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Abstract
Many researchers are searching for viable substitutes for the highly polluting synthetic plastics/fibres, driven by the depletion 
of petroleum crude and the environmental risks posed by petroleum-based polymers. Hence, there is a mounting interest in the 
utilization of natural materials especially the reinforcement materials. This is because the use of lignocellulose derived from 
natural fibres is seen to be intriguing. Natural fibres have been found to have both economic and ecological advantages over 
their synthetic counterparts. In this aspect, several natural fibres have been used as substitutes for the synthetic based fibres 
in thermoplastic composites. This review focuses on the utilization kenaf fibre as a reinforcement material in thermoplastic 
based composite materials. Emphasis is given on the fibre structure, properties, chemical modification, and mechanical and 
dynamic mechanical properties. Kenaf fibre-based thermoplastics composites have emerged as a potential substitute for 
various synthetic fibre-based thermoset composites, thereby contributing to the development of environmentally friendly 
composite materials. This review further deals with the optimization of its mechanical and dynamic features which is crucial 
for various applications. This review also presents a comprehensive evaluation of the current state-of-the-art characteriza-
tions on the mechanical and dynamic mechanical performance of these composites.

Keywords Thermoplastic biocomposites · Quasi-static mechanical · Impact · Storage modulus · Loss modulus and damping 
factor

1 Introduction

Pollution and environmental devastation have become into 
global concerns. Consequently, governments worldwide 
are prioritising green technology and the development of 
recyclable products wherever feasible. This emphasis aims 
to foster long-term growth while simultaneously maxim-
ising environmental and financial benefits [1–3]. Kenaf, 
flax, sisal, jute, coir, hemp, and sugar palm are examples of 
natural fibres utilized as natural resources. The increasing 
popularity and demand for natural fibre are mostly due to 
affordability, lightweight nature, and versatile applications. 
Moreover, materials derived from a diverse range of natural 
fibres are readily available and require minimal production 
energy [4–6]. Due to the paucity of global natural resources 
such as fossil fuels, society is increasingly turning to natural 
fibres for composite production, either as reinforcing or filler 
material [7–9]. Another reason for the increasing popularity 
of natural fibre is due to its abundance and biodegradabil-
ity [10, 11]. As a result, synthetic fibres among others are 
gradually being replaced by various natural fibres [12–14]. 
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Furthermore, the usage of non-renewable resources in com-
posite manufacturing could be reduced, and the incorpora-
tion of natural fibres in polymeric composites could mitigate 
the high cost of composite products through effective reuse 
of plant by-products.

In Malaysia, kenaf stands out as a prominent industrial 
and commodity crop. Due of its short harvesting period and 
diverse traditional uses as a multifunctional crop, such as 
livestock, food, and other fibre benefits [15–17], the crop is 
considered an alternative to popular plant fibres such as pine-
apple leaf (PALF) and sugar palm fibres. Within five to six 
months, kenaf can grow to an approximate height of 4–5 m, 
demonstrating rapid maturation [18], abundant resources, 
and swift crop cultivation for industrial-scale production. 
Kenaf is a biodegradable, renewable, and sustainable fibre 
[19–21]. Kenaf can absorb around 1.4 times its own mass in 
carbon dioxide and boasts three times the photosynthetic rate 
of other plants [22]. This fibre has a density of only 1.3 g/
cm3. Due to these advantages and benefits, kenaf is increas-
ingly being used to replace existing man-made fibres in vari-
ous thermoplastic and thermoset composites [23–25]. Any 
polymeric matrix can be reinforced with kenaf fibre utilizing 
a range of methods such as filament winding, manual lay-up, 
hot compression, pultrusion, extrusion, injection moulding 
[26–29], and fused deposition modelling (FDM) [30, 31]. 
Kenaf fibre has sparked the interest and curiosity of academ-
ics, communities, and businesses as a potential replacement 
for petroleum-based fibres.

Despite the favourable characteristics of kenaf fibre com-
posites, such as ease of manufacturing, affordability, low 
energy usage, abundance, renewability, and safety, these 
composites have limitations and drawbacks in terms of 
physicomechanical and thermal properties [32–34]. A key 
disadvantage of integrating kenaf fibre into the polymeric 
resin is the limited surface adhesion between the two phases, 
resulting in lower characteristics in the final biocomposite 
laminate. Jaafar et al. [11] attributed the poor interfacial 
bonding to impurities present on the surface morphology 
of the fibres, resulting in a rough topography. Impurities 
including pectin, lignin, and hemicellulose, hinder the 
fibre’s compatibility with the polymer matrix. Additionally, 
Krishna and Kanny [35] noted that these impurities, origi-
nated from hydroxyl groups, contribute to the hydrophilic 
nature of kenaf fibre. However, the hydrophobic properties 
of commonly used polymer resins such as polypropylene 
(PP) and polyester (PE) prevent the formation of strong 
chemical interactions with the kenaf fibres. Apart from that, 
the incorporation of kenaf fibre into the matrix often leads 
to fibre agglomeration, a condition attributed to inadequate 
dispersion due to fibres’ proclivity to form covalent connec-
tions [36, 37].

To address the aforementioned drawbacks, such as inad-
equate interfacial bonding and the hydrophilic nature of 

kenaf cellulosic fibre, various chemical treatments can be 
employed to modify the compatibility between the kenaf 
fibre and its matrix. The main purpose of the chemical 
treatment is to enhance interfacial adhesion and compat-
ibility between fibre and its matrix, leading to improved 
mechanical strength [11] and thermal stability [38]. A suc-
cessful crosslinking method between kenaf fibre and its 
matrix can be performed through the complete removal of 
hydroxyl groups from the fibre, facilitating stronger chemi-
cal bond between two phases, culminating in the formation 
of a well-connected network [39]. Hence, the use of kenaf 
fibre can be broadened across several industries, including 
marine and automobile sectors. This process enhances the 
material’s resistance to creep, wear, and tear, as indicated 
by previous studies [40, 41]. These enhancements in mate-
rial properties have the potential to improve its durability, 
particularly when exposed to challenging conditions such 
as high temperatures, high humidity, and acidic environ-
ments [42–45].

In the selection of polymer matrix for composites, it is 
important to opt for “green” thermoplastic material that 
can be recycled at the end of its life cycle. Thermoplastic 
composites have made significant strides in structural appli-
cations, such as automotive, aerospace, construction, and 
materials handling sectors [46]. The most notable advan-
tage of thermoplastic composites is their chemical stability, 
which enables them to be heated and softened at the end of 
their lifecycle and remoulded without experiencing degra-
dation [47]. Besides, it can also solidify into desired shape 
during the cooling process, making it ready to be repurposed 
for new products. This recyclability may significantly reduce 
waste accumulation in landfills. In short, kenaf fibre holds a 
huge potential as reinforcement for thermoplastic polymers 
to create composite materials.

In light of the existing literature, it becomes apparent that 
while kenaf fibre holds significant potential across various 
contemporary industrial sectors (flooring [15], home items 
[48], and vehicle interior components [49]), there remains 
a notable gap in our understanding, especially in the matter 
of challenges related to interfacial adhesion and the hydro-
philic nature of kenaf fibres. These challenges triggered and 
motivated researchers to explore chemical treatments to alter 
the fibre structure and enhance compatibility with polymer 
matrices. Yet, there is a lack of comprehensive overview on 
the mechanical and dynamic mechanical characteristics of 
kenaf fibre reinforced thermoplastic composites, along with 
their applications in various contexts. This article seeks to 
fill this gap by offering valuable insights into the efficacy 
various fibre treatments, such as silane, alkali, and acetyla-
tion treatments, in improving the thermal characteristics of 
thermoplastic composites reinforced with chemically modi-
fied kenaf fibres. By addressing these knowledge gaps, this 
article aims to contribute to the advancement of sustainable 
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kenaf fibre reinforced thermoplastic composites and their 
applications.

2  Kenaf: background and its fibres

Kenaf, scientifically referred to as Hibiscus cannabinus L., 
is a herbaceous annual plant that can thrive in a variety of 
climates. Kenaf plant is a commonly grown source of fibres, 
which are obtained from both the outside (bast) and interior 
(core) parts of the plant. Kenaf is cultivated for commercial 
use in over 20 countries, with Bangladesh, India, Thailand, 
and China being the major contributors, accounting for over 
95% of its output. The natural habitats of kenaf plants are 
located in Malaysia, India, Thailand, Indonesia, Japan, Viet-
nam, and Pakistan [50]. Currently, India and China have the 
distinction of being the foremost global producers of kenaf. 
In addition, the cultivation of this plant is undertaken for 
specific purposes in the United States, such as its use as a 
food source in Chana, animal feed, and oil spill absorbent 
[51].

Owing to its comparatively short growth cycle spanning 
150 to 180 days, kenaf fibre production requires less water 
leading to a yield of 1700 kg per hectare [52]. Under normal 
climatic conditions, kenaf fibre has a growth rate of 10 cm 
per day. On average, the growth cycle of kenaf spans around 
150 days, during which it exhibits a vertical growth ranging 
from 2.4 to 6 m and a basal diameter varying between 3 and 
5 cm. Figure 1 illustrates a kenaf plantation in visual form, 
as well as a cross-sectional view of a kenaf stem. The stem 
has an external covering called bark, as well as a central core 
with a linear and non-branching structure. Various methods, 
such as chemical retting, enzymatic retting, or a combination 

of both, may be used to effectively separate the component 
portions of the stem, particularly the core and bark. The bark 
constitutes around 30 to 40% of the stem's dry weight and 
has a significant and sturdy composition. In contrast, the 
core of the stem is composed of woody tissue, constituting 
around 60 to 70% of its overall structure. The core has a 
mostly amorphous and isotropic structure. The bark, on the 
other hand, has a distinctive fibre arrangement characterized 
by a high degree of crystallinity [53].

Kenaf filaments, according to Akil et al. [54], are made 
up of individual fibres that are typically 2 to 6 mm long. The 
features of individual fibres and filaments may differ depend-
ing on factors such as the origin of the fibres, their age, the 
method of separation, and their history. The plant consists 
of several useful constituents, including stalks, leaves, and 
seeds, each possessing distinct components that may be 
utilized, such as fibre strands and fibres, allelopathic com-
pounds, proteins, and oils. The microfibril size and chemi-
cal content of the kenaf stem are shown in Table 1 [54, 55]. 
The fibres are typically composed of 60 to 80% cellulose, 
5 to 20% lignin (pectin), and a maximum moisture content 
of 20%. According to studies, the qualities of kenaf fibre’s 

Fig. 1  Cultivation of kenaf plant 
with its cross-sectional structure 
of the stem. Reproduced from 
[52]. Creative Common CC BY 
license

Table 1  Kenaf stem microfibril size to produce fibres. Data obtained 
from [54, 55]

Microfibril morphology Core Bark

Microfibril length, L (mm) 0.75 2.22
Microfibril width, W (µm) 19.23 17.34
L/W 39.00 128.00
Cell wall thickness (µm) 1.50 3.60
Lumen diameter (µm) 32.00 7.50
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fundamental components affect its overall attributes. The 
cellulose components of fibres contribute to their strength 
and stiffness by means of hydrogen bonds and other inter-
molecular connections. On the contrary, hemicellulose aids 
in, thermal degradation, moisture absorption and fibre bio-
degradation, while lignin (specifically pectin) exhibits ther-
mal stability. Yet, it is accountable for the ultraviolet (UV) 
destruction of the fibres.

According to Ishak et al. [56], kenaf fibre derived from 
the bast region differs from kenaf fibre derived from the 
core region. Table 2 presents the chemical composition of 
kenaf fibre derived from three distinct portions, namely the 
stem, bast, and core [57]. One notable attribute of kenaf is 
its high proportion of useable fibre in the stem, amounting 
to over 40%. This percentage is nearly double that of other 
fibres such as jute, hemp, or flax [58]. The comparatively 
higher yield percentage of this fibre renders it more econom-
ically advantageous in comparison to fibres derived from 
other plant sources. The cultivar selected, the planting date, 
the photosensitivity of the plants, plant populations, plant 
age, and the duration of the growing season are all factors 
that influencing the composition and production of various 
plant components. The geographical location of the facility 
and the alterations within a 500 mm radius from ground 
level have an impact on the physical characteristics of the 
fibre [50]. The agronomic advantages of kenaf fibres stem 
from their ability to withstand adverse climatic conditions, 
resist diseases, and deter pests. Table 3 presents a compara-
tive analysis of the chemical composition of kenaf fibre 
and many other natural fibres. On the other hand, Table 4 
provides a comprehensive comparison of the physical and 
mechanical qualities shown by both natural and artificial 
fibres.

3  Issues and challenges 
regarding thermoplastic composites 
reinforced with kenaf fibre

The kenaf fibre is composed of many plant constituents, 
which contribute to the development of a robust, resilient, 
and environmentally degradable fibre. Nevertheless, some 

significant shortcomings may be identified in relation to the 
compatibility between cellulosic fibres and polymeric resin 
in creating a high-quality composite laminate. The observed 
phenomena can be attributed to the significant moisture 
absorption capacity of kenaf fibre, which ultimately results 
in the formation of a composite material of inferior quality 
[20, 67]. The substantial absorption of water by plant fibre 
can be attributed to its hydrophilic properties, which are 
influenced by the chemical constituents of the fibre [68, 69]. 
Furthermore, it should be noted that wood fibres, includ-
ing kenaf, consist of hydroxyl group components that are 
highly concentrated. These components have an important 
role in shaping the qualities of the hydrophilic fibre [70–72]. 
Consequently, the presence of hydrophilic characteristics 
and strong polar in fibres, as well as polymer materials’ 
polarity and hydrophobicity, contribute to a weaker inter-
action between fibre and matrix [73–75]. Therefore, the 
inadequate bonding between the fibre and matrix results in 
a limited capacity for stress transmission between the two 
components. This, in turn, causes changes in the compos-
ite's dimensions and the propagation of microcracks. These 
effects may be attributed to the insufficient interlocking 
between the separate phases of the composite [76–78]. Cel-
lulosic fibre chemical modification allows for the improve-
ment of overall material properties such as chemical, physi-
cal, mechanical, and electrical performances [79–81].

Thermoplastic composites have made great advances in 
their use as structural polymer composites in several indus-
tries [46]. One of the primary advantages associated with the 
use of these materials is their inherent resistance to chemical 
instability. Upon reaching the conclusion of their life cycle, 
thermoplastic composites possess the ability to undergo 
heating, resulting in their softening and subsequent remould-
ing without any degradation [47]. Several research have 
conducted studies on hybridizing kenaf with thermoplastic 

Table 2  Chemical components of kenaf fibre obtained from its bast, 
core, and stem components. Data obtained from [57]

Part Chemical compositions

Cellulose (%) Hemicellulose 
(%)

Lignin (%)

Stem 48.7 28.1 19.0
Bast 56.4 26.2 13.4
Core 46.1 29.7 20.7

Table 3  Chemical composition of cellulose, hemicellulose and lignin 
kenaf fibre with other lignocellulosic fibres

Cellulosic fibre Chemical compositions Ref

Cellulose Hemicellulose Lignin

Bamboo 73.83 12.49 10.15 [59]
Bagasse 32 to 34 19 to 24 25 to 32 [60]
Coir 32 to 43 0.15 to 0.25 40 to 45 [61]
Hemp 70 to 92 18 to 22 3 to 5 [62]
Kenaf 44 to 87 22 15 to 19
Ramie 68 to 76 13 to 15 0.6 to 1
Jute 51 to 84 12 to 20 5 to 13
Flax 60 to 81 14 to 20.6 2.2 to 5
Pineapple 66.2 19.5 4.2 [63]
Sisal 65.8 12 9.9 [64]
Sugar Palm 43.88 7.24 33.24 [65]
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resins to form composite products. However, most research 
shows the kenaf fibre lack of compatibility with the thermo-
plastic matrices due to interfacial adhesions, which lead to 
low thermal performance. One possible approach to resolv-
ing the compatibility challenge between hydrophilic fibres 
and hydrophobic thermoplastic properties involves imple-
menting chemical alterations, particularly via the use of fibre 
treatments. These modifications aim to improve kenaf fibre’s 
overall performance as a composite material [82]. Various 
fibre treatments, including acetylation, silane treatment, and 
alkalization, have been shown to effectively remove hemi-
cellulose, wax, lignin, and oil [83, 84]. Additionally, these 
treatments have been seen to decrease the fibre diameter 
[85], hence facilitating stronger adhesive bonding between 
thermoplastic matrix and lignocellulosic fillers.

In terms of processing, high temperatures should be 
avoided as they can cause fibre deterioration and degrada-
tion. The primary problem in employing lignocellulosic 
fibres is maintaining low processing temperatures to avoid 
fibre degradation and possible emissions that could affect 
composite characteristics. Typically, processing tempera-
tures are limited to roughly 200 °C, while elevated tempera-
tures can be utilized for brief periods. This constraint limits 
the thermoplastics that can be used with lignocellulosic 
fibres, typically limiting them to commodity thermoplas-
tics such as polypropylene (PP), polyethylene (PE), poly-
styrene (PS), and polyvinyl chloride (PVC) [86]. Composi-
tion of kenaf fibres decomposed at various temperatures: 
cellulose (275–500 °C), hemicellulose (150–350 °C), and 
lignin (250–500 °C). Increasing the temperature can cause 
kenaf composites to behave like viscous materials, result-
ing in energy dissipation and requiring more stress to break 

the material bonding, reducing the storage modulus. Kenaf 
fibres degrade at temperatures above 120 °C, decreasing 
composite bonding [87]. Heat-treated kenaf fibres’ ten-
sile strength decreases at 160 °C, even with longer heating 
durations. However, in one study, kenaf fibre heat-treated 
at 180 °C for 30 min had equivalent tensile strength to non-
heat-treated kenaf fibres but dropped at 200 °C [88].

Aside from thermal deterioration, kenaf fibre degrada-
tion may be caused by high humidity and ultraviolet (UV) 
exposure to the fibre’s cellulose, hemicellulose, and lignin 
content during exposure in the accelerated weathering cham-
ber [89]. UV radiation can degrade the cellulose, lignin, and 
hemicellulose content of the fibres, compromising the inter-
facial interaction between fibre and matrix. Weak interfacial 
bonding leads to reduced mechanical characteristics and, 
ultimately, decreases composite efficiency [90].

Other issues in the production of thermoplastic reinforced 
kenaf fibre composites, particularly for short kenaf fibre, 
include uneven fibre distribution. During the manufactur-
ing process, it is difficult to manually separate and visually 
distribute the kenaf fibres [91]. Low kenaf fibre composi-
tion leads to poor kenaf fibre dispersion, which results in 
poor energy dissipation [92]. Nonetheless, increasing fibre 
length and composition above the optimum amount reduces 
strength due to fibre “balling”, which occurs when fibres 
cluster together during the mixing phase, causing difficul-
ties with consolidation and non-uniform distribution. Non-
uniform fibre dispersion reduces fibre strength [93]. Several 
studies have discovered a possible maximum fibre content at 
which porosity increases significantly and composite char-
acteristics worsen [92]. For instance, Ku et al. [94] observed 
that increasing fibre loading above 40% reduces ultimate 

Table 4  Physical and 
mechanical properties of kenaf 
fibre and other natural fibres 
with synthetic reinforcement. 
Data obtained from [66]

Fibre Density (g/cm3) Tensile modulus (GPa) Tensile strength (MPa) Elongation 
at break 
(%)

Natural fibre
  Flax 0.6 to 1.1 27.6 345 to 1035 2.7 to 3.2
  Jute 1.3 26.5 393 to 773 1.5 to 1.8
  Hemp 1.48 70 690 1.6 to 4
  Pineapple 0.8 to 1.6 1.44 400 to 627 14.5
  Ramie 1.5 24.5 560 2.5 to 3.8
  Sisal 1.5 9.4 to 22 511 to 535 2.0 to 2.5
  Bagasse 1.5 17 290 –
  Kenaf 1.45 53 215.4 1.6
  Bamboo 1.25 11 to 17 140 to 230 -
  Sugar Palm 1.292 4.96 156.96 7.98
  Coir 1.2 4 to 6 138.7 30

Synthetic fibre
  S-Glass 2.5 86 4570 2.8
  E-Glass 2.5 70 2000 to 3500 0.5
  Aramid 1.4 63.0 to 67.0 3000 to 3150 3.3 to 3.7
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strength, when the fibres were uniformly and well dispersed 
during processing, indicating an equitable distribution of the 
fibres in the composite system and excellent stress transfer 
[95]. This is because the fibres act as load carriers in the 
matrix, and high tensile strength is more dependent on effec-
tive and uniform stress distribution [92].

To summarize, the issues regarding thermoplastic com-
posites reinforced with kenaf fibre include the following: 
(1) the hydrophilic nature of kenaf fibre causes moisture 
absorption and microcracks in the composite, resulting in 
dimensional instability and poor mechanical properties 
when reinforced in composites [96]; (2) the hydrophobic 
nature of the thermoplastic polymer is incompatible with the 
hydrophilic kenaf fibre, resulting in weak interfacial bonding 
[97]; (3) the degradation temperature of kenaf fibre typically 
ranges from 150 °C to 300 °C [98], depending on various 
factors such as the processing method, fibre treatment, and 
environmental conditions; (4) uneven distribution of kenaf 
fibre is due to insufficient or excessive fibre loading or fibre 
geometry [92, 93]; and (5) kenaf fibres are susceptible to 
UV degradation [90].

4  Mechanical properties of thermoplastic 
composites reinforced with chemically 
modified kenaf fibre

Numerous studies have been conducted to investigate the 
impact of chemical treatment on the mechanical character-
istics of kenaf fibre reinforced thermoplastic composites 
[99–101], with the aim of enhancing their performance. 
The fundamental objective of implementing chemical treat-
ment on kenaf fibres is to enhance interfacial bonding and 
ensure compatibility with thermoplastic resin, while also 
achieving uniform dispersion of the fibres. Chemical treat-
ment of natural fibres, such as kenaf, prior to incorporation 
into composites made of thermoplastic can have a variety 
of effects on mechanical properties. Common treatments 
include alkali treatment, acetylation, and silane treatment. 
The following are the impacts of chemical treatment on the 
mechanical characteristics of kenaf fibre reinforced thermo-
plastic composites.

• Improved adherence: Chemical treatments can improve 
the adherence of kenaf fibres to thermoplastic matrix. 
This stronger interfacial bonding promotes transference 
of stress between the fibres and the matrix, which results 
in improved mechanical characteristics.

• Increased mechanical properties: Chemical treatments 
can improve the mechanical strength of kenaf fibres by 
eliminating impurities like lignin and hemicellulose and 
exposing more cellulose. This results in stiffer individual 

fibres, which are responsible for higher strength in the 
composite material.

• Reduced water absorption: Some chemical modifica-
tions can diminish kenaf fibres’ ability to absorb water. 
Reduced absorption of water helps to maintain the physi-
cal properties of the composite material as it ages, par-
ticularly in humid or damp situations where moisture can 
degrade untreated fibres.

• Improved structural integrity: Chemical treatments may 
enhance the dimensional integrity of kenaf fibre rein-
forced composites by minimizing swelling and shrinkage 
caused by changes in moisture or temperature. This level 
of stability improves long-term performance and durabil-
ity.

It is crucial to note that the specific consequences of 
chemical treatment can differ based on the kind of treat-
ment, concentration, processing circumstances, and the type 
of thermoplastic matrix utilized in the composites [102]. 
As a result, thorough experimental research and characteri-
zation techniques are often used to determine the precise 
effect of chemical treatments on the mechanical properties 
of kenaf fibre reinforced thermoplastic composites for par-
ticular applications. Several works have been devoted in 
the chemical treatment of kenaf fibre-based composites for 
enhanced properties. Table 5 presents the mechanical prop-
erties of thermoplastic composites that have been reinforced 
with kenaf fibre.

Huda et al. [101] employed alkalization, silane, and a 
hybrid alkali-silane treatment approach to make laminated 
films from kenaf fibres reinforced polylactic acid (PLA). 
The empirical evidence suggests that the use of Focused Ion 
Beam Surface Modification technique, specifically using a 
silane solution, on kenaf fibre results in the most advanta-
geous outcomes with regards to the mechanical characteris-
tics of the composite material. Moreover, the use of Focused 
Ion Beam Nanoscale Surface Modification combined with 
hybrid alkali-silane treatment results in the highest flexural 
values. The observed phenomenon may be attributed to the 
increased nucleation density of the silane-treated cellulose 
fibre composite compared to the untreated fibre composite. 
The observed rise in nucleation density leads to the forma-
tion of smaller crystals and the development of a transcrys-
talline interphase region characterized by improved bonding 
between the thermoplastic material and the fibres [109, 110]. 
The research findings indicate that the impact strength of 
all treated fibre composites exhibited a significant improve-
ment ranging from 38 to 45% in comparison to the impact 
strength seen in pure PLA. The observed enhancement 
may be ascribed to the removal of impurities and pollut-
ants present in the untreated composites. The use of treat-
ments enhances the adhesive properties of the fibre surface, 
leading to the development of a textured surface topography 
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that facilitates the establishment of a strong fibre-poly(lactic 
acid) (PLA) network.

In their study, Cho et al. [104] used employing three dis-
tinct silane coupling agents in their investigation to explore 
the influence of silane treatment on composite properties: 
3-aminopropyltriethoxysilane (APS), 3-glycidoxypropyltri-
methoxy silane (GPS), and 3-methacryloxypropyltrimethox-
ysilane (MPS). The researchers discovered that alkali treat-
ment with NaOH-silane (also known as GPS) improved the 
strength of kenaf/unsaturated polyester (UPE) and kenaf/
polypropylene (PP) composites compared to alkali-silane 
or alkali treatment alone. The enhanced mechanical prop-
erties of composites, such as tensile and flexural strength, 

may be linked to the chemical groups that are potentially 
present on the surfaces of the fibres. These chemical groups 
could interact chemically and physically with the polymer 
resin during the production of the composite. The untreated 
composite specimen exhibits gaps between the kenaf fibre 
and the surrounding matrix, indicating a deficiency in robust 
interfacial adhesion between the kenaf fibre and the PP or 
UPE matrix (Fig. 2a). The application of silane treatment on 
the fibre led to the establishment of a robust interfacial con-
nection between the fibre and the matrix, as seen in Fig. 2b.

In a prior study, Asumani et al. [105] included an alkali-
silane treatment into the production process of composite 
goods made from kenaf fibre reinforced polypropylene (PP). 

Table 5  Mechanical properties of thermoplastic composites reinforced with kenaf fibre

*MAPP maleic anhydride grafted polypropylene, PP polypropylene, NBRv rubber of acrylonitrile butadiene, UPE unsaturated polyester, NRLF 
natural rubber latex foam

Matrix Treatments/conditions Flexural Tensile Impact Ref

Strength (MPa) Modulus (GPa) Strength (MPa) Modulus (GPa) Strength (J/m2)

MAPP Alkali 70 3.1 49 3.05 – [103]
PP Alkali – – – – 22.50 [103]
PP Alkali-silane – – – – 29.00 [103]
PP/NBRv Silane – – 13.70 0.67 - [104]
PLA Alkali 46.00 11.50 – – 56.50 [101]
PLA Silane 51.50 12.80 – – 31.00 [101]
PLA Alkali-Silane 78.00 13.00 – – 36.00 [101]
PP Silane 47.50 1.97 67.00 3.85 – [104]
UPE Silane 104.00 7.93 36.00 4.30 – [104]
PP Alkali 44.00 – 40.20 1.70 – [105]
PP Alkali-Silane 58.00 – 56.00 2.97 – [105]
PU Silane 98.15 4.56 87.80 4.02 – [106]
Macroalgae Silane – – 37.50 0.29 – [107]
NRLF Silane – – 0.47 – – [108]

Fig. 2  a Untreated kenaf polymer composite and b silane-treated kenaf polymer composite.  Reproduced with permission from ref. [104]. Copy-
right 2012 Taylors and Francis
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This experiment used three types of kenaf fibre: untreated 
kenaf fibre, kenaf fibre treated with a sodium hydroxide 
(NaOH) solution, and kenaf fibre treated with a NaOH solu-
tion followed by treatment with alkali-silane treatment. The 
flexural and tensile characteristics of kenaf/PP composites 
show notable improvement when subjected to alkali treat-
ment, followed by alkali-silane treatment. Significantly, the 
improvement obtained in the kenaf/PP composite treated 
with alkali-silane is comparable to the increase reported in 
the glass/PP composite. The kenaf/PP composite exhibits a 
flexural strength that is 89% of the flexural strength of the 
glass fibre composite. Additionally, it demonstrates a specific 
tensile strength that is 96% of the specific tensile strength 
of the glass fibre composite, and a tensile strength modulus 
that is 82% of the tensile strength modulus of the glass fibre 
composite. The enhanced flexural and tensile characteristics 
may be ascribed to the enhanced adhesion between the fibres 
and matrix seen subsequent to alkali-silane treatment. The 
observed enhancement may be ascribed to the elimination 
of substantial accumulations of non-cellulosic substances, 
such as wax, lignin, and hemicellulose, from the outer layer 
of kenaf fibres. The presence of these deposits has the poten-
tial to impede the interfacial adhesion between the fibres and 
the matrix, resulting in a diminished bonding capability. The 
use of a silane solution resulted in a substantial enhance-
ment in the adhesion between the polypropylene (PP) matrix 
and kenaf fibres. The observed enhancement, as seen in 
Fig. 3b, may be ascribed to the lack of surface deposits on 
the fibres and the robust interfacial bonding resulting from 
the alkali-silane treatment. Consequently, the tensile prop-
erties exhibited enhancement. When there is effective load 
transfer between the matrix and the fibres, an augmentation 
in the modulus of the fibres has a favourable influence on 
the tensile strength of the composite.

In a previous study, the researchers used various con-
centrations (from 0 to 3%) of three distinct silane coupling 

agents to modify polyurethane (PU) composites reinforced 
with kenaf core. The three silane coupling agents employed 
were tetramethyl orthosilicate (TMOS), trimethoxyphenyl-
silane (TMPS), and vinyltrimethoxysilane (VTMS) [106]. 
According to the authors’ findings, the efficacy of kenaf 
core reinforcement treated with silane improved with higher 
silane proportions, regardless of the type of silane used. 
Chemical treatment of kenaf core may increase mechanical 
properties due to improved interfacial bonding, which gives 
a new site for chemical interlocking. Because of changes in 
their interfacial properties, the flexural and tensile properties 
of treated kenaf core and PU matrices have been improved. 
In addition, the researchers concluded that TMPS outper-
formed alternative coupling agents for kenaf core filler in 
the production of kenaf core PU-based composite materials. 
This is because TMPS has a phenyl branch, which increases 
the stiffness of the kenaf core PU and improves the inter-
action between the filler and matrix. As a result, a benefi-
cial interface between the filler and matrix is obtained. The 
observed phenomena could be explained by the interaction 
of silane molecules with the surface of the kenaf core, which 
results in their deposition on the filler surface. This depo-
sition contributes to an increase in the filler’s weight per-
centage gains. It is worth noting that TMPS exhibits higher 
reactivity in comparison to VTMS and TMOS.

Oyekanmi et al. [107] conducted a silane treatment on 
cellulose nanofibrils (CNFs) derived from kenaf bast fibres. 
The objective of this procedure was to produce biopolymer 
films suitable for packaging applications. The films under-
went immersion in a 40% silane solution, followed by testing 
to assess their properties. The results indicate that the tensile 
strength of the treated biopolymer films surpasses that of the 
untreated ones. This suggests that the treatment facilitated 
the formation of intermolecular hydrogen bonds between the 
-OH group of the kenaf fibre cellulose nanofibrils (CNF) and 
the macroalgae matrix, leading to enhanced compatibility 

Fig. 3  a The surface deposits seen on kenaf fibres treated with a 3% 
sodium hydroxide (NaOH) solution in the absence of silane treat-
ment. b A robust polypropylene (PP) matrix is seen to strongly 

adhere to the surface of kenaf fibres subsequent to undergoing an 
alkali-silane treatment.  Reproduced with permission from ref. [105]. 
Copyright 2012 Elsevier
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and dispersion. Consequently, a mechanism for achieving 
effective and uniform load distribution from macroalgae 
matrices to the CNF was established.

Salehuddin et al. [108] examined the impact of silane 
treatment on the tensile and morphological characteristics of 
kenaf bast-filled natural rubber latex foam (NRLF). The ten-
sile strength and modulus at 100% elongation of kenaf bast-
filled samples treated with silane were found to be greater 
compared to untreated kenaf bast-filled samples. However, 
the treated samples exhibited lesser elongation at break 
in comparison. Based on the results of the morphological 
analysis, it can be seen from Fig. 4a, b that the treated kenaf 
bast-filled NRLF exhibits a reduced cell size compared to 
the untreated kenaf bast-filled NRLF. The strength of foam 
is influenced by the dimensions of its pores, whereby an 
observable reduction in tensile strength is seen as the size of 
the holes rises. In addition, it can be shown from Fig. 5 that 

the kenaf fibre exhibits strong adhesion to the matrix, result-
ing in the formation of a tiny void. This indicates that the 
treated sample demonstrates a beneficial interaction between 
the filler (kenaf fibre) and the matrix.

4.1  Effect of chemical treatment on the mechanical 
properties of thermoplastic composites 
reinforced with kenaf fibre

Chemical treatment is applied to improve natural fibres’ sur-
face properties, remove impurities, increase fibre strength, 
and improve matrix interaction [111]. Samanth and Bhat 
[112] mention various types of chemical treatments, with the 
most common being an alkaline treatment using a sodium 
hydroxide (NaOH) solution, followed by a silane treatment 
[58]. Kenaf fibre undergoes an alkaline treatment that par-
tially removes the outer layer of the fibre cell wall, which 

Fig. 4  a Kenaf bast-filled natural rubber latex foam (NRLF) without any treatment. b Kenaf bast-filled natural rubber latex foam (NRLF) treated 
with silane.  Reproduced from ref. [108]. Creative Common CC BY license

Fig. 5  a Kenaf bast-filled natural rubber latex foam (NRLF) without any treatment. b Kenaf bast-filled natural rubber latex foam (NRLF) treated 
with silane.  Reproduced from ref. [108]. Creative Common CC BY license
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includes lignin, oils, and wax. The cellulose in the fibre is 
depolymerized during this process, which makes it possible 
for short-length crystallites to form. The alkaline treatment 
breaks down the hydrogen bonds in the system structure, 
which raises surface roughness and influences the extraction 
of lignin, hemicellulosic compounds, and cellulose fibrils in 
addition to polymerization levels [58]. The increased surface 
roughness or area improves mechanical interaction between 
the fibre and matrix. Furthermore, the alkaline treatment 
exposes cellulose on the fibre surface, increasing possible 
reaction sites [113], and so improving the mechanical prop-
erties of the composite. The majority of research has con-
centrated on the effects of NaOH concentration percentage 
and treatment duration on treated fibre strength, with few 
studies looking into the effect of temperature on mechani-
cal properties [58]. Higher alkali concentrations may over-
delignify fibres, causing damage or weakening. For example, 
raising the NaOH content from 6 to 8% caused a consider-
able drop in the tensile strength of a single kenaf fibre from 
267.69 MPa to 89.58 MPa [114].

Chemical treatment of kenaf fibre can significantly alter 
the mechanical properties of thermoplastic composites sup-
plemented with this natural fibre. Chemical treatment on 
these composites improves adhesion with thermoplastic 
polymer, increases interfacial bonding to increase over-
all strength and stiffness, reduces moisture absorption for 
improved dimensional stability, and improves interfacial 
bonding between kenaf fibre and the thermoplastic matrix 
for improved mechanical properties. Overall, chemical treat-
ment tends to improve the mechanical properties of ther-
moplastic composites reinforced with kenaf fibre, result-
ing in increased strength, stiffness, and impact resistance. 
Researchers and manufacturers frequently experiment with 
different chemical treatments to improve the performance of 
these composites for a wide range of applications.

4.2  Influence of surface modification 
of the mechanical behaviour of kenaf/
thermoplastic composites

Cellulose fibres with high polarity do not bond well with 
hydrophobic thermoplastic polymer matrix. To improve the 
compatibility and dispersibility of the fibre and matrix, a 
hydrophobic coating can be coated on the fibre’s surface 
before mixing with the matrix [113]. A silane coupling 
agent, a typical form of chemical modification in glass fibre 
composites, is a chemical compound that interacts with both 
the fibre reinforcement and the polymer matrix in the com-
posite [104]. These coupling agents play an important role 
in optimizing stress transmission at the fibre-matrix interface 
by creating chemical interactions between the bulk polymer 
and fibre phases [104, 113]. Effective coupling agents, such 
as silanes, isocyanates, and titanate-based compounds, are 

critical for increasing the strength and toughness of a com-
posite [113].

The mechanical properties of composites can be influ-
enced by the types and concentrations of coupling agents 
used. Cho et al. [104] investigated the effect of various 
types and concentrations of silane coupling agents on the 
mechanical properties of thermoplastic reinforced kenaf 
fibre. The study found that kenaf fibre modified with 3-gly-
cidoxypropyl- trimethoxy silane (GPS) at a concentration of 
0.5 wt.% had mechanical properties similar to E-glass com-
posites made with the same polymer matrix, fibre length, 
and loading. The flexural strength of the untreated kenaf/
PP composite improved by approximately 26.3%, from 38 
to 48 MPa, with the fibre treatment, peaking at 0.5 wt.% of 
GPS. This peak value was comparable to that of the E-glass/
PP composite, which was around 47 MPa. Furthermore, the 
flexural modulus increased to nearly 2 GPa after the silane 
treatment at 0.5 wt.%, significantly exceeding the E-glass/
PP composite, which was around 1.8 GPa.

Silanes play an important function in maintaining good 
adhesion between fibres and a polymer matrix, which 
improves composite material stability [58]. The applica-
tion of a silane coupling agent acts as an adhesion promoter 
by modifying the surface of fibrils and lowering cellulose 
hydroxyl groups. This procedure strengthens bonds and 
reduces surface debonding. The interaction of the fibre’s 
hydroxy group with hydrolysable alkoxy groups pro-
duces silanols, which subsequently react with other fibre’s 
hydroxyl groups, forming stable covalent connections with 
the cell wall. Silanols are chemically adsorbed onto fibre sur-
faces. The covalent connections created between the matrix 
and the fibre, aided by the hydrocarbon chains generated 
during silane treatment, establish an interconnected lattice 
structure that holds the fibre bundle in place and prevents 
fibre swelling [115]. Silane coupling agents increase the 
binding between the fibre and the matrix by changing the 
fibre-polymer lattice and boosting cross-linking at the inter-
face, resulting in greater composite strength and heat stabil-
ity. Furthermore, silane treatment strengthens the connection 
between the fibre and the matrix by increasing fibre surface 
area [101, 104]. The inclusion of silicon in silanes enhances 
their flame-retardant properties, resulting in reduced flam-
mability via silanization. Silane-treated composites have 
improved tensile strength, flexural characteristics, and ther-
mal stability. Following treatment, the weight of the fibres 
reduces while their hydrophobicity increases [112].

Apart from silane coupling agent, Idumah et al. [116] 
investigated the effect of cetyl-trimethylammonium bro-
mide-modified kenaf flour on recycled polypropylene 
(RPP) graphene nanoplatelets (3 phr) nanocomposites with 
various fibre fractions. The researchers used a dual process 
technique to modify the surface of the kenaf fibres, increas-
ing the hydrophilic characteristics of the kenad flour and 
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reducing the polarity difference between the thermoplastic 
polymer matrix and the kenaf fibre. The aim of this adjust-
ment was to improve adhesion at the interface. As a modi-
fier and cationic surfactant, cetyl-trimethylammonium bro-
mide was essential in promoting chemical interaction with 
kenaf flour that had been treated with NaOH to improve 
the electrostatic, interfacial, and surface absorption of the 
fibre. When compared to the unmodified composites, the 
kenaf xGNP nanocomposites treated with C-TAB showed 
improved tensile and flexural strengths.

Modifying the chemical composition of kenaf fibre can 
result in various impacts on thermoplastic reinforced kenaf 
fibre composites. These effects include enhanced compat-
ibility, adhesion, and interfacial bonding between the kenaf 
fibres and the thermoplastic matrix, leading to improved 
mechanical properties and overall performance of the com-
posite material. Furthermore, the modification can also lead 
to an increased in thermal stability, enabling them to with-
stand higher temperatures without significant degradation. 
By specifically adjusting the surface chemistry of kenaf 
fibres, the properties of thermoplastic composites such as 
stiffness, strength, and impact resistance can be customized 
to suit different applications. Ultimately, chemical modifi-
cation of kenaf fibre can greatly enhance the performance 
and characteristics of thermoplastic reinforced kenaf fibre 
composites, making them more suitable for a wide range of 
industrial uses.

5  Dynamic mechanical analysis (DMA)

5.1  DMA: fundamental and theories

The emergence of contemporary Dynamic Mechanical 
Analysis (DMA) methodologies has sparked a revival in 
thermal analytical techniques throughout the past several 
decades. The implementation of the DMA is primarily 
intended for quality control applications and the compara-
tive evaluation of material performance. The DMA remains 
a crucial instrument in material engineering and charac-
terization due to its ability to accurately detect dimensional 
changes in solid materials under particular stresses, even at 
the micro-scale [117]. The administration of this test often 
occurs under diverse situations, which are contingent upon 
the specific objectives. The dynamic mechanical properties 
of polymeric composites in relation to temperature is com-
monly conducted using established standards such as ASTM 
D5279, ASTM D4440, and ASTM D4065 [118]. The DMA 
is commonly employed to evaluate variations in glass transi-
tion temperature (Tg), damping, and stiffness of polymeric 
composites throughout the curing process [119].

The outputs showcase the values of storage modulus (E'), 
which is directly associated with the Young’s modulus of the 

composite material. Material researchers utilize the storage 
modulus, denoted as E′, to ascertain the stiffness characteris-
tics of composites. The parameter E′ typically characterizes 
the energy storage capacity of a material or composite for its 
intended use [120]. The loss modulus (E″) or dynamic loss 
modulus is the term used to describe the viscous response 
of a material or composite [121, 122]. The parameter E″ is 
utilized to quantify the release of applied energy by mate-
rials or composites, and it is commonly associated with 
the concept of internal friction. The parameter E″ exhibits 
sensitivity to various relaxation processes, morphologi-
cal characteristics, transitions, molecular movements, and 
other heterogeneities within the material structure. The use 
of DMA assists material engineers and researchers in quan-
tifying the extent to which polymer chains are immobilized 
by the surface of the filler material, as described by [123]. 
Equations (1) and (2) provide the fundamental equations 
employed to calculate the values of E′ and E″.

The mechanical damping factor, denoted as tan δ, may 
be obtained by calculating the ratio of E′ to E″, as shown in 
Eq. 3. In the context of the study, it is often observed that 
higher values of tan δ suggest the presence of a nonelastic 
strain component in the material or composite. Conversely, 
lower values of tan δ indicate a higher degree of elasticity. 
The drop in the tangent delta (tan δ) value of the composite 
material may be attributed to the favourable compatibility 
between the matrix and the fibres. This compatibility reduces 
the mobility of molecular chains at the interfaces between 
the different phases. The mechanical damping factor, tan 
δ, is influenced by molecular mobility and viscoelasticity. 
Additional small imperfections, such as dislocations, phase 
variations, grain boundaries, and diverse interfaces, have an 
impact on the tangent delta (tan δ) [124].

5.2  Glass transition temperature

The determination of the glass transition temperature (Tg) is 
a crucial aspect in the study of composite materials. The Tg 
serves as an indicator for alterations in mechanical proper-
ties or the initiation of phase transitions. The Tg identifica-
tion is utilized in thermal analysis to determine the tem-
perature range at which a material transitions from a glassy 
(rigid) to a rubbery (flexible and malleable) state [125].

(1)Storagemodulus ∶ E� =
�
0

�
0

cos�

(2)Lossmodulus ∶ E�� =
�
0

�
0

sin�

(3)Damping factor ∶ tan � =
E
��

E�
=

lossmodulus

storagemodulus
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In general, the Tg serves as an indicator of the physical 
condition of a material. A low glass transition temperature 
(Tg) signifies a condition of brittleness, whereas a high Tg 
signifies a state of elasticity. The glassy zone has a signifi-
cant presence of interlocking connections, stiffness, and 
limited molecular mobility within certain regions. The rub-
bery area demonstrates the increased mobility of molecular 
chains when subjected to higher temperatures [126]. Nev-
ertheless, several polymers have practical usage beyond 
their respective glass transition temperature (Tg), whereas 
certain polymers prove to be advantageous at temperatures 
below the Tg. Rubber elastomers, such as polyisobutylene 
and polyisoprene, are commonly utilized for their inherent 
characteristics of softness and flexible in the rubbery condi-
tion. The glassy states of hard polymers, such as polystyrene 
and PMMA, are used when they are maintained below their 
glass transition temperature (Tg), which is roughly 100 °C 
higher than the ambient temperature. A recent study has 
demonstrated a notable distinction between the Tg and the 
melting temperature (Tm). The sample undergoes a phase 
transition into a molten state at the Tm, whereas it has a 
softening effect at the temperature Tg [127]. Other thermal 
analysis techniques, including thermomechanical analysis 
(TMA) and differential scanning calorimetry (DSC), can 
also be used to determine Tg.

5.3  DMA of thermoplastic composites reinforced 
with kenaf fibres

In recent times, a handful of research has been conducted 
to examine the impact of kenaf fibre surface modifications 
on the dynamic mechanical characteristics of thermoplastic 
composites made from kenaf cellulosic fibres. Table 6 pre-
sents the experimental setup and results of DMA tests con-
ducted on thermoplastic composite reinforced with modified 
kenaf fibre.

Lee et al. [128] investigated the influence of glycidoxy-
propyltrimethoxysilane (GPS) concentrations of 1, 3, and 
5 parts per hundred (pph) on the dynamic mechanical per-
formance of a composite material composed of long bast 
kenaf fibre and PLA. Their findings show that kenaf bio-
composites treated with three parts per hundred (pph) GPS 
and manufactured with a kenaf to PLA ratio of 1:1 exhibit 
exceptional E′ values. The use of silane treatment with GPS 
as a coupling agent increased the viscoelastic properties of 
the kenaf/PLA green composite substantially.

Sis et al. [129] discovered that modifying the kenaf fibre 
with a 2 wt.% concentration of (3-aminopropyl)trimethox-
ysilane (APTMS) can eliminate the hydroxyl components 
while also improving the hydrophilic fibre’s compatibility 
with hydrophobic resins, resulting in an increase in the E′ of 
kenaf/PLA/PBAT composites. After treatment, the tan values 
of thermoplastic composites made of kenaf/PLA/PBAT are 

lowered. The observed result can be attributed to the polymer 
chain’s limited molecular mobility as a result of the tight close-
ness to the fibre surface caused by chemical bridging during 
their interfacial contact [133, 134].

Chung et al. [130] studied the influence of different immer-
sion durations of 0.5, 1, 2, and 3 h in a 28.5 vol.% acetic acid 
solution on the properties of kenaf/PLA thermoplastic com-
posites. The experimental results show that the E′ decreases 
significantly after 2 and 3 h of acetic acid immersion, indicat-
ing a negative influence on the kenaf/PLA composites. The 
improved adhesive qualities caused by the alteration of the 
hydrophilic character of the kenaf fibre can be attributed to 
the observation. The tangent delta (tan δ) of the thermoplas-
tic composite containing kenaf improves noticeably after 2 h 
or more. This improvement could be attributed to increased 
interfacial adhesion because of the restricted mobility of the 
polymer chain.

Huda et al. [131] found that including alkali- and silane-
treated kenaf fibre composites with a volume proportion of 
50% leads in a large increase in E′, with a 161% increase when 
compared to other kenaf/PLA composites. This enhancement 
is due to the pretreatment of the kenaf fibre with 3-APS, which 
accelerates the hydrolysis of the OH group of the fibre by its 
ethoxy group, resulting in the creation of silanol. As a result, 
the fibre can form stable covalent connections with the cell 
wall [135]. The aforementioned procedure therefore success-
fully enhances the level of crosslinking within the interfacial 
region between the fibre and matrix. This treatment also pro-
vides a favourable bonding outcome and facilitates the gen-
eration of a larger surface area for the fibres [136, 137]. The 
utilization of NaOH solution also helps to improve the compat-
ibility of the fibres and the matrix by removing lignin, which 
influences the hydrogen bonding profiles and reduces the tan 
δ of the specific composite.

According to Bakar et al. [132], the PVA/EVA polymer 
exhibited the greatest E″ values when grafted kenaf fibre 
was present at a loading of 30%. The Tg of a polyvinyl chlo-
ride (PVC) composite containing grafted kenaf–polym-
ethyl methacrylate (PMMA) increased as compared to an 
ungrafted kenaf fibre composite. Furthermore, when com-
pared to both the PVC/EVA blend and the ungrafted kenaf 
composites, the damping peak in the grafted kenaf com-
posites has a substantially lower tan δ value. This could be 
due to the increased interfacial adhesion between kenaf and 
PVA/EVA during the grafting process.

6  Potential applications of thermoplastic 
composites reinforced with kenaf fibres

Recently, there has been tremendous growth in the use of 
thermoplastic reinforced kenaf fibre in an extensive variety 
of uses, from domestic items to technical applications. The 
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usage of thermoplastic reinforced kenaf fibre to meet the 
engineering industry’s environmental sustainability needs 
has been proposed [138, 139]. Furthermore, these materi-
als have been widely used in a variety of industries due to 
their minimal carbon footprint and energy usage during the 
manufacturing process, as well as their inexpensive raw 
material costs. Composites, particularly kenaf thermoplastic 
composites, have recently been used in a range of industries, 
including aerospace, automotive, construction, and energy 
transmission. This trend may be attributed to the efforts of 
several researchers and scientists who are focused on devel-
oping structural loading components.

Apart from chemical treatment, kenaf fibres can be sur-
face modified with epoxy coating before being compounded 
with polyethylene terephthalate (PET) to improve their suit-
ability for high-temperature engineering applications [140]. 
After being treated with sodium hydroxide solution and cov-
ered with epoxy resin, the kenaf fibres were extruded and 
compression moulded at higher temperatures ranging from 
240 to 260 °C. This procedure yields a reinforced PET com-
posite made from modified kenaf fibres [140]. Owen et al. 
[141] found that surface coating natural fibres with diluted 
epoxy resin thermoset increases adhesion and thermal stabil-
ity between the polymer matrix and the fibres. The overall 
thermal and performance attributes of the thermoplastic 
composites produced are improved. The finding shows that 
kenaf fibres can be used as reinforcement in engineering 
polymer composites for high-temperature applications in 
industries including automotive and construction. More 
research and development into the mechanical and thermal 
properties of natural kenaf fibres using polymer matrices 
such as PET, polyphenylene ether (PPE), and acrylonitrile 
butadiene styrene (ABS) is also encouraging.

The studies provide information on the utilization of 
kenaf thermoplastic composites in specialized structural 
applications. These works demonstrate the efficacy of kenaf 
fibre as a reinforcing material in such applications, high-
lighting its potential for future utilization [142–144]. Table 7 
presents the progression of kenaf fibre thermoplastic com-
posites across several industries.

Atiqah et al. [148] investigated the mechanical charac-
teristics of polyester reinforced with hybridized glass/kenaf 
fibre composites in the context of their prospective applica-
tion in structural purposes, specifically car composites. In 
subsequent years, Mansor et al. [149] identified polyester 
reinforced with hybridized glass/kenaf fibre composites as 
the optimum solution for the construction of automobile 
brake levers. Thirteen different natural fibre materials were 
investigated using the Analytic Hierarchy Process (AHP), 
and it was determined that the kenaf bast fibre received the 
highest scores among the evaluated materials. In a follow-
up to the previous study, Mansor et al. [49] investigated the 
conceptual design of a parking lever brake using polymer 

reinforced kenaf fibre composites. As indicated by extant 
research literature, several investigations on the production 
of vehicle engine rubber components [146] and car spoilers 
[145] employing polymer reinforced kenaf fibre composites 
have been conducted. Furthermore, automobile coatings are 
used on both the interior and the exterior of automobiles, 
including front and rear bumpers, wall panels, roofs, and 
furniture [147, 150]. From this standpoint, it is clear that 
polymer reinforced kenaf fibre composites have significant 
potential as a suitable substitution to traditional materials 
like plastic and steel for various automotive parts such as 
front and rear fenders, exterior body panels, decklids, doors, 
hoods, trunk floor/spare tyre wells, and other secondary sup-
port structures [122, 151]. conducted an evaluation of the 
mechanical properties of hybrid unidirectional glass/kenaf 
reinforced epoxy composites. The purpose of their inves-
tigation was to assess the suitability of these composites 
for use as bumper beams in passenger vehicles. Based on 
the findings of the research, it has been determined that the 
flexural and tensile characteristics of hybrid composites 
composed of glass and kenaf fibres are comparable to those 
of glass fibre composites. It is worth noting that glass fibre 
composites are now favoured as the preferred material for 
car bumpers. In addition, the viability of using kenaf fibre 
reinforced polymer composites for the production of high 
temperature vehicle front-end components was investigated 
by Xue et al. [152]. No statistically significant differences in 
tensile modulus were seen when participants were exposed 
to escalating temperature treatments.

In addition to its automotive applications, Misri et al. 
[153] proposed that a hollow kenaf composite tube might 
be used in sporting equipment such as tennis rackets, bad-
minton rackets, fishing rods, and hockey sticks. Mazani et al. 
[48] used the concurrent engineering approach in their work 
to create and build a shoe rack made of polyester reinforced 
with kenaf fibres. Figure 6 shows a shoe rack that uses kenaf 
fibre as a reinforcement material in a polymer composite 
structure. Furthermore, the use of kenaf reinforced ther-
moset composites may improve the structural integrity of 
reinforced concrete beams. This is due to the large gains in 
deflection and ultimate flexural strength seen as a result of 
integrating kenaf fibre composites, which can reach up to 
24% and 40%, respectively [154].

Hamidon et al. [58] undertook a study with the objec-
tive of investigating innovative methodologies for the pro-
duction of rayon grade dissolving pulp. The study focused 
on using Malaysian kenaf stalk as the primary raw mate-
rial for this purpose. It is anticipated that the projected 
increase in kenaf production for the purpose of dissolving 
pulp, which would subsequently be used in the manufac-
ture of rayon, would have advantageous implications for 
both the batik industry and kenaf cultivators located along 
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the east coast. In addition, Abdelrhman et al. [155] discov-
ered that incorporating a blend of kenaf core and bast fibre 
as reinforcement in composite materials, along with the 
inclusion of other fillers, for the production of automotive 
components has the potential to reduce environmental bur-
dens by improving carbon sequestration within the vehicle 
structure. Moreover, increasing the proportion of fibre in 
the manufactured components would result in higher qual-
ity industrial output during the life of the car. It should be 
noted, however, that not all required certification examina-
tions have been completed. Finally, the flexural and tensile 
strength of kenaf fibre composites can be concluded to be 
enough for the applications. The findings and discoveries 
are encouraging for the advancement of kenaf fibre rein-
forced thermoplastic composites in the future.

7  Challenges and future scope

Addressing challenges inherent in kenaf fibre reinforced 
thermoplastic composites is critical for widespread 
adoption and advancement. Achieving strong interfacial 
adhesion between the kenaf fibres and polymer matri-
ces is one of the most prominent challenges, in order to 
ensure optimal load transfer and mechanical performance. 
Apart from that, another significant challenge is the high 
moisture absorption capacity of kenaf fibres, requiring 
a strategy to reduce its impact on the mechanical prop-
erties and performance. Another crucial challenge that 
needs to be overcome is to ensure uniform dispersion of 
kenaf fibres within the polymer matrix, as uniformity 
of kenaf fibres dispersion leads to better consistency in 

Table 7  Thermoplastic 
composites reinforced with 
kenaf fibre as products in 
various uses

Application Type of composite Product Design illustration Ref.

Automotive Polymer reinforced 

with kenaf fibre

Car spoiler [145]

Parking brake 

lever

[49]

Automobile 

engine rubber 

composite

[146]

Household Unsaturated 

polyester 

reinforced with 

kenaf fibre 

Shoe rack [48]

Polymer reinforced 

with kenaf fibre

Portable 

laptop table

[147]
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mechanical properties and structural integrity. Another 
key focus area that researchers must pay attention to is 
on enhancing the chemical compatibility between kenaf 
fibres and thermoplastic matrices. As discussed previ-
ously, chemical treatments and surface modifications are 
very promising approaches for improving compatibility 
and bonding, enhancing the overall performance of the 
composite material.

To address these challenges, several opportunities arise 
for future research and development by furthering and 
continuing the work of improving kenaf fibre reinforced 
thermoplastic composites. Exploring advanced process-
ing techniques to improve fibre dispersion and composite 
production efficiency is one such opportunity. Moreover, 
there is a growing emphasis on sustainability and envi-
ronmental responsibility, making it imperative to develop 
eco-friendly and recyclable materials. Efforts should be 
invested by focusing on the exploration of multifunctional 
applications for kenaf fibre reinforced thermoplastic 
composites across various sectors, such as automotive, 
construction, and packaging. In short, effort in overcom-
ing the challenges or drawbacks will be instrumental and 
influential in advancing the performance and properties 
of kenaf fibre reinforced thermoplastic composites. By 
addressing these key areas, researchers can pour effort 
and contribute in the development of high performance, 
sustainable materials with diverse range of applications.

8  Conclusions

Kenaf fibre offers considerable potential as a substitute for 
manmade fibres such as glass fibre. However, additional 
research is needed to investigate the potential substitution 
of various synthetic fibres, like carbon fibre. Furthermore, 
the study of kenaf fibre reinforced thermoplastic compos-
ites for both structural and non-structural applications show 
potential for improving product manufacturing through the 
use of environmentally friendly methods. This review pro-
vides a vital source of information for improving the prop-
erties of kenaf fibre composites by chemical modification. 
The chemical modification of kenaf fibre influences the 
interfacial adhesion, mechanical performance, absorption 
and thermal stability of the ensuing composites. Chemical 
treatments such as alkali treatment, acetylation, or silane 
treatment have contributed to improved adhesion, increased 
strength, reduced water absorption, enhanced thermal sta-
bility, and improved dimensional stability. The fibrillation 
process of alkalizing kenaf fibre divides the single-fibre 
bundle into smaller bundles, hence increasing surface area. 
This process makes it easier for the fibre and polymer parts 
of composites to interact mechanically, which improves the 
loading and dynamic mechanical qualities at the interface. 
The improved mechanical and dynamic properties resulting 
from fibre treatment make kenaf fibre reinforced thermo-
plastic composites suitable for various industries such as 
automotive, construction, aerospace, and consumer goods. 
It is very clear from the earlier reports that there are few 
challenges or limitations encountered, such as variations 
in treatment methods or inconsistencies in testing methods 
which requires proper optimization of treatment processes, 
exploring novel treatment methods, investigating long-term 
durability, and evaluating environmental sustainability 
aspects. Hence, to conclude it is necessary to understand 
the significance of the effects of fibre treatment on kenaf 
fibre reinforced thermoplastic composites and more impor-
tantly continued research in this area to further enhance the 
functional properties, durability, and applicability of these 
eco-friendly composite materials in diverse industrial sec-
tors is required.
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