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Abstract
Hexavalent chromium (Cr(VI)) is a water-soluble, highly toxic form of chromium compound that is recognized as a carcinogen 
and can lead to various health issues. This research investigates the use of activated carbon (AC) derived from Ficus carica 
leaves for the removal of Cr(VI) from water. The effect of the impregnation ratio on the characterization and performance 
of activated carbons for removing Cr(VI) was investigated. The physicochemical and textural properties of the produced 
activated carbons (ACs) were characterized using various analyses, including XRD, SEM, TGA, FTIR, iodine number, 
and pH of zero charge. It was found that the AC-100 impregnated at a ratio (AC/H3PO4) of 100% indicated highly efficient 
removal of Cr(VI). The prepared ACs have been modified with ethylenediamine (EDA) to enhance their performance. Results 
show that the adsorption capacity of the modified ACs showed a significant enhancement in comparison to the raw ACs. 
The maximum adsorption capacities for Cr(VI) removal for the raw AC-100 and its modified form were found to be 155.22 
and 203.25 mg/g, respectively, as determined by the Langmuir isotherm. The results of this study confirm that EDA can be 
used to enhance the effectiveness of activated carbon (AC) derived from Ficus carica leaves in removing Cr(VI) from water.

Keywords  Modified activated carbon · Chemical activation · Ficus carica leaves · Adsorption equilibrium · Chromium 
hexavalent · Ethylenediamine

1  Introduction

The rapid expansion of industry activity has resulted in the 
contamination of the aquatic environment with a wide array 
of toxic and hazardous chemicals [1–3]. Effective wastewater 
management and treatment are crucial to mitigate the envi-
ronmental impact of these pollutant sources and to ensure 
safe water disposal and conservation. Addressing this issue 

requires innovative approaches, and recent research has made 
significant contributions in the field of pollutant detection and 
removal [4, 5]. Among these pollutants, heavy metals stand 
out as highly perilous inorganic contaminants, even when 
present in low concentrations in aqueous solutions [6]. These 
metals have long half-lives and cannot be degraded [7]. Chro-
mium is found in two forms: trivalent Cr(III) and hexavalent 
Cr(VI) chromium. Hexavalent Cr(VI) is particularly perni-
cious due to its elevated oxidation potential and remarkable 
transmembrane mobility, classifying it as a Group I carcino-
gen [8]. The World Health Organization (WHO) has estab-
lished stringent guidelines, specifying limits of 0.05 mg/L for 
Cr(VI) in drinking water and 0.1 mg/L for surface water [9].

Chromium sources in wastewater are diverse and can 
originate from various industrial, municipal, and natural 
origins. Industries such as metal plating, tanneries, and 
chemical manufacturing contribute significant amounts of 
chromium through their processes [10]. Municipal sewage 
also contains chromium from domestic sources, like house-
hold products. Natural sources, such as geological deposits 
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and atmospheric deposition, can introduce trace amounts of 
chromium into wastewater.

Methods including coagulation/flocculation [11], 
precipitation [12], adsorption [13], ion exchange [14], 
reverse osmosis [15], and membrane filtration [16] 
are employed to remove Cr(VI) from wastewater. The 
adsorption process has been identified as the most efficient 
and environmentally sustainable method [17]. The ability 
to regenerate the adsorbents when necessary is another 
benefit [8]. The use of various adsorbents for wastewater 
purification, such as bentonite [18], mesoporous silica [19], 
humic acid-derived resin [20], nanoadsorbent [21] composite 
materials [22, 23], nanocomposite [24], biosorbents [25, 
26], and activated carbons [27, 28], has been the subject of 
extensive research in recent years.

Activated carbon (AC) emerges as a remarkably signifi-
cant material with diverse applications across various fields, 
including energy storage [29–31], and wastewater treatment. 
Its prominence is attributed to factors such as large surface 
area, cost-effectiveness, high reactivity, and minimal nega-
tive environmental impact [32, 33], have considerable in the 
removal of hexavalent chromium from water [34, 35]. More-
over, the exploration of enhancing activated carbon (AC) 
through surface modification with various chemicals, includ-
ing acids, basic materials, and polymers, adds an intriguing 
dimension due to its potential to boost AC efficiency [36, 37].

Through a series of procedures, activated carbon can be 
created from any source material with a high carbon con-
centration [38]. These procedures transform carbonaceous 
materials into a highly porous and adsorptive substance. 
According to Liang et al. [39], wood is the most widely 
used raw material for the production of activated carbon 
[40], followed by agricultural wastes. Various forms of 
agricultural waste, including seeds [41, 42], leaves [43, 44], 
peels [45, 46], and stems [47], coffee-derived biowaste [48], 
sawdust [49], and corncob [50, 51], have been harnessed for 
the production of AC. This study focuses specifically on the 
utilization of leaves as a biomass source for AC production. 
The significance of leaves as valuable precursors in material 
production is underscored by a variety of studies that explore 
their distinctive properties and applications [52–55].

Carbonization and activation are the two key stages 
involved in the manufacture of activated carbon. The first 
stage entails heating carbonaceous materials beyond 600 °C 
without oxygen in order to transform them into solid carbon 
products [56]. The technique of applying physical activation 
or chemical activation to increase the porosity and surface 
area of activated carbon is the second phase. Physical 
activation is a less effective, but more expensive, way to 
create activated carbon than chemical activation. Typically, 
chemical activation is employed to produce activated carbon 
with large pore volumes and surface areas [57, 58].

The impregnation of a raw material with an activating 
agent and subsequent heating to a high temperature consti-
tute the chemical activation process. By creating holes in the 
raw material by an activating agent reaction, the surface area 
and adsorption capacity are increased. Potassium hydroxide 
(KOH), sodium hydroxide (NaOH), zinc chloride (ZnCl2), and 
phosphoric acid (H3PO4) are the most often utilized activat-
ing agents. The final one has a variety of benefits over other 
chemical agents, including high efficiency, a non-corrosive 
acid, relative environmental friendliness, ease of use, and 
affordability. It creates activated carbon with a variety of pore 
sizes and high surface areas [59, 60].

The objective of this study focuses on the chemical activation 
of an agricultural waste, Ficus carica leaves, utilizing H3PO4 
as an activating agent for a range of impregnation ratios (30, 
60, 100, 150, and 200%) to produce activated carbon. By using 
XRD, SEM, TGA, FTIR, iodine number, methylene blue (MB) 
index, pHPZC, and Boehm titration, the prepared ACs were 
characterized. Using batch adsorption process, the prepared 
ACs were employed to remove Cr(VI) from an aqueous 
media. It was investigated how different parameters, including 
adsorbent dosage, solution pH, Cr(VI) concentration, and 
contact time, affected the adsorption process. Ethylenediamine 
(EDA) has been used to modify the prepared ACs surfaces in 
order to improve their performance. Also, the equilibrium 
adsorption isotherms of Cr(VI) on unmodified and EDA-
modified ACs were investigated.

2 � Materials and methods

2.1 � Materials

The following chemicals were supplied by Sigma-
Aldrich, Algeria: K2Cr2O7 (99.5%), H3PO4 (85%), 
1,5-diphenylcarbazide (99%), ethylenediamine (C2H8N2) 
(≥ 99%), KI (99%), I2 (99%), NaOH (98%), H2SO4 (98%), 
HCl (36.5–38%), and acetone ( 99%). In order to make the 
Cr(VI) stock solution (1 g/L), 2.83 g of K2Cr2O7 and 1L of 
distilled water were used.

2.2 � Activated carbon preparation

Ficus carica leaves were collected in the local region in eastern 
Algeria. The leaves were cleaned with distilled water to get 
rid of any pollutants before being dried outside for a couple 
of days. In order to obtain particles with a diameter of less 
than 900 m, the acquired precursor was crushed and sieved. 
A chemical activation was carried out by the socking of 60 g 
of the precursor with a desired amount of H3PO4 (30, 60, 100, 
150, 200 wt %) in an ultrasound probe (BRANSON 2510) for 
2 h. The mixture was heated to 600 °C for 1.5 h in a turbulent 
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muffle furnace (LINDBERG 54576-S HEVI-DUTY) with a 
heating rate of 15 °C min−1 after being evaporated at 105 °C 
in an oven. The resulting sample was rinsed several times with 
hot distilled water to remove excess phosphoric acid. After 
drying at 105 °C for 24 h, crushing, and sieving the activated 
carbon (AC) to a diameter of less than 75 μm, the activated 
carbon (AC) noted is ready for use. The prepared ACs were 
given the labels AC-30, AC-60, AC-100, AC-150, and AC-200 
in accordance with their impregnation ratios. Ethylenediamine 
(EDA) has been added to the produced ACs to improve their 
adsorption abilities. To achieve this, 2 mL of ethylenediamine 
was gradually added to a mixture of 300 mg of AC and 50 mL 
of distilled water in an ultrasound probe (BRANSON 2510) at 
40 °C for 2 h. The resultant sample was then dried after being 
rinsed with ethanol and water in a 1:1 ratio and filtered using 
a 0.45-μm filter. The label for the modified activated carbon 
read EDA-AC.

2.3 � Characterizations

The elemental composition and surface appearance of the AC 
were characterized using scanning electron microscopy (SEM). 
A spinning Cu K anode (1.54060) was used in an X-ray diffrac-
tometer (XRD; Rigaku MiniFlex600) investigation to ascertain 
the composition of AC. Shimadzu’s DTG-60 thermogravimeter 
was used to analyze the thermogravimetry of ACs between 25 
and 1000 °C (10 °C/min). Based on FTIR spectra collected 
with a Perkin Elmer Two FTIR spectrophotometer from Perkin 
Elmer, USA, the chemical functional groups of the ACs were 
identified. The ACs were examined as prepared KBr pellets 
with 20 scans between 4000 and 400 cm−1 and a resolution 
of 4 cm−1. Additionally, the Boehm titration method (Boehm, 
1966) was used to calculate the amount of chemical functional 
groups present on the surface of AC [61].

The point of zero charge (pHPZC) of AC was determined 
using a batch technique [62]. In a series of Erlenmeyer flasks 
containing 50 mL of NaCl solution (0.1 mol/L), a mass of 0.2 g 
of AC was added to each flask, and the mixture was stirred for 
48 h at room temperature. The pH was varied from 2 to 10 by 
added HCl (0.1 mol/L) and NaOH (0.1 mol/L) to the pH noted 
pHi. The curve of pH as a function of pHi was used to determine 
pHPZC. The pH at the point where the surface charge of the 
activated carbon is zero represents pHpzc [63]

The adsorption performance of the produced ACs was 
assessed by measuring the methylene blue and iodine num-
bers. Iodine number was determined using the experimen-
tal protocol proposed by ASTM [64]. A mass of 0.1 g of 
AC is placed in a clean bottle in contact with 10 mL of 
5% HCL and allowed to boil for 30 s. Then, 100 mL of 
iodine solution (0.1 N) was added to the mixture, which 
was agitated for 30 s, and the mixture was quickly filtered 
on filter paper. A volume of 10 mL of the filtrate is dosed 
by a sodium thiosulfate solution of 0.1 N in the presence of 

starch as an ending indicator. Methylene blue (MB) index 
was determined according to the Chemviron-Carbon Com-
pany (Zoning Industriel C. B-7181 Feluy, Belgium) TM-1 
standard test method [28]. In an Erlenmeyer flask containing 
0.1 g AC, a standard MB solution (1500 mg/L) is added in 
small volumes, and the mixture is shaken for a few minutes. 
Once equilibrium is reached and the AC is saturated with 
MB, a very light blue color appears with the last amount of 
MB added just before reaching equilibrium. The total vol-
ume ( VMB) adsorbed is then calculated, and the MB index, 
expressed in terms of milligrams of MB adsorbed per gram 
of activated carbon, is determined using Eq. 1.

2.4 � Adsorption study

Adsorption study carried out using a batch process, a 
predetermined volume of the Cr(VI) solution was combined 
with a certain mass of AC in a reactor and agitated until 
equilibrium. The mixture was centrifuged at 4000 rpm for 
20 min after equilibrium was reached, and the filtrate was 
then combined with 1,5-diphenylcarbazide and examined 
using a UV spectrophotometer at 554 nm. Investigation 
was done into the effects of various operating parameters, 
including the AC dose, solution pH, time, and beginning 
Cr(VI) content. Furthermore, the equilibrium adsorption was 
investigated under the optimum conditions. The adsorption 
capacity of Cr(VI) at equilibrium, qe, and at time t, qt, were 
calculated from Eq. 2 and Eq. 3, respectively.

In a batch-processed adsorption investigation, the 
equilibrium adsorption was examined under optimal 
operating conditions. Equation 2 and Eq. 3 were used to 
calculate the adsorption capacity of Cr(VI) at equilibrium, 
qe, and at time t, qt, respectively [65, 66].

3 � Results and discussion

3.1 � Characteristics of the prepared ACs

The X-ray diffraction (XRD) patterns of the ACs that were 
prepared are presented in Fig. 1. As shown in this analy-
sis, the produced ACs exhibit a similar structure across 
various impregnation ratios. The prominent and wide peaks 

(1)MB index =
1500 × VMB

0.1

(2)qe(mg∕g) =
(C0 − Ce)(mg∕L)

mAC(g)
V(L)

(3)qt(mg∕g) =
(C0 − Ct)(mg∕L)

mAC(g)
V(L)
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appearing between 20 and 35° can be attributed to graphite 
disorder, as reported by [67]. Furthermore, a minor peak 
observed between 40 and 50° may be associated with the 
stacking arrangement of aromatic carbon layers. Similar 
findings for various prepared AC types have been reported 
in numerous research [68–70] as well as for commercial 
AC [71]. According to [72], the peaks at about 24° and 43° 
correspond to, respectively, the (0 0 2) planes of disorder 
aromatic carbon and the (0 0 1) planes of graphite’s hexago-
nal structure, showing the predominance of an amorphous 
structure.

Scanning electron microscopy (SEM) analysis of the sur-
face morphologies of the produced ACs, shown in Fig. 2, 
reveals a different pattern. Notably, these ACs have a rough 
surface structure and uneven porosity. The apparent porosity 
supports the successful pyrolysis and activation procedure 
that was accomplished by utilizing phosphoric acid.

The thermogravimetric analysis (TGA) results for all the 
prepared ACs demonstrate a two-stage weight loss pattern, 
as illustrated in Fig. 3. The release of adsorbed water is 
thought to be responsible for the initial stage, which occurs 
up to 250 °C. The next stage involves the thermal breakdown 
of oxygen functional groups and occurs between 300 and 
800 °C. Other researchers [42, 58] for a variety of prepared 
activated carbons have reported similar findings.

The FTIR spectra of the prepared ACs (Fig. 4) have con-
sistent structural features with distinct bands. The broad 
band observed at 3425 cm−1 can be attributed to the pres-
ence of free hydroxyl groups (O–H) on the surface of the 
ACs, as reported by [73, 74]. Furthermore, the absorption 
peaks at 2923.92 cm−1, 1620 cm−1, and 1097 cm−1 may be 
due to -CH2 groups (methyl and methylene groups) [75], 
C = C bonds [76], and C-O stretching vibration in carboxylic 

acids, alcohols, phenols, and esters, respectively. The peaks 
falling within the 612–779 cm−1 range can be attributed to 
the interaction of phosphorous species resulting from the 
phosphoric acid activation process, as suggested by [77].

The results of the Boehm titration analysis of the prepared 
CAs are illustrated in Fig. 5. It is clear that the prepared 
ACs contain more acidic than basic groups, with lactonic 
and phenolic groups making up the majority of the acidic 
groups. The point of zero charge (pHPZC) values in Fig. 6, 
which vary from 5.44 to 5.61, support the conclusion that 
the prepared ACs are mildly acidic. Table 1 lists additional 
properties for all prepared ACs, including the iodine number, 
methylene blue (MB) index, yield, apparent density, slurry 
pH, humidity, porosity, and pHPZC.

The iodine number values obtained for the prepared ACs 
exhibit a notable range, spanning from 1117 to 1346 mg/g. 
As can be observed in Table 1, the iodine number rises as a 
result of the phosphoric acid impregnation ratio. These high 
iodine numbers show that the activation process has produced 
desirable microporosity and that the activated carbon that 
has been formed has a sizable microporous surface area 
[78]. According to the literature, the iodine number values 
expected for high-quality activated carbons are equal to or 
higher than 900 mg/g. Moreover, the literature provides a 
broader context by specifying a typical iodine number range 
of 500–1200 mg/g, equivalent to a surface area range of 
900–1100 m2/g [79]. This suggests that the prepared activated 
carbons exhibit a surface area that exceeds the typical 
expectations, further emphasizing their potential for efficient 
adsorption. In addition, the low-density values validate 
the porous structure of the ACs and confirm the existence 
of a large specific surface area [80]. The MB index values 
ranged from 35.82 to 46.8 mg/g, demonstrating that chemical 

Fig. 1   The XRD diagrams of 
the prepared activated carbons
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activation with phosphoric acid had a detrimental effect on 
the development of mesoporous surface area. This shows 
that the structure of the prepared ACs is largely microporous. 
These ACs can also be used to remove substances with tiny 
diameters, such as hexavalent chromium.

3.2 � Adsorption study

3.2.1 � Effect of parameters on adsorption of Cr(VI)

The effect of pH (2–12) on the removal of Cr(VI) using the 
prepared ACs is presented in Fig. 7. The highest Cr(VI) 
removal efficiency was accomplished at very low pH, with 
removal yields ranging from 98.18 to 75.83% at pH 2–4. 

This finding is in line with earlier studies [35, 81]. This is 
due to the anionic form of chromium, HCrO−

4
 , which pre-

dominates in low pH solutions and is drawn to the positively 
charged surfaces of the ACs. The prepared ACs all have an 
acidic point of zero charge (pHPZC), which indicates that at 
pH levels below their pHPZC, their surfaces are positively 
charged. For additional research, pH 2 was kept constant.

The effect of the AC dose on the adsorption of Cr(VI) 
is illustrated in Fig. 8. It is evident that with an increase in 
the amount of AC, the adsorption efficiency also increases, 
which is due to the availability of more adsorption sites on 
the surface of AC. All activated carbons exhibit compa-
rable behavior, with only slight variation in their removal 
efficiency. The optimal ACs dose for the effective removal 

AC-30 AC-60

AC-100 AC-150

AC-200

Fig. 2   SEM analysis of the prepared activated carbons
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of Cr(VI) was determined to be 2 g/L, achieving a removal 
efficiency of 98%. This dose was subsequently maintained 
constant for further study.

The effect of contact time on the removal of Cr(VI) was 
investigated using the prepared activated carbons (ACs) at 
an initial concentration of 100 mg/L, as depicted in Fig. 9. 
The results reveal a clear trend, wherein an extension of the 
contact time results in a corresponding increase in the removal 

efficiency of Cr(VI). This phenomenon can be attributed to 
the prolonged contact time facilitating the diffusion of Cr(VI) 
onto the microporous surface of the ACs, allowing it to effec-
tively bind to available adsorption sites. Equilibrium in the 
adsorption process is observed to be achieved at approxi-
mately 2 h of contact time, and this duration was subsequently 
adopted as the equilibrium contact time for further study.

3.2.2 � Equilibrium adsorption isotherms

The equilibrium adsorption isotherms of all prepared ACs 
were investigated in the range of initial Cr(VI) concentra-
tion spanning from 50 to 450 mg/L, under optimal opera-
tional conditions (ACs dose of 2 g/L, pH of 2, a contact time 
of 2 h, and ambient temperature). The resulting isotherms 
are illustrated in Fig. 10. It is evident that the adsorption 
capacity for Cr(VI) rises with increasing residual Cr(VI) 
concentrations at equilibrium, reaffirming the favorable 
adsorption characteristics of Cr(VI) on all the prepared 
ACs, albeit with slight variations in equilibrium capacity 
among the different AC samples.

Two adsorption isotherm models, namely the Freundlich 
model (Eq. 4) proposed by [82] and the Langmuir model 
(Eq. 5) introduced by [83], were employed to assess the 
Cr(VI) adsorption parameters (Fig. 11).

(4)qe = KFCe
1∕n
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where qe (mg/g): the equilibrium adsorption capacity, 
Ce (mg/L): the equilibrium concentration of Cr(VI), KF 
(mg1−(1/n) L1/n g−1): the Freundlich constant, and n: a meas-
ure of the adsorption intensity.

where qm (mg/g): the maximum adsorption capacity for a 
monolayer coverage of the AC (mg/g), and KL (L/mg): the 
Langmuir constant.

The parameter values for each adsorption isotherm are 
provided in Table 2. The correlation coefficient (R2) val-
ues reveal that the Langmuir model suitably describes the 
adsorption data for all ACs. The maximum adsorption 

(5)qe =
qmKLCe

1 + KLCe
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Table 1   Physicochemical characteristics of the prepared ACs

Parameters Adsorbents

AC-30 AC-60 AC-100 AC-150 AC-200

Production yield (%) 56.7 52.2 48.6 44.8 42.5
Slurry pH 5.48 4.83 3.73 3.42 3.40
pHPZC 5.44 5.46 5.52 5.60 5.62
Iodine number (mg/g) 1117 1257 1270 1310 1346
BM index 38.92 35.82 46.80 37.25 36.42
Apparent density (g/

cm3)
0.60 0.61 0.62 0.62 0.63

Porosity (ζ) (%) 44.54 44.26 44.51 44.52 44.51
Humidity level (%) 2.71 3.31 4.3 3.59 2.89
Conductivity (µs) 260 266 259 262 257
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Fig. 7   The effect of pH on the adsorption of Cr(VI) in the prepared 
ACs (time = 2 h, ambient temperature, an initial Cr(VI) concentra-
tion = 100 mg/L)
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increases from 93.28 to 155.27 mg/g as the impregnation 
ratio increases from 30 to 100%. Subsequently, with a fur-
ther increment in the impregnation ratio from 100 to 200%, 
the maximum capacity decreases to 112.86 mg/g. Among 
the ACs, AC-100 stands out with the highest maximum 
capacity, signifying the optimal impregnation ratio of the 
activating agent (H3PO4). This result highlights the cru-
cial role of impregnation ratio in modifying the adsorption 
capacity of activated carbons for Cr(VI) removal.

The maximum adsorption capacity of the selected AC 
(AC-100) is compared with that of several other prepared 
ACs used for Cr(VI) removal, as illustrated in Table 3. It 
can be seen that the prepared AC-100 exhibits a notably 
greater maximum adsorption capacity in comparison to 
the majority of previously reported adsorbents, reaffirm-
ing its effectiveness for Cr(VI) removal. This AC can be 
considered a promising adsorbent for the effective removal 
of Cr(VI) from water.

The effect of the surface modification by EDA  Ethylen-
ediamine (EDA) was employed as a surface modification 
agent to enhance the performance of the prepared ACs for 
the removal of Cr(VI). In Fig. 12, equilibrium adsorption 
isotherms for all modified ACs are presented. To determine 
the adsorption parameters and the most suitable isotherm 
model, the adsorption data were fitted using the Freundlich 
and Langmuir isotherms, as shown in Fig. 13. The results in 
Table 4 affirm that the adsorption of Cr(VI) onto all modi-
fied ACs (EDA-ACs) is well-described by the Langmuir iso-
therm, as indicated by the high correlation coefficient (R2) 
values. A comparison of the maximum adsorption capacities 
of the unmodified ACs and the EDA-ACs confirms a notable 
enhancement in the performance of the ACs. Specifically, 
the maximum adsorption capacity increased from 155.27 
to 203.25 mg/g for EDA-modified AC-100 (EDA-AC-100). 
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This improvement in AC performance can be attributed to 
the introduction of new functional groups on the AC sur-
face and an increase in the surface area, resulting in an ele-
vated Cr(VI) adsorption capacity. The results were further 
corroborated through iodine number, SEM analysis, and 
FTIR spectra analysis of EDA-AC-100. The iodine number 
increased from 1270 for AC-100 to 1422 for EDA-AC-100, 
signifying an augmentation in the microporous surface area. 

In Fig. 14, the SEM images confirm the enhancement of 
surface porosity in the modified AC. The FTIR analysis of 
EDA-AC-100, as shown in Fig. 15, revealed the emergence 
of new peaks, including one between 1425 and 1375 cm−1, 
due to the stretching vibration of C(O)-N in amide groups 
[90], shows the presence of an amidation reaction between 
AC and EDA. This amidation resulted in the covalent attach-
ment of EDA to AC, characterized by the vibrations of N–H, 
C-H, and C-N [91]. Another peak appeared at 868 cm−1, 
indicating the presence of C-N stretching. Additionally, a 
peak near 3000 cm−1 was associated with N–H stretching, 
and the last peak at 1579 cm−1 was possibly related to N–H 
(amine or amide groups). These peaks provided conclusive 
evidence of the chemical modification of the prepared AC 
with EDA. Furthermore, the introduction of new amino 
groups on the AC surface enhances electrostatic attraction 
and chelate complex formation with Cr(VI) ions. These 
results were in agreement with those obtained by [90, 92].

4 � Conclusion

In this work, preparation, characterization, and adsorp-
tion performances of activated carbons derived from Ficus 
carica leaves for Cr(VI) removal were investigated. The 

Table 2   Adsorption isotherm 
constants for removal of Cr(VI)) 
using the prepared ACs

Model Parameters Adsorbent

AC-30 AC-60 AC-100 AC-150 AC-200

Langmuir qmax (mg/g) 93.28 101.31 155.27 124.37 112.86
KL (L/mg) 0,011 0.012 0,016 0,0155 0,015
RL 0.62 0.608 0.608 0.562 0.559
R2 0.997 0.997 0.992 0.990 0.989

Freundlich 1/n 0.57 0.633 0.65 0.61 0.60
KF (mg1−(1/n) L1/n g−1) 3.39 3.09 5.12 4.57 4.28
R2 0.948 0.968 0.952 0.95 0.95

Table 3   Comparison of the 
prepared AC (AC-100) with 
other activated carbons

Precursor Activation conditions Isotherm model qm (mg/g) Reference

Ficus carica bast fiber H3PO4
Microwave heating (5 min; 600 W)

Langmuir 44.84 [84]

Aloe vera H2SO4, under N2, 800 °C Langmuir 58.83 [85]
Watermelon peel H2SO4 Langmuir 72.46 [86]
Silver berry ZnCl2, 500 °C Langmuir 88.57 [35]
Orange peel ZnCl2,700 °C Langmuir 133.33 [87]
Ficus carica leaves H3PO4, under N2, 600 °C Langmuir 155.27 This study
Corn straw KOH, under N2, 800 °C Langmuir 176.37 [88]
Spent coffee grounds KOH, 400 °C Langmuir 187.6 [89]
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prepared ACs (H3PO4, 600 °C, 1 h) were characterized 
by DRX, SEM–EDS, ATG, FTIR, iodine number, and pH 
of zero charge. It was found that the prepared ACs have a 

high microporous surface area and acidic functional groups. 
The effect of the impregnation ratio of the activating agent 
(H3PO4) and surface modification by ethylenediamine 
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Fig. 13   Linear fit of Langmuir (a) and Freundlich (b) isotherms models for Cr(VI) removal by the prepared EDA-ACs

Table 4   Adsorption isotherm constants for removal of Cr(VI) using the prepared EDA-ACs

Model Parameters Adsorbent

EDA-AC-30 EDA-AC-60 EDA-AC-100 EDA-AC-150 EDA-AC-200

Langmuir qmax (mg/g) 173.91 174.52 203.25 195.69 189.75
KL (L/mg) 0.18 0.29 0.21 0.27 0.35
RL 0.09 0.06 0.08 0.06 0.053
R2 0.99 0.99 0.99 0.99 0.992

Freundlich 1/n 0.51 0.42 0.42 0.44 0.46
KF (mg1−(1/n) L1/n g−1) 30.20 46.27 48.56 50.74 51.77
R2 0.97 0.97 0.95 0.96 0.98

Fig. 14   SEM analysis of EDA-AC-100
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(EDA) was also studied to enhance the ACs performance. 
Results show that an impregnation ratio of 100% gives the 
best AC performance, with a maximum capacity adsorption 
equal to 155.27 mg/g evaluated using Langmuir isotherm 
under optimal operational conditions such as ACs dose of 
2 g/L, pH of 2, and a contact time of 2 h. Results of ACs 
surface modification show a significant improvement in the 
adsorption capacity of the produced ACs; the maximum 
adsorption capacity of Cr(VI) increases from 155.27 to 
203.25 mg/g for unmodified and EDA-modified AC-100. 
Moreover, iodine number, SEM images, and FTIR spectra 
analysis have successfully confirmed the surface modifi-
cations. The introduction of amino groups via EDA not 
only enhances the adsorption capacity but also facilitates 
electrostatic attraction and chelate complex formation with 
Cr(VI) ions. This approach holds considerable promise for 
enhancing the adsorption performance of ACs and their 
usefulness in water treatment and environmental remedia-
tion applications.
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