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Abstract
Temperature greatly determines biochar’s physicochemical characteristics during the pyrolysis of a biowaste. This study 
aimed to investigate how pyrolysis temperature alters the physicochemical characteristics of water hyacinth (WH) biochar 
as a soil amendment. WH biomass was slowly pyrolyzed at three temperatures (350, 550, and 750 °C) for 2 h. Results show 
that biochar yield lessened from 51.0 to 33.3% with a temperature rise. When pyrolysis temperature increased biochar’s pH 
(9.24–11.2), electrical conductivity (28.0–44.7 mS cm−1), liming capacity (17.7–33.0% CaCO3 equivalence), ash content 
(33.3–52.4%), available nutrients (Ca, Mg, K, P), surface area (1.1–29.8 m2 g−1), pore volume, C/N ratio (15.9–20.3), and 
water holding capacity increased. However, C, H, N, H/C (0.89–0.11) and O/C (0.62–0.49) ratios, cation exchange capac-
ity (CEC) (44.4–2.3 cmol+kg−1), and pore width decreased. Surface functional groups shrank when pyrolysis temperature 
increased. As the temperature rises, WH biochar becomes structured, porous, and recalcitrant. All WH biochar samples 
show high alkalinity, particularly developed at 550 °C and 750 °C could replace liming materials in soil acidity alleviation. 
Biochar produced at 350 °C and 550 °C could improve agricultural soil fertility and nutrient retention capacity due to the 
lower C/N ratio, high N content, and CEC. Biochar produced at 550°C and 750 °C can sequester carbon in the soil. Biochar 
developed at 750 °C be applied to amend soil physical properties due to its comparably high surface area and porosity. Hence, 
the thermal conversion of WH biowaste to biochar helps obtain suitable biochar properties for soil amendment.
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1  Introduction

A carbon-enriched substance called biochar is frequently 
used as an amendment of soil to enhance the quality of soil 
[1]. Soil chemical, physical, and biological aspects may be 
improved when using biochar as an amendment for soil [2]. 
The effect of biochar on soil fertility is mostly due to the 
larger specific area, well-structured pores, high CEC, plenty 
of liming, and available nutrients from biochar [3]. Applying 
biochar to soil enhanced soil’s chemical properties including 
pH, CEC, total N and available P [4], organic carbon [5], and 
base saturation [6]. Moreover, biochar promotes the enzy-
matic reaction and microbial biomass in soil [7], escalating 
the soil’s capacity to supply nutrients to plants [8]. Addi-
tionally, biochar lowers the soil’s bulk density [9], increases 
porosity [10], and thereby improves the soil’s capability to 
retain water [11] and reduces nutrient leaching [12]. Accord-
ingly, adding biochar to soil significantly increases soil 
fertility, boosts plant growth [3], and improves crop yield 
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in acid and nutrient-deficient soils [13]. However, the soil 
amendment qualities of biochar are partly determined by 
the distinct physicochemical characteristics of biochar [14].

Biochar is produced via pyrolysis, where biomass thermal 
degradation occurs at high temperatures in an oxygen-free 
environment [15]. The biomass type and pyrolysis condi-
tions have an important effect on the physicochemical char-
acteristics of biochar [16, 17]. Among pyrolysis conditions, 
temperature greatly affects several biochar physicochemical 
properties [18]. Studies show that as pyrolysis temperature 
rises, biochar pore volume, specific surface area, ash and 
carbon contents, and total P and Ca concentrations increase 
while cation exchange capacity (CEC), volatile matter, and 
total N decrease [17, 19]. Such changes in biochar physico-
chemical characteristics are greatly associated with the loss 
of volatiles in higher temperatures of pyrolysis [20]. Like-
wise, various commonly available raw materials are utilized 
as feedstock for biochar production, such as plant and crop 
residues, wood chips, animal manures, and organic wastes 
[21]. Over the recent few years, due to its advantages in 
terms of sustainability, economics, and rising demand in 
the sectors of energy and the environment, there has been 
growing attention to converting biowaste into biochar [22]. 
Several essential components and minerals are present in 
biochar made from biomass including wastes from invasive 
plants [23].

Water hyacinth (WH) (Eichhornia crassipes), known as 
“Emboch” in Ethiopia, native to the Amazon Basin, South 
America, is categorized among the hundred very harmful 
encroaching species and one of the world’s ten worst weeds 
[24]. The first incidence of WH in Ethiopia was reported 
in 1965 [25]. Since 2011, WH remains a major problem at 
Ethiopia’s largest freshwater lake, Lake Tana [26]. In 2020, 
30,728 ha (10%) of the lake’s surface was covered by WH 
mat [27]. The weed caused several problems, particularly in 
the agriculture, aquaculture, shipping, hydroelectricity, and 
ecotourism industries [28]. To control the weed infestation, 
nearly a million laborers have been devoted and over US 
$3.2 million has been spent. Despite this fact, the efforts 
made so far have not yet played a significant role [29]. The 
major controlling strategy, physical weed removal was 
proven to be ineffective because of the massive biowaste 
disposition issues and the weed’s quick growth [30].

Since eradicating water hyacinths is very difficult, sus-
tainable management techniques have been suggested to 
reduce detrimental effects on surrounding ecological and 
socioeconomic structures [31]. For instance, the trans-
formation of WH biomass into biochar can be a potential 
option for soil fertility improvement and carbon sequestra-
tion and in turn assists in weed disposal management [32, 
33]. Being rich in hemicellulose (48%) and cellulose (20%) 
and its lower lignin content (3.5%), WH can be a potential 
biomass for producing numerous valuable products [34]. 

Additionally, biomass production of WH is extensive, annu-
ally producing more than a hundred tons per hectare, and 
also comprises crucial plant-growing elements that make the 
weed biomass a promising supply source for soil amendment 
after pyrolysis [33].

Although researches regarding the conversion of WH into 
biochar as a soil amendment are few, studies have been con-
ducted on turning WH biomass for different uses including 
soil use, nutrient extraction, and contaminant sorption. For 
instance, Masto et al. [33] explored the effect of a range of 
pyrolysis temperatures (200–500 °C) and retention time of 
30 to 120 min on WH biochar stability and the impact it 
had on soil biochemical characteristics and corn seedling 
growth. Bottezini et al. [32] also studied how pyrolysis 
temperature affected WH biochar chemical and molecular 
constituents and P forms and availability as a potential soil 
amendment under varying temperatures, viz. 400–600 °C. 
Bordoloi et al. [35] reported a beneficial impact of WH bio-
char on water retention ability and minimizing soil cracking. 
Jutakanoke et al. [36] demonstrated an enhanced role of WH 
biochar made at 500 °C on convolvulus growth and soil acid-
ity amendment. Also, Zhang et al. [37] conducted a study 
on the influence of WH biochar prepared at a temperature 
range of 250–550 °C for Cd adsorption. Those studies of 
WH biochar concerning its soil use were focused on some 
of the selected physicochemical properties of WH biochar. 
However, a more elaborated characterization of the biochar’s 
physicochemical properties induced by pyrolysis tempera-
ture needs to be investigated to have a broader view of WH 
biochar regarding its possible use as a soil amendment. Yet, 
studies on the production of biochar and its characteristics as 
a promising soil amendment from WH found in Lake Tana, 
Ethiopia, are barely available in the literature. Therefore, 
this work aimed to turn immensely available WH biomass 
into biochar and assess how the pyrolysis temperature alters 
the physicochemical characteristic of WH biochar as a soil 
amendment. The findings could provide insights into the 
management and utilization of WH biowaste for soil use by 
converting it into biochar through thermal treatment under 
various temperatures.

2 � Materials and methods

2.1 � Biomass collection and biochar production

The procedure of water hyacinth collection and preparation 
of biochar is presented in Fig. 1. WH biomass, used as a feed-
stock, was collected from Lake Tana, Ethiopia. Weed biomass 
was chopped into smaller pieces, washed with distilled water, 
and oven-dried at 105 °C to a uniform weight. After drying, 
the biomass was kept enclosed in an air-tight stainless-steel 
box with four small holes at the top of the cap to allow the 
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produced gas to escape and positioned inside a muffle furnace 
(LT 40/12, Nabertherm GmbH, Germany). The biochar was 
prepared in three levels of pyrolysis temperatures (350 °C, 
550 °C, and 750 °C) with a heating order of 5 °C/min and 
maintained at a specified temperature for 2 h. Following pyrol-
ysis, the biochar was left inside the furnace to get cold. Then, 
finely ground biochar samples were sieved with a 2-mm sieve 
and collected in sealed bags, labeled WB350, WB550, and 
WB750, where WB stands for water hyacinth biochar and the 
numbers indicate the pyrolysis temperature.

2.2 � Biochar characterization

2.2.1 � Biochar yield and ash content

The yield of biochar was determined by the quotient of the 
weight of the produced biochar and the dried biomass used as a 
feedstock, and the result was expressed as a percentage (Eq. 1).

where Mbiochar is the weight of biochar (g), and Mbiomass is 
the weight oven-dried biomass (g).

The amount of ash was measured following the American 
Society for Testing Materials (ASTM) method D1762-84. A 
1 g of oven-dried biochar was ashed in a furnace at a heating 
rate of 5 °C/min and remained for 6 h at 750 °C, then a desic-
cator was used to cool the ash sample. The amount of ash was 
then calculated as described in Eq. 2:

where M105 is the mass of oven-dried biochar at 105 °C and 
M750 is the residue that remained after ashing at 750 °C.

(1)Yield(%) =
Mbiochar

Mbiomss
× 100

(2)Ash(%) =
M105 −M750

M105
× 100

2.2.2 � Elemental analysis

Biochar elemental compositions (C, H, N) were analyzed 
by applying the dry combustion method. The biochar 
sample (2 ± 0.05  mg) oven-dried at 105  °C overnight 
was encapsulated in an aluminum sample envelope. The 
sealed sample was subjected to dry combustion employ-
ing a CHN analyzer (2400 Series II, Perkin Elmer, USA). 
The oxygen (O) content was obtained by the calculation of 
100% − (C + H + N + Ash) % [38]. The atomic mass ratios 
H/C and O/C were calculated from the elemental analysis 
result.

2.2.3 � The pH, electrical conductivity, and cation exchange 
capacity

The pH and electrical conductivity (EC) of the biochar were 
determined at a biochar (g) to deionized water (mL) ratio 
of 1:10 [39]. The biochar and deionized water blend were 
placed in a horizontal shaker at a speed of 160 rpm for 1 h 
and the suspension was then left for half an hour. The pH 
and EC were determined from the suspension employing a 
calibrated pH meter (9625, JF25, Horiba Scientific, Japan) 
and an EC meter (Mettler-Toledo, USA). CEC was examined 
by adopting the standard described by Hien et al. [40]. In 
brief, 1 ± 0.05 g biochar was combined in 40 mL of 1 M 
ammonium acetate (pH 7.0) and shaken for 15 h later on 
filtered through a 0.45-µm filtrate membrane. Additionally, 
50 mL of neutral pH 1 M ammonium acetate was used to 
wash the biochar. Then, 30 mL of ethanol was used to wash 
away the excess ammonium in the biochar. Then, 90 mL of 
2 M KCl was applied to wash the biochar, and the filtrate 
was analyzed for NH4

+ to calculate biochar CEC using a 
flow injection autoanalyzer (FIAlab 2500, USA).

Fig. 1   Steps of biochar produc-
tion from water hyacinth. a 
Water hyacinth collected from 
Lake Tana. b Water hyacinth 
pyrolysis in different tempera-
tures in an electric furnace. c 
Biochar produced from water 
hyacinth and crushing. d 
Biochar stored for analysis after 
sieving
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2.2.4 � Liming capacity

The liming potential of biochar samples was determined in 
line with Singh et al. [39], and the values were expressed 
as percent CaCO3 equivalence (CCE). Hence, 0.5  g of 
ground biochar blended with 10.0 mL of a standard 1 M 
HCl solution, shaken for 2 h, and then allowed to stand all 
night (16 h). Finally, using a standardized 0.5 M NaOH solu-
tion, the mixture was titrated under vigorous stirring until 
it reached a pH of 7. Then, the percent CaCO3 equivalence 
was determined using the calculation described in Singh 
et al. [39].

2.2.5 � Available nutrients

A 2% formic acid extraction technique was used to deter-
mine the amount of available P present in the biochar [41]. 
A biochar sample weighing 0.35 g mixed with 35 mL of 
2% formic acid was shaken at 160 rpm for half an hour. 
Then, after 10 min of centrifuging followed by filtration with 
Whatman No. 41 filter paper, the available P in the filtrate 
was measured with a flow injection autoanalyzer (FIAlab 
2500, USA). The 1 M HCl extraction procedure was used to 
determine the concentration of available Ca, Mg, and K [42]. 
A biochar sample (1 g) combined with 20 mL of 1 M HCl 
was shaken for 2 h and stood all night. Then, with Whatman 
No. 42 filter paper, the blend was filtered. The filtrate was 
later analyzed for K, Ca, and Mg using an atomic absorption 
spectrophotometer (PerkinElmer, USA).

2.2.6 � Specific surface area and porosity

An analysis of biochar’s specific surface area and porosity 
was done by applying the Brunauer–Emmett–Teller (BET) 
approach [43] through N adsorption–desorption isotherms 
(77 K) using an Accelerated Surface Area and Porosimetry 
(ASAP) (ASAP 2010, Micrometric, USA).

2.2.7 � Surface functionality

To analyze biochar’s surface functionality, a 1-mg sample 
of biochar was finely ground and well mixed with 100 mg 
KBr and pressed into a 13-mm pellet at a pressure of 
7845 kPa. The spectra reading was undertaken with the help 
of IRAffinity-1S Fourier transform infrared spectroscopy 
(FTIR) (Shimadzu, Japan). Infrared absorbance data were 
attained for wavenumbers between 400 and 4000 cm−1 at a 
spectral resolution of 2 cm−1 with 64 scans [44].

2.2.8 � Surface morphology and structure analysis

After drying a biochar sample for 24 h at 105 °C, surface 
morphology and structure imaging were examined using a 

JEOL scanning electron microscope (SEM) (JSM-5600LV, 
USA). The dried biochar sample was coated on a carbon tap 
and fitted onto a sample holder for examination.

2.2.9 � Water holding capacity

Biochar sample (1 g) previously oven-dried for a day at 
105 °C was shaken for 2 h with distilled water to make 
sure all pores were filled with water. After shaking, the wet 
sample was left to drain on a funnel using Whatman No. 
42 filter paper for 2 h. After draining, the drained biochar 
was weighed and spent 24 h in the oven at a temperature of 
105 °C. Water-holding capacity (WHC) was then calculated 
by the weight of the water kept in the biochar sample per 
weight of the oven-dried biochar sample [38, 40].

2.3 � Data analysis

Analysis of variance (ANOVA) was conducted to ascertain 
how the pyrolysis temperature influences WH biochar yield 
and physicochemical characteristics. Significant variations 
between means of various results were examined with the 
test of Tukey HSD at p < 0.05 level of significance. The aver-
age of three replicates and the standard deviation were used 
to express the results. The homogeneity of variance was 
examined using Lavene’s test. The whole statistical analy-
sis was executed with SPSS version 26 software (SPSS Inc., 
Chicago). Graphs were plotted by employing Origin soft-
ware (OriginLab, USA).

3 � Results and discussion

3.1 � Biochar yield, ash content, and elemental 
composition

Pyrolysis temperature impact on yield, ash content, and 
elemental compositions of WH biochar is presented in 
Table 1. The influence of pyrolysis temperature on the yield 
of biochar was significant (p < 0.05). The rise of pyrolysis 
temperature from 350 to 750 °C resulted in a reduced yield 
of biochar from 51 to 33.3%, respectively. Previous studies 
also showed that the yield of biochar declined as pyrolysis 
temperature rose (Table 4). A larger reduction of the bio-
char yield (25.7%) was recorded between 350 and 550 °C, 
but the yield difference between 550 and 750 °C was lower 
(12.1%). The result aligned with 33 Zhang et al. [37] and Li 
et al. [45] who noted a declining yield of WH biochar during 
increasing pyrolysis temperature (Table 4). The reduction 
of biochar yield could be due to enhancing dehydration of 
biomass along with loss of volatile matter at higher pyrolytic 
temperatures [46]. Furthermore, an increase in temperature 
causes quick and thorough decomposition of lignocellulosic 
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constituents of the biomass that leads to a reduced char yield 
[47]. Reza et al. [48] also outlined a similar finding for an 
invasive grass Pennisetum purpureum. 

The ash level of given biochar samples prepared under 
different temperatures of pyrolysis significantly (p < 0.05) 
varied among treatments. Raising the pyrolysis temperature 
increased the ash content significantly (Table 1). The ash 
levels found in this study were higher than in previous stud-
ies on WH biochar (Table 4). Bottezini et al. [32] reported a 
rise in the amount of ash (25.6–34.8%) for WH biochar dur-
ing a temperature rise (400–600 °C). Similarly, in a pyrolysis 
temperature between 250 and 500 °C, the WH biochar ash 
concentration rose from 11.1 to 42.4% [49]. Likewise, in 
the research of Zhang et al. [37], the ash content in WH 
biochar increased from 34.8 to 43.0% as the temperature of 
pyrolysis rose between 350 and 550 °C. Dhar et al. [50] and 
Zhang et al. [51] also reported a rise in the ash content with 
pyrolysis temperature. The rise in ash content with tempera-
ture could be attributed to the volatilization of an organic 
matrix at higher pyrolysis temperatures [52]. Furthermore, 
the amount of ash present in a biochar depends on the feed-
stock’s composition [53]. Compared to woody biomasses, 
biochar made from herbaceous biomasses had larger ash 
concentrations [54]. Additionally, a significant amount of 
ash from the current study biochar could be ascribed to the 
lower lignin content of WH biomass since WH is composed 
of 48% hemicellulose, 20% cellulose, and 3.5% lignin [34]. 
High lignin-containing biomass tends to yield high carbon 
biochar whereas low lignin-containing biomass results in 
high ash biochar [55]. Biochar with high ash amounts can be 
used as a fertilizer [56] and ameliorator of soil acidity [57]. 
Consequently, high levels of ash from WH biochar could 
serve as a source of minerals when added to the soil.

The current study’s findings showed that the C, H, N, and 
ratios of H/C, O/C, and C/N were all significantly impacted 
(p < 0.05) by the pyrolysis temperature (Table 1). The C 
content significantly decreased as the pyrolysis temperature 
rose, which was opposite to the earlier reports on WH bio-
char (Table 4). The C proportion found in WB750 was sig-
nificantly lower than WB350 and WB550. The diminishing 
C content of WH biochar with the rise in pyrolysis tempera-
ture could be ascribed to further decomposition and loss of 

C due to high temperature. WB350 and WB550 may have a 
high percentage of aliphatic carbon and a low percentage of 
aromatic carbon [58]. Claoston et al. [59] claim that when 
the pyrolysis temperature rises, the level of carbonization 
diminishes and at high temperatures, C will be lost. When 
the pyrolysis temperature went up, H, N, and O contents 
showed a decreasing trend, which is consistent with Bot-
tezini et al. [32] and Li et al. [45] who reported a depletion 
of biochar H, N, O, O/C, and H/C ratio for the WH biochar 
as the temperature of pyrolysis rose (Table 4). In the present 
study, the maximum reduction of H, N, and O was recorded 
with WB750. The existence of those elemental components 
in the form of CO, CO2, H2O, and hydrocarbons can be eas-
ily volatilized as pyrolysis temperature goes up [60]. Simi-
larly, the ratio of H/C and O/C also declined with pyrolytic 
temperature. Temperature increase during pyrolysis induces 
H and O loss through rapid dehydration and decarboxyla-
tion reactions as it has developed condensed aromatic ring 
structures [61] and diminished functional groups containing 
the atoms O and H [55]. It has been demonstrated that the 
level of aromaticity rises as the charring temperature rises 
[62]. Accordingly, WB750 with a H/C ratio of 0.11 became 
highly carbonized forming higher aromaticity compared to 
WB350 and WB550. According to International Biochar Ini-
tiatives (IBI) guidelines [63], adding biochar to the soil that 
has a H/C ratio < 0.7 will effectively sequester carbon and 
persist for a longer time. Thus, WB550 and WB750 could 
be potential candidates for carbon sequestration.

The N content also significantly declined when the pyrol-
ysis temperature rose. As there was a rise in temperature 
from 350 to 550 °C and 550 to 750 °C, the total N decreased 
by 12.0% and 39.4%, respectively. As Table 4 shows the N 
results were lower compared to N values reported by Bot-
tezini et al. [32] and higher than values reported by Li et al. 
[45]. However, the C/N ratio escalates with the development 
of pyrolytic temperature. This result was supported by Bot-
tezini et al. [32] who reported a comparable C/N value of 
WH biochar 16–23 for the 400–600 °C temperature range 
(Table 4). Narayanan et al. [49] also revealed a higher but 
decreasing C/N ratio (69.1–48.2) of WH biochar in a range 
of temperatures between 350 and 500 °C, owing to a high C 
level in their study (Table 4). Raising pyrolysis temperature 

Table 1   Yield, ash content, elemental constituent, and atomic mass ratios of water hyacinth biochar produced at different pyrolysis temperatures

Results are presented with the mean ± standard deviations (n = 3); numbers followed by the same letter in the same column are not significantly 
different (p < 0.05)

Biochar Yield Ash C H N O H/C O/C C/N
%

WB350 51.0 ± 1.07a 33.3 ± 1.44a 33.9 ± 0.99a 2.52 ± 0.5a 2.14 ± 0.04a 28.2 ± 1.69a 0.89 ± 0.21a 0.62 ± 0.05a 15.9 ± 0.62a

WB550 37.9 ± 0.38b 42.1 ± 0.24b 33.0 ± 0.44a 0.72 ± 0.31b 1.91 ± 0.02b 22.2 ± 0.58b 0.26 ± 0.11b 0.51 ± 0.03b 17.3 ± 0.22a

WB750 33.3 ± 0.30c 52.4 ± 0.53c 27.8 ± 0.47b 0.24 ± 0.08b 1.37 ± 0.01c 18.2 ± 0.23c 0.11 ± 0.04b 0.49 ± 0.02b 20.3 ± 0.73b
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accelerates the disappearance of functional groups contain-
ing N [64]. Thus, the N depletion as the pyrolysis tempera-
ture rises increases the ratio of C to N [65]. The findings of 
the present investigation demonstrated the level of C decline 
was far lower than that of the decreasing rate of N, conse-
quently leading to a greater C/N ratio for WH biochar at 
high temperatures. However, between WB350 and WB550, 
the C/N ratios were not significantly different. The ability 
of biochar to liberate inorganic N from organic matter once 
it enters the soil is frequently assessed using the C/N ratio 
[51]. Accordingly, WB350 and WB550 could release more 
inorganic N, when applied to the agricultural soil compared 
to WB550 and WB750.

3.2 � Biochar pH, electrical conductivity, and cation 
exchange capacity

Water hyacinth biochar pH, EC, CEC, and liming potential 
results are provided in Table 2. The biochar pH changed 
substantially (p < 0.05) among different temperatures with 
the highest pH (11.2) recorded for the WH biochar produced 
at 750 °C. The pH result indicated that all the samples were 
alkaline (9.24–11.2). High values of pH from WH biochar 
are parallel with the respective ash content of the biochar 
produced at a specified temperature (Table 1). The pH val-
ues reported in this study were higher than previous reports 
of biochar from WH (Table 4). The study’s pH findings 
conform with the pH values (9.4–10.49) reported by Zhang 
et al. [37] for biochar derived from WH made between 250 
and 550 °C. According to Liu et al. [66], the result of pH 
for WH biochar charred using temperatures in the range of 
300–700 °C showed similar trends though the values were 
lower (7.3–7.6). Moreover, the results of pH results in this 
work agree with the pH values from the biochar produced 
from biomasses other than WH [67, 68]. The rise in pH of 
biochar along with temperature could be mainly caused by 
alkali salt buildup [69], an increase in the amount of ash 
[70], and with replacement of functional groups that are 
acidic by alkaline functional groups [71] during pyrolysis. 
Accordingly, biochar possessing a high pH can assist in soil 
acidity amelioration [55]. WH-derived biochar was reported 
to be a potential for soil acidity alleviation [36]. Hence, WH 
biochar could be used as a liming agent for low-pH tropical 
soils.

The mean values of EC in WH biochar developed at dif-
ferent temperatures were drastically (p < 0.05) different, 
with the highest value of EC (44.7 mS cm−1) recorded for 
WB750. The EC values were consistent with the ash con-
tent of the given samples of WH biochar. Claoston et al. 
[59] reported that biochar’s EC values grew as the pyroly-
sis temperature rose. Similarly, Zhang et al. [22] stated that 
EC values of biochar increased with pyrolysis temperature. 
Elevated temperature induces a higher loss of volatile mat-
ter that leads to a larger occurrence of minerals in the ash 
which consecutively raises the value of EC [72]. Given that 
K+ ions are mobile, biochar with more mineral ash likely 
has a higher EC, particularly when compared to that with 
less mineral ash [73]. EC of biochar indicates the level of 
soluble salts present and is an essential factor manifesting 
the fertilizing effect of biochar [16]. Soil amendment with 
WH biochar should be taken into consideration owing to its 
higher mineral content that can improve soil fertility.

The CEC of WH biochar samples was found signifi-
cantly (p < 0.05) different owing to pyrolysis temperature. 
At 350 °C, the biochar CEC was highest, and at 750 °C, it 
was the lowest. When the pyrolysis temperature increased, 
the CEC value declined. This result was supported by the 
FTIR images where the functional groups substantially 
dropped as the temperature went up (Fig. 3). Zhang et al. 
[37] observed that the CEC for WH biochar produced at 
450 °C and 550 °C, respectively, decreased from 21.95 to 
14.23 cmol+ kg−1. Likewise, Narayanan et al. [49] described 
a decreasing CEC value from 38.9 to 31.9 cmol+ kg−1 during 
an increase in pyrolysis temperature from 350 to 550 °C. The 
CEC result was found higher at lower temperatures com-
pared to previous studies of WH biochar (Table 4). Corre-
spondingly, Gaskin et al. [74] demonstrated a similar trend 
of decreasing CEC for 400 °C and 500 °C produced pine 
chip, peanut husk, and poultry litter biochars. At higher 
pyrolysis temperatures, the biochar tends to produce aro-
matic C and removes surface functional groups that lead 
to reduced CEC of biochar [75]. Raising the temperature 
of pyrolysis causes the disappearance of organic functional 
groups (-COO−, OH−) that primarily contribute to a par-
ticular biochar’s CEC [65]. The CEC of a biochar strongly 
depends on the functional groups that contain oxygen on 
the biochar’s surface [76]. Thus, the decrease in O levels in 
WH biochars as temperature increases (Table 1) might be 

Table 2   The pH, electrical 
conductivity, cation exchange 
capacity, and liming potential 
of water hyacinth biochar 
pyrolyzed at different 
temperatures

Means ± standard deviations (n = 3) followed by similar letters across the column are not significantly dif-
ferent at p < 0.05

Biochar pH EC (mS cm−1) CEC (cmol+ kg−1) Liming value (% CCE)

WB350 9.24 ± 0.007a 28.0 ± 0.45a 44.4 ± 0.65a 17.7 ± 1.01a

WB550 11.0 ± 0.005b 32.9 ± 1.15b 34.6 ± 1.67b 24.8 ± 1.75b

WB750 11.2 ± 0.003c 44.7 ± 2.11c 2.3 ± 0.14c 33.0 ± 1.05c
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a cause for a decrease in CEC values as temperature rises. 
Incorporation of biochar into the soil can enhance the fertil-
ity of the soil by improving the CEC and the soil’s capacity 
to hold nutrients and minimizing soil acidity [4]. Based on 
the CEC results, WB350 and WB550 could be better used 
for the amendment of tropical soils having low CEC values.

3.3 � Liming potential

The liming potentials expressed as % CCE of WH biochar 
ranged from 17.7 to 33.0% (Table 2). The liming poten-
tials of WH biochar produced at different temperatures sig-
nificantly (p < 0.05) varied. The findings revealed that WH 
biochar liming capacity increased as the pyrolysis tempera-
ture rose. Based on Camps-Arbestain et al. [42], the lim-
ing potential of WB350 was classified as class 2 (10–20% 
CCE), whereas WB550 and WB750 were classified as class 
3 (> 20% CCE). The liming potential of WB350 and WB550 
was lower compared to the green tomato waste biochar (33% 
CCE) [77] and paper mill waste biochar (29–33% CCE) [78] 
produced under a temperature of 550 °C through slow pyrol-
ysis. High liming potentials of 72% and 86.3% CCE were 
reported for E. Saligna leaves and poultry litter biochars, 
respectively, produced in slow pyrolysis at 550 °C [79]. The 
ash content of a particular biochar plays a significant role in 
biochar’s liming potential, but only to a considerably smaller 
extent by the pH [67]. In the current study, liming potential 
and ash content had a positive correlation (data not shown). 
Due to its alkalinity, ability to neutralize acidity, and high 
concentration of positive ions, biochar can be an ideal lim-
ing agent for soil acidity adjustment [80]. Accordingly, an 
acid soil amendment could be better developed from WH 
biochars especially generated at temperatures between 550 
and 750 °C.

3.4 � Available nutrients

Figure 2 shows a concentrated amount of available nutrients 
(P, K, Ca, and Mg) from WH biochar prepared under varying 
temperatures. The influence of pyrolysis temperature was 
(p < 0.05) significant on the available P, Ca, Mg, and K con-
tents of WH biochar. Increasing the pyrolysis temperature 
increased the concentration of nutrients. Maximum level of 
available P, Ca, Mg, and K was found in WB750. The find-
ings of this study are in agreement with those of Gaskin 
et al. [74] and Wang et al. [81], who found that P, Ca, Mg, 
and K levels rose with rising temperature. Wang et al. [19] 
reported that the P and Ca concentrations in crop residue 
and wood biochar significantly increased as the temperature 
of pyrolysis rose from 500 to 700 °C. According to Bot-
tezini et al. [32], the total P content for WH biochar that 
was pyrolyzed at a temperature between 400 and 600 °C 
ranged from 7.23 to 7.56 g kg−1 (Table 4). Phosphorous-
rich biochar can be produced from WH since the ability of 
this aquatic weed plant to absorb large amounts of P is well 
documented [34]. Besides, pyrolysis temperature affects the 
volatilization properties and nutrient availability in biochar 
[82]. This study’s findings also showed that WH biochar is 
rich in soil nutrients; hence, WH biochar can be a viable 
option for soil fertility amendment.

3.5 � Surface functional groups

Figure 3 presents the FTIR spectra indicating the func-
tional groups of WH biochar prepared under different tem-
peratures. The broad band around 3422 cm−1 could be due 
to the hydroxyl (O—H) group stretching, which became 
diminished as the temperature rose. The spectra around 
2926–2864 cm−1 on WB350 diminished as the tempera-
ture rose assigned to aliphatic CH stretching [83]. The 

Fig. 2   Concentration of available nutrients (P, K, Ca, Mg) in water hyacinth biochar produced at 350 °C (WB350), 550 °C (WB550), and 750 °C 
(WB750); vertical bars show standard error of means
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aliphatic CH groups break apart and reform into more aro-
matic thermostable forms of biochar as pyrolysis tempera-
ture increases [15]. The spectral band around 1613 cm−1 
assigned to the stretch of aromatic C═C and C═O of 
vinyl ethers [84, 85] was more visible on WB350 and 
WB550 but became lessened for WB750, which could be 
due to an increase in pyrolysis temperature that provided 
high energy to break double bonds [15]. A band around 
1425 cm−1 for WB350 and WB550, decreasing at WB750, 
could be associated with in-plane C—O—H bending [84]. 
The band around 1313 cm−1 was observed only on the 
low-temperature biochar (WB350) and could be ascribed 
to the stretch of the C—O group [85]. The smaller band 
occurred around 1124 cm−1 could be related to aliphatic 
ethers of C—O—C stretching and alcohol C—H bend-
ing [84]. For WB350, symmetric C—O stretching may 
be the cause of a band around 1034 cm−1 [85, 86], and 
diminished as the temperature rose could be linked to the 
reduction of oxygen [86]. The spectral bands around 866 
and 782 cm−1 could be assigned to polynuclear aromatics 
from out-of-plane bending of C—H [85]. The bands below 
665 cm−1 could be assigned as aromatic rings [59]. As 

illustrated in Fig. 3, a decrease in many FTIR peaks was 
observed when the pyrolysis temperature was increased 
from 350 to 750 °C. Overall, the decreasing values of 
O, H, and H/C and O/C ratios (Table 1) with increasing 
temperature hinted at a considerable removal of –OH and 
C–O containing polar functional groups [87]. The reduc-
tion of surface functional groups will have an impact on 
biochar’s adsorption properties, where the CEC of biochar 
declines as temperature rises (Table 2). Regardless of the 
feedstock used, low-temperature biochar had more sur-
face polar functional groups [15]. Thus, low-temperature 
biochars WB350 and WB550 could be applied to improve 
soil nutrient adsorption capability due to their relatively 
high surface functionality.

3.6 � Surface area and pore characteristics

Table 3 displays the WH biochar’s BET surface area, total 
pore volume, the volume of micropores, and the average 
width of pores. Figure 4 shows the nitrogen adsorption–des-
orption isotherms of the WH biochars obtained by differ-
ent pyrolysis temperatures. With an increase in pyrolysis 

Fig. 3   Fourier transform 
infrared spectroscopy spec-
tra of water hyacinth biochar 
produced at 350 °C (WB350), 
550 °C (WB550), and 750 °C 
(WB750)

Table 3   Effect of varying 
pyrolysis temperatures on BET 
surface area, total pore volume, 
micropore volume, and average 
pore width of water hyacinth 
biochar

WH biochar produced at different pyrolysis temperatures: WB350 (350 °C), WB550 (550 °C), and WB750 
(750 °C)

Biochar sample BET surface area 
(m2 g−1)

Total pore volume 
(cm3 g−1)

Micropore volume 
(cm3 g−1)

Average 
pore width 
(nm)

WB350 1.1 0.00423 0.00158 15.4
WB550 14.6 0.01829 0.00349 5.01
WB750 29.8 0.03263 0.00601 4.37
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temperature BET surface area, total pore volume, and 
micropore volume increased, although the average width 
of pores decreased, which concurs with earlier research on 
WH biochar (Table 4). The size of pores and surface area 
results were supported with SEM images which showed 
that plenty of pores formed at higher temperatures (Fig. 5). 
Except for the lowest pyrolysis temperature (350 °C), the 
surface area results obtained from the current study appeared 
to be greater than those of WH biochar made at temperatures 
of 300 °C, 500 °C, and 700 °C with BET surface area of 2.5, 
8.1, and 20.9 m2 g−1, respectively [66]. However, higher 
values of BET surface area (175.5 m2 g−1) and total pore 
volume (0.1183 cm3 g−1) were reported by Li et al. [45] for 
WH biochar developed at a temperature of 700 °C (Table 4). 

Fig. 4   Nitrogen adsorption–desorption isotherms of WH biochars 
developed at (a) 350 °C, (b) 550 °C, and (c) 750 °C
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In comparison to WB750, Allam et al. [88] reported a lower 
surface area (25.9 m2 g−1) but a greater total pore volume 
(0.0363 cm3 g−1) of WH biochar created at 900 °C (Table 4). 
The surface area of the current study’s biochar was found 
very low compared with wood biochar (347.8 m2 g−1) and 
grass biochar (140.8 m2 g−1) for the 700 °C pyrolysis tem-
perature [85], miscanthus (168–390 m2 g−1), switchgrass 
(162–351 m2 g−1), corn stover (149–357 m2g−1), and sug-
arcane bagasse (138–290 m2g−1) for pyrolysis temperature 
of 500–800 °C [89]. Accordingly, improving the porosity 
and surface area of WH biochar as a soil amendment will 
be necessary. For instance, pyrolysis of WH with an acti-
vating agent, ZnCl2, at 600 °C produced a surface area of 
680.53–1199.3 cm3 g−1 and a total pore volume of 0.33–1.88 
cm3 g−1 [90, 91]. This indicates that the addition of an acti-
vating agent during the pyrolysis of WH will enhance the 
surface area and porosity of biochar. The pore width of the 
present study biochar was higher than in earlier studies of 
WH biochar [45, 88]; however, the pore width reported by 
Liu et al. [66] was much larger than the present study results 
(Table 4).

During pyrolysis, the rate of cellulose and hemicel-
lulose degradation increased as the temperature rose and 
this induced a higher biochar porosity and specific sur-
face area [87]. Similarly, with increasing pyrolysis tem-
perature, the loss of volatile matter will be higher result-
ing in the formation of a greater extent of micropores 
[92]. According to Kalderis et al. [93], biochar’s surface 
area and porosity are among key properties for improv-
ing soil characteristics, such as its capacity to adsorb and 
retain water. Besides, the biochar’s porous structures 
could function as a home ground for soil microbes [94] 
and as a site for soil nutrient adsorption [95]. Therefore, 
WH biochar could be an ideal material for improving the 
porosity of soil and increasing surface area for the adsorp-
tion of nutrients, water retention, soil aeration, and pro-
viding shelter for microbes.

3.7 � Surface morphology and structure

Images of the surface morphology and structural details 
were taken employing SEM for WH biochar generated at 

Fig. 5   SEM-generated surface 
morphology images of water 
hyacinth biochar prepared at 
various pyrolysis temperatures. 
Biochar made at 350 °C (a) 
low magnification and (b) high 
magnification; biochar made at 
550 °C (c) low magnification 
and (d) high magnification; 
biochar made at 750 °C (e) 
low magnification and (f) high 
magnification

(b)(a)

(c) (d)

(e) (f)

10 µm

10 µm

50 µm
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various temperatures. As illustrated in Fig. 5, the SEM 
images revealed that morphological changes were made 
at higher pyrolysis temperatures of 550 °C Fig. 5c, d) and 
750 °C (Fig. 5e, f). Well-arranged and porous structures 
were observed as the pyrolysis temperature rose, which may 
have been caused by the release of volatile matter that left 
more structured pores. In WB350, the SEM images (Fig. 5a, 
b) showed that the pores were not fully developed and filled 
up with volatile matter that remained inside cell structures. 
Results of WH biochar BET surface area and volume of the 
pore (Table 3) were consistent with the SEM images (Fig. 5).

Similar to this study’s findings, Hu et  al. [96] noted 
that increasing pyrolysis temperature caused WH biochar 
structural changes due to high temperature that resulted in 
increased porosity and surface area. As the pyrolysis tem-
perature rose, the biochar’s structure became more ordered 
and porous [59]. The macropores probably formed as a result 
of the raw biomass’s vascular structures and the thermal 
decomposition process’s loss of the cell wall’s cellulose and 
hemicellulose [97]. Besides, multiple micropores developed 
due to the enhanced rate of devolatilization of volatile mat-
ter as temperature increased [92]. Considering the surface 
morphology and structure, biochar from WH could be a 
promising soil amendment to increase the soil’s ability to 
store water and provide space for nutrient adsorption and 
soil microbes.

3.8 � Water holding capacity

Pyrolysis temperature significantly (p < 0.05) affected the 
WHC of the WH biochar samples (Fig. 6). The WHC of 
the sample biochars rose along with the pyrolysis tempera-
ture. The highest WHC recorded for WB750 was greater 
than WB350 and WB550 by 27.5% and 14.7%, respectively, 
whereas the WHC of WB550 was greater than WB350 by 
11.2%. The increase in surface area and pore volume with 
temperature (Table 3) might be the reason for the elevated 
WHC of WH biochar, which is directly associated with the 
biochar’s water retention property. Important factors that 
affect biochar’s WHC include specific surface area and total 
volume of pores [98]. The results of the current study agreed 
with those of Hien et al. [40] who noted the WHC of bam-
boo biochar increased when the pyrolysis temperature rose 
from 400 to 800 °C. Moreover, it was claimed that using WH 
biochar on Brazil’s sandy soils enhanced soil WHC [99]. 
According to Bordoloi et al. [35], adding WH biochar in a 
range from 0 to 15% by weight increased water retention by 
29.5–48.5%, and available water content increased by 9.97 to 
21.5% due to high porosity and hydrophilic property of bio-
char developed from WH. The present study result indicated 
that WH-derived biochar developed at 750 °C could applied 
to reduce soil water stress of soils with low soil water hold-
ing capacity.

3.9 � Advantages of water hyacinth biochar for soil 
amendment

According to the findings, WH might be applied as an 
amendment to soil. The characteristics of each biochar, 
however, varied significantly and each demonstrated unique 
qualities for a particular role in soil amendment. Table 5 
outlines the relative benefits of using WH biochars produced 
at varying temperatures, taking into account the yield and 
physicochemical properties of the resulting biochars.

4 � Conclusion

The results revealed that pyrolysis temperature consid-
erably influenced the physicochemical characteristics of 
water hyacinth biochar. Water hyacinth biochar devel-
oped at various pyrolysis temperatures exhibited distinct 
characteristics appropriate for specific functions in soil 
amendment. The alkaline nature of water hyacinth bio-
char samples could make use of soil acidity alleviation 
particularly developed at 550 °C and 750 °C. Water hya-
cinth biochar produced at 350 °C and 550 °C could be 
applied to improve low-pH agricultural soil’s fertility and 
nutrient-holding capacity. Besides, biochar developed at 
550 °C and 750 °C could be used for carbon sequestra-
tion. In addition, the biochar prepared at 750 °C could 
be used to improve soil water retention properties and 
porosity of soils. However, the surface area and poros-
ity of WH biochar are very low. Adding activating agents 
during the pyrolysis of water hyacinth biowaste could 

Fig. 6   Pyrolysis temperature effect on water holding capacity of 
water hyacinth biochar derived at varying temperatures: WB350 
(350 °C), WB550 (550 °C), WB750 (750 °C); error bars showed the 
standard error of the mean (n = 3)
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be an option to improve the surface area and porosity of 
water hyacinth biochar. By employing different pyrolysis 
temperatures, suitable biochar properties for soil use can 
be obtained from water hyacinth biowaste. Moreover, the 
conversion of water hyacinth biowaste into biochar can be 
an alternative mechanism for controlling weed infestation 
and waste utilization. Biochar characteristics indicate a 
biochar’s capability to amend soil; however, the charac-
teristics alone cannot assure soil quality amendment using 
biochar. Therefore, future studies should focus on verify-
ing soil amelioration and agronomic effectiveness of bio-
char developed from water hyacinth at different pyrolysis 
temperatures in a field setting.
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vii. Available nutrients (Ca and Mg) supply (fertilizer effect) WB750 > WB550 ≈ WB350
viii. Ease of degradability by microbes (C/N ratio) WB350 ≈ WB550 > WB750
ix. Aromaticity (H/C and O/C ratio) WB750 ≈ WB550 > WB350
x. Long-term persistence in the soil (carbon sequestration) WB750 ≈ WB550 > WB350
xi. Improvement of soil physical properties (water holding capacity, aeration, 

porosity)
WB750 > WB550 > WB350

xii. Providing space for microbes WB750 > WB550 > WB350
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