO (L5) nanoparticles as shown in Table 1. In ZnO (L10) 

Fig. 1  (A) and (B) PXRD patterns of synthesized ZnO (L5) and ZnO (L10) nanoparticles
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nanoparticles, the atomic % ratios of Zinc and Oxygen were 
41.49% and 58.51% respectively as shown in Table 2.

3.3  UV‑ visible spectrum analysis

The band gaps and optical properties of synthesized ZnO 
(L5) and ZnO (L10) nanoparticles are investigated through 
UV- Visible spectrum analysis. Figure 4(A) and Fig. 4(B) 
shows the UV- Visible spectrum of synthesized ZnO (L5) 

and ZnO (L10) nanoparticles respectively. The maximum 
absorption is observed at a wavelength of 370 nm. This 
indicates that our ZnO (L5) and ZnO (L10) nanoparti-
cles were synthesized successfully. Su et al. and Li et al. 
have reported similar absorption maxima (λmax) for ZnO 
nanoparticles [35, 36].

We use Tauc’s equation in order to examine the direct 
band gap of synthesized ZnO nanoparticles. Tauc’s equation 
has been mentioned in the literature [9, 37, 38].

Fig. 2  (A) SEM images of synthesized ZnO (L5) nanoparticles, (B) 
SEM images of synthesized ZnO (L10) nanoparticles, (C) FESEM 
images of synthesized ZnO (L5) nanoparticles, (D) FESEM images 

of synthesized ZnO (L10) nanoparticles, (E) TEM images of synthe-
sized ZnO (L5) nanoparticles, (F) TEM images of synthesized ZnO 
(L10) nanoparticles
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where hυ is the energy of the photon, A is constant,  Eg is 
band gap energy and γ is 2 for indirect allowed transition and 
½ for direct allowed transition. The Tauc’s plot (⍺hυ)2 v/s hυ 
of ZnO (L5) and ZnO (L10) nanoparticles have been shown 
in Fig. 4(C) and Fig. 4(D) respectively. The band gap value 
of ZnO (L5) nanoparticles was found to be 2.71 eV while 
the band gap value of ZnO (L10) was found to be 3.40 eV. 
The band gap value of ZnO (L5) and ZnO (L10) are in good 
agreement with the literature. Rahman et al. have reported 
the band gap energy of value 3.29 eV for the synthesized 
ZnO nanoparticle in the literature [34]. The band gap energy 

(2)(ah�)
1

� = A
(

h� − Eg

)

value of ZnO (L10) was found to be greater than ZnO (L5) 
this indicates that ZnO (L5) is a better semiconductor.

3.4  Fourier Transform Infrared Spectroscopy 
Analysis (FTIR)

The functional group analysis was done using FTIR. It 
helped us to determine the presence of functional groups 
on the surface of the synthesized nanoparticles. The FTIR 
spectra of zinc oxide nanoparticles range from 400  cm−1 to 
4000  cm−1.

In FTIR analysis of ZnO (L5), as shown in Fig. 5(A), 
the peaks observed between 578  cm−1 and 640  cm−1 occur 
due to the presence of vibrations of metal–oxygen bonds. 
The peaks at 986  cm−1 and 1173  cm−1 occur due to the 
presence of an alkene group on the synthesized nano-
particles. The peak at 1483  cm−1 is due to the carboxylic 
acid group [36]. The peaks at 1545  cm−1—1688  cm−1 and 
3367  cm−1—3899  cm−1 are due to the presence of water or 
the OH group on the surface [9, 33, 38].

Similarly in FTIR analysis of ZnO (L10) as shown in 
Fig. 5(B), peaks at 586  cm−1 – 684  cm−1 occurs due to the 
presence of metal–oxygen bond vibrations. The peaks at 
977  cm−1 -1181  cm−1 are due to the presence of an alk-
ene group on the surface. The peak at 1475  cm−1 is due to 
the carboxylic acid group [36]. The peaks at 1590  cm−1 to 
1732  cm−1 and 3411  cm−1 to 3491  cm−1 is due to the pres-
ence of water or the OH group on the surface of synthesized 
nanoparticles [9, 33, 38].

Fig.3  EDS analysis of synthe-
sized (A) ZnO (L5) nano-
particles and (B) ZnO (L10) 
nanoparticles

Table 1  Energy Dispersive X-Ray Analysis (EDS) for ZnO (L5) nan-
oparticles

Element Weight % Atomic % Net Int Error %

O K 37.54 71.07 351.06 7.52
Zn K 62.46 28.93 279.68 2.43

Table 2  Energy Dispersive X-Ray Analysis (EDS) for ZnO (L10) 
nanoparticles

Element Weight % Atomic % Net Int Error %

O K 25.66 58.51 400.64 7.96
Zn K 74.34 41.49 630.12 2.15
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The FTIR study reveals that phytochemicals from the 
leaf of the Madagascar periwinkle plant are present on the 
surface of synthesized ZnO (L5) and ZnO (L10) nanopar-
ticles. This further confirms that leaves of the Madagas-
car periwinkle plant act as a good stabilizing agent in the 
synthesis of ZnO nanoparticles.

3.5  Brunauer–Emmett–Teller (BET) surface analysis

The  N2 adsorption/desorption (BET) isotherms of the syn-
thesized ZnO (L5) and ZnO (L10) nanoparticles are shown 
in Fig. 6. Both ZnO (L5) and ZnO (L10) nanoparticles 
exhibit type IV adsorption/desorption isotherms according 

Fig. 4  UV- Visible Spectra of 
(A) ZnO (L5) and (B) ZnO 
(L10) nanoparticles and Tauc’s 
plot of (C) ZnO (L5) and (D) 
ZnO (L10) nanoparticles

Fig.5  FTIR spectroscopy of synthesized (A) ZnO (L5) and (B) ZnO (L10) nanoparticles
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to the IUPAC classification [39], with a type H3 adsorption/
desorption hysteresis loop. The existence of H3 adsorption/
desorption hysteresis loops in ZnO (L5) and ZnO (L10) 
nanoparticles demonstrates their mesoporous nature [39]. 
The measured surface areas of ZnO (L5) and ZnO (L10) 
nanoparticles are 10.202  m2/g and 38.762  m2/g respectively. 
The findings of BET surface study show that ZnO (L10) 
nanoparticles have a larger surface area than ZnO (L5) 
nanoparticles. Thus, ZnO (L10) nanoparticles are a better 
photocatalyst for degradation MB dye than ZnO (L5) nano-
particles. Similarly, the surface area of 22.721  m2/g has been 
calculated for ZnO (P3) nanoparticles [40].

3.6  Evaluation of photocatalytic activity 
of synthesized nanoparticles against Methylene 
Blue (MB) dye

We took 50 mL of 10 ppm MB dye solution as a test solu-
tion and added 50 mg of ZnO (L5) catalyst into it and kept it 
for 30 min. We observed there was no dye degradation (As 
shown in Fig. 7(A)). Then we kept this reaction mixture in 
sunlight for 30 min still no dye degradation was observed 
(As shown in Fig. 7(A)). We kept the reaction mixture in 
sunlight for 600 min and observed the photocatalytic activ-
ity of ZnO (L5) using UV spectrophotometry. As shown 
in Fig. 7(B) a graph between absorbance and wavelength 
(λmax (nm)) was plotted where the reaction mixture was kept 
under different time intervals of sunlight irradiation. It is 
clear from Fig. 7(B) that as the time of sunlight irradiation 
increases, the dye degradation also increases. At 600 min the 
dye was degraded completely.

The same procedure was followed using ZnO (L10) cata-
lyst. No dye degradation was found when we kept the reac-
tion mixture for 30 min in the dark or even in the presence 
of sunlight as shown in Fig. 7(C). As shown in Fig. 7(D) 
a graph was plotted between absorbance and wavelength 

(nm) where we checked the photocatalytic activity of ZnO 
(L10) in the presence of different sunlight irradiation. It was 
observed that as the time of sunlight irradiation increases, 
the dye degradation also increases. The dye degrades com-
pletely in 360 min in the presence of a ZnO (L10) catalyst.

Figure 7(A) and Fig. 7(C) indicates a decrease in absorp-
tion maxima with respect to sunlight irradiation time. This is 
the evidence for the degradation of toxic MB dye in the pres-
ence of ZnO nanoparticle photocatalysts. The Beer-Lambert 
Law suggests that the reduction in the absorption maxima 
means the reduction in the concentration of dyes with sun-
light irradiation time [41].

After that photocatalytic degradation efficiency was cal-
culated using the following formula which is given in the 
literature [9].

where  C0 is the initial concentration and  Ct is the concentra-
tion of MB at different time intervals of the photocatalytic 
reaction. For ZnO (L5) catalyst, the photocatalytic degrada-
tion efficiency was found to be 19.59% at 60 min and 94.09% 
at 600 min. For ZnO (L10) catalyst it was observed to be 
41.07% at 60 min and 97.92% at 360 min. After that a graph 
was plotted between ln  (C0/Ct) and time (in min) as shown in 
Fig. 7(E) in order to compare the photocatalytic degradation 
efficiency for ZnO (L5) and ZnO (L10) catalyst. It is evident 
from Fig. 7(E) that ZnO (L10) is a better catalyst than ZnO 
(L5). Herein, MB dye was degraded (94.09%) in 600 min by 
ZnO (L5) catalyst and (97.92%) in 360 min by ZnO (L10). 
Comparison of present study with earlier reported studies 
has been shown in Table 3.

Ulla and Dutta have reported the enhanced photo-
catalytic activity for the degradation of organic dyes of 
Mn-doped ZnO nanoparticles. They have reported that a 

(3)E% =

[

C
0
− Ct

C
0

]

× 100

Fig. 6  N2 adsorption/desorption isotherms of synthesized (A) ZnO (L5) nanoparticles and (B) ZnO (L10) nanoparticles
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reduction in band gap occurs due to surface defects in 
Mn-doped ZnO nanoparticles which ultimately lead to 
enhanced photocatalytic activity for the degradation of 
organic dyes under visible light irradiation [42]. The other 
crucial point for the enhanced photocatalytic activity of 
ZnO (L10) than ZnO (L5) is its small particle size and 

large surface area of synthesized nanoparticles. The reduc-
tion in particle size is responsible for the increased surface 
area for the adsorption of the dye molecules which is fur-
ther responsible for the increased photocatalytic activity 
[9, 38]. Saleh and Djaja have reported that a reduction in 
average crystallite size and band gap could be responsible 

Fig. 7  A, C UV–Visible spectra of MB dye samples in absence of photocatalysts after 30 min of sunlight irradiation, UV–visible spectra of MB 
dye samples in presence of (B) ZnO (L5) nanoparticles, and (D) ZnO (L10) nanoparticles  (E) Plot of ln(C0/Ct) vs time (min)
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for the enhanced photocatalytic activity of the synthesized 
ZnO nanoparticles for the degradation of toxic organic 
dyes such as MB [43].

The mechanism responsible for the photocatalytic deg-
radation of toxic organic MB dye using synthesized ZnO 
nanoparticles involves the generation of electron–hole 
pairs on the surface of the nanomaterials due to sunlight 
irradiation. This leads to a reaction in which a hole from 
the valence band reacts with the water molecule  (H2O) 
to form hydroxyl ion  (OH−) while an electron from the 
conduction band reacts with the oxygen molecule  (O2) to 
form oxygen free radical  (O2

−·). This hydroxyl ion  (OH−) 
further reacts with a hole from the valence band to form 
hydroxyl free radical  (OH·). Finally, organic toxic dyes are 
degraded by  O2

−· and  OH· free radicals. This mechanism 
has been reported in the literature [34, 38, 44]. Schematic 
diagram of mechanism of photo degradation of MB dye in 
presence of ZnO nanoparticles is given in Fig. 8.

4  Conclusion

• In this article, a green approach has been used effectively 
to synthesize ZnO (L5) and ZnO (L10) nanoparticles 
using Madagascar periwinkle plant’s leaf extract. The 
green approach is safe, efficient, rapid, and environmen-
tally friendly.

• The Powder X-ray diffraction (PXRD) revealed that syn-
thesized ZnO (L5) and ZnO (L10) nanoparticles consist 
of a typical hexagonal wurtzite phase.

• The SEM, FESEM, and TEM images of ZnO (L5) and 
ZnO (L10) reveal that ZnO (L5) nanoparticles are com-
posed of nanorods along with nanoflakes and micro-
flakes. The length of nanorods ranges from 500 to 
600 nm while the width of nanorods ranges from 60 to 
100 nm.

• The atomic % of Zinc and Oxygen was found to be 
28.93% and 71.07% respectively in ZnO (L5) nanoparti-
cles while it was found to be 41.49% and 58.51% respec-
tively in ZnO (L10) nanoparticles.

• The FTIR study reveals that phytochemicals from the leaf 
of the Madagascar periwinkle plant are present on the 
surface of synthesized ZnO (L5) and ZnO (L10) nano-
particles. This further confirms that leaves of the Mada-
gascar periwinkle plant act as a good stabilizing agent in 
the synthesis of ZnO nanoparticles.

• Brunauer–Emmett–Teller (BET) analysis confirmed 
that the determined surface areas for ZnO (L5) and ZnO 
(L10) nanoparticles are 10.202  m2/g, and 38.762  m2/g 
respectively.

• The photocatalytic activity was determined against MB 
dye. Herein, MB dye was degraded (94.09%) in 600 min 
by ZnO (L5) photocatalyst and (97.92%) in 360 min by 
ZnO (L10) photocatalyst. It is evident from this report 
that ZnO (L10) nanoparticles are a better catalyst than 
the ZnO (L5) nanoparticles. This higher surface area of 
ZnO (L10) nanoparticles provides more active sites for 

Table 3  Comparison of present study with earlier reported studies

SNO Photo catalyst Synthesis techniques Light source of irradiation / time of 
light exposure

Organic dye / dye 
degradation effi-
ciency %

References

1 ZnO/CuO nanocomposite Hydrothermal technique Mercury vapor lamp (125W)/100 min RhB/96.84% 11
2 ZnO/MnV2O6 heterojunction Facile hydrothermal technique UV light/60 min MB/95.2% 2
3 ZnO/MnV2O6 heterojunction Facile hydrothermal technique UV light/90 min MO/91.8% 2
4 TiO2/ZnO heterojunction Electrospinning technique Sunlight/120 min MB/25% 5
5 ZnO nanoparticles Biosynthesis technique Sunlight/300 min MB/90% 17
6 rGO/ZnO nanoparticles Hydrothermal technique Visible light/120 min RhB/97% 9
7 5%Fe/ZnO nanomaterial Co-precipitation technique Hg-vapor lamp/100 min MB/96.70% 16
8 ZnO (L5) nanoparticles Biosynthesis technique Sunlight /600 min MB/94.09% This work
9 ZnO (L10) nanoparticles Biosynthesis technique Sunlight /360 min MB/97.92% This work

Fig. 8  Schematic diagram of mechanism of photo degradation of MB 
dye in presence of ZnO nanoparticles
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MB photodegradation. Therefore, ZnO (L10) showed 
higher photocatalytic activity than ZnO (L5) nanoparti-
cles against methylene blue organic dye.

• In the future, photocatalysts can be designed by using 
these ZnO nanoparticles for the degradation of organic 
molecules in wastewater. We will also modify these nan-
oparticles to build nanocomposite with carbon materials 
to increase their photocatalytic activity against diverse 
organic chemical molecules.
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