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Abstract
The need to reduce the cost of production of highly demanding nanoparticles is receiving some challenges, especially the 
availability of the needed raw materials. Calcium oxide nanoparticles are one of the most useful nanoparticles because of 
their unique properties that favour environmental applications. In this study, costless raw materials (periwinkle shells) of 
raw materials for the production of calcium oxide nanoparticles using a sol–gel method of synthesis. The nanoparticles 
were characterized using XRD, FT-IR, UV visible spectrophotometer, SEM, BET, and ICP instrumentation. Information 
obtained from the characterization showed that the material has a band gap of 4.12 eV, average crystallite size of 18 nm, 
BET surface area 220.11  m2/g, pore volume of 8.43 cc/g and mesoporous property defined by average porosity of 59%, and 
pore diameter of 3.02 nm. The XRD peaks. The XRD spectrum of the synthesized product showed a principal diffraction 
peak at 34.2163° with other peaks that confirmed CaO nanoparticle phases. The specific surface area deduced from the XRD 
spectrum (average = 98  m2/g) was lower than that value obtained from the nitrogen adsorption study. Based on the characters 
observed for the nanoparticles, they were applied for adsorption removal of lead under different conditions (including pH, 
 [Pn2], time, and adsorbent dosage), and the evaluated adsorption efficiency was 99 g/mg while the optimum efficiency of 98% 
was observed at the normal experimental condition and 100% under photoactivated adsorption. The nanoparticles showed 
high recyclability (< 90%) and their tendency to adsorb increases with a decrease in temperature. Tests conducted on different 
kinetic and adsorption models support the fitness of pseudo-second-order kinetic, liquid film diffusion, Freundlich, Halsey, 
and Elovich adsorption models. The impact of the interaction of the tested factors on adsorption was investigated using 
response surface analysis, and it was observed that the optimum adsorption efficiency can be reduced when all the factors 
are combined. Therefore, an optimum efficiency of 80% at an adsorbent dosage of 0.5, time = 75 min, temperature = 318 K, 
and concentration of 250% was statistically significant.
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1 Introduction

In current times, the literature is highly dominated by reports 
on the toxicity of heavy metal ions in water due to the estab-
lished potential toxic impact of these metal ions on public 
health [1]. Heavy metals such as lead are persistent and can-
not easily be destroyed by biological organisms [2]. Unfor-
tunately, one of the easiest routes for heavy metals to enter 
the environment is the aqueous media [3]. The after-effect of 
heavy metal ions’ intrusion into the aquatic environment is 
interference with the global demand for potable water and the 

increasing risk of health challenges. Consequently, the asso-
ciated problems are expanding daily, especially when consid-
ering the usefulness of water for the survival of living organ-
isms, irrigation, agricultural activities, and various domestic 
and industrial applications [4]. The beneficial roles of water 
can deeply be limited by the presence of heavy metal con-
taminants and can progress further to initiate toxic impacts 
ranging from mild effects to death. Much has been reported 
on the short, medium, and long-term toxicity impacts of lead 
ions, but the terminal effect is dead [5–7].

Given their confirmed poisonous nature, some tech-
nologies have been developed to enhance the withdrawal 
of lead ions from water, such as adsorption, dialysis, and 
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bioremediation [8, 9]. However, some of the major chal-
lenges associated with the achievement of optimum effi-
ciency from most of these technologies are high materials 
and implementation costs, scarcity of raw materials, materi-
als limitation, lack of or insufficient power supply, secondary 
waste management, etc. [10, 11].

Adsorption is one of the widely accepted methods that 
can easily be modelled towards the achievement of excel-
lent efficiency through materials selection, eco-friendly 
practices, and limited input of resources [12]. There are 
different materials suitable as adsorbents for the removal 
of lead (II) from an aqueous solution, such as plant and 
animal materials [13], inorganic materials [14], organic 
and inorganic polymers [15], and synthetic materials [16]. 
However, nanoparticles have remarkable advantages over 
several classical counterparts because they possess high 
thermally and mechanical stability, porosity [17], reusabil-
ity [18], and high adsorption surface area due to their nano 
sizes [19]. Also, efforts are currently on the way to har-
ness the outstanding advantages offered by nanoparticles 
towards the enhancement of adsorption for the improvement 
of the overall quality of wastewater instead of the removal 
of heavy metal alone [20]. Probably some precursors for 
the synthesis of nanoparticles are relatively toxic and may 
constitute secondary toxicity [21]. The cost of synthesis may 
be extremely high when subjected to cost–benefit analysis, 
and some of the raw materials or the required instrumenta-
tion are not easily accessible, thereby defiling the required 
environmental and economic protocols. Cost–benefit analy-
sis can easily be achieved through the utilization of waste 
materials that do not have immediate benefit or usefulness 
to man and need to be disposed of. Some solid waste such 
as shells of crustaceans and bones of animals have chemical 
contents that can be converted to precursors for nanomate-
rials synthesis. For example, Essien et al. [22] successfully 
synthesized calcium oxide nanoparticles (CaO–NP) from 
snail shells for the adsorption removal of amoxicillin water 
and the results obtained indicated almost complete removal 
efficiency. In our research group, we have obtained good sur-
face properties for calcium oxide nanoparticles synthesized 
from oyster shells, and further applications in the removal 
of contaminants indicated excellent removal efficiencies for 
methyl orange [23], procaine penicillin [24], bromocresol 
green [25], and methylene blue [26]. Crab [27] and mussel 
[28] shells have also been found to be excellent precursors 
for the synthesis of CaO–NP, and their adsorption properties 
were properly affirmed based on the evaluated properties. A 
critical examination of the highlighted and other crustacean 
shells indicates that they are rich in  CaCO3, which can be 
easily converted to CaO–NP.

Given the yet-to-be-developed procedures in the manage-
ment of periwinkle shell wastes, the high  CaCO3 content and 
the increasing demand for nontoxic raw materials (such as 

calcium oxide nanoparticles) for the treatment of industrial 
and other forms of effluence against lead toxicity, the present 
study is aimed at converting  CaCO3 (in periwinkle shell) to 
CaO nanoparticles (CaO–NPs) for immediate application in 
the adsorption removal of Pb(II) from aqueous solution. To 
fully achieve this aim, the study shall also assess the possi-
bility of using and re-using the CaO–NPs and the influence 
of the adsorption process on the physicochemical quality 
of the water.

2  Materials and msethods

2.1  Synthesis of CaO–NPs

Periwinkle shells were used as precursors for the synthesis 
of CaO–NPs. In the periwinkle processing zone (where the 
samples were collected), the routine practice is to remove the 
flesh and dispose of the shell as solid waste. The collected 
samples were washed, dried, and crushed to powder form 
using an electric motor connected to a crusher. The grounded 
samples (with reduced particle size) were reacted with 2 M 
HCl to convert the  CaCO3 to  CaCl2. The formed sol was 
reacted with a 50% solution of NaOH to yield Ca(OH)2 gel. 
The system was allowed to stay for 12 h after which it was 
thoroughly washed with distilled water, dried to constant 
weight, and calcined at 800 °C for 2 h.

2.2  Characterization

The prepared CaO–NPs were characterized using an 
X-ray diffractometer, Fourier transformed infrared (FT-
IR), Braeuner-Emmett-Teller analyzer (BET), UV–visible 
spectrophotometer, and scanning electron microscope. All 
measurements for the concentration of Pb(II) were done 
using inductive coupling plasma (ICP).

2.3  Adsorption experiment

Batch adsorption experiments were implemented using the 
method widely reported in the literature [29]. The experi-
mental steps started with the preparation of various concen-
trations of lead (II) (10, 20, 30, and 40 ppm) using Pb(NO2)2. 
The influence of concentrations was investigated using the 
listed concentrations and the time involved was 60 min. 
The contribution of the period of contact, pH, the dosage of 
CaO–NPs, and temperatures to the removal of Pb(II) were 
also investigated by varying these factors over reasonable 
ranges. In each case, the equilibrium amount of the metal on 
removed by the adsorbent ( Qe) and the percentage removal 
was computed using Eq. 1 and 2 [30].
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The initial or intake and outlet concentrations are 
represented as C

0
 and Ce respectively in the above equations.

2.4  Process optimization and interaction

Design expert 13 was used to design a 2-by-4, fifteen-sample 
runs consisting of various combinations of temperature, 
concentration, adsorbent dosage, and time. Analyses were 
performed to establish interaction parameters for various 
combinations of the listed parameters and to establish the 
optimum conditions associated with optimum adsorption 
efficiency.

3  Results and discussion

3.1  Characterization of adsorbent

The particle size, surface area, adsorption energy, porosity, 
and other pore parameters of the nanocomposite (CaO–NPs) 
were evaluated using Bruaner-Emmett-Teller (BET) and 
various isotherms developed from data associated with the 
nitrogen adsorption (such as multiple BET) were employed 
to evaluate the pore parameters for the adsorbent.

The multi BET (M-BET) model can be represented as a 
linear shown in Eq. 3 [31],

In the above Eq.  (3), N represents the amount of  N2 
adsorbed at a pressure, P, giving an initial pressure,  P0, Nm 
stands for the adsorption capacity of the monolayer, and 
C is a constant, whose value is related to the heat capac-
ity, C =

[

qads − qcond
]

∕RT . Also,  qads is the adsorption heat 
while  qcond is the heat of condensation of the adsorbate. 
The M-BET surface area was evaluated from the slope and 
intercept of the M-BET plot (Fig. 1) [32], and the values 
obtained are recorded in Table 1. Other pore parameters (also 
recorded in Table 1) were also obtained from other isotherms, 
including Dubinin-Ashtakov (D-A), Barreett-Joyner-Halenda 
(B-JH), Dubinin-Radushkevich (D-R), Density functional 
theory (DFT) and Horvath-Kawazoe (HK) methods. The 
measured surface area showed the lowest from the DFT 
model (54.32  m2/g) while the D-H model revealed the high-
est (265.14  m2/g). Also, the pore volume parameters obtained 
from the various models (excluding M-BET) showed a range 
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of 3.58 to 13.04 cc/g) while the ratio of the surface area (in 
 m2/g) to the pore volume (in  m3/g) ranged from 8.46 ×  106 
to 1.90 ×  108  m−1. On the other hand, the measured particle 
size from the different models showed a range of 1.923 (HK 
to 5.923 nm (S-F). Based on the range observed for the pore 
parameters of the nanoparticles from the different models, it 
is most likely that the synthesized material is a mesoporous 
nanoparticle. Porosity classification for mesoporous materi-
als is in the range of 2 to 50 nm for mesoporous, 0.2 nm 
for microporous, and > 50 to 100 nm for microporous. The 
significance of porosity in the determination of the effective-
ness of nanomaterials in surface applications agrees with the 
trend that the lower the pore diameter and the higher the 
surface area, the better the expected performance. Based on 
the R2 values obtained for the different models, the M-BET 
and B-JH model. The evaluated M-BET surface area is lower 
than the value of 785 and 747  m3/g reported by Odiongenyi 
et al. [33] and Mostapha et al. [34] for CaO–NP obtained 
from bonnet shells and mud waste; they also reported pore 
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Fig. 1  Langmuir and M-BET isotherms for  N2 adsorption by CaO–
NPs

Table 1  Pore parameters for the CaO–NPs

Model Surface 
area  (m2/g)

Pore  
volume 
(cc/g)

Pore  
diameter 
(nm)

Surface area: 
Pore volume 
 (m−1)

M-BET 265.14 - - -
B-JH 246.82 13.02 2.030 1.90 × 10

8

D-H 280.24 13.04 2.342 2.15 × 10
7

D-R 254.01 8.93 5.923 2.84 × 10
7

DFT 54.32 6.42 2.724 8.46 × 10
6

S-F - 5.61 3.321
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diameter in the mesoporous dimension. However, the meas-
ured particle size showed a significant improvement over 
average values of 6.17 and 77.4  m2/g, as reported by Khine 
et al. [35] and Jalu et al. [36], both for mesoporous CaO–NP. 
Another significant performance index for nanoparticles is 
the surface area to volume ratio which are related higher than 
those evaluated for the listed examples (Table 1).

The variation in the observed pore parameters of the syn-
thesized CaO–NPs (compared to some reported works) can 
be related to alteration in some factors, such as the method 
of synthesis, source of raw materials, calcination tempera-
ture, and duration of calcination [37, 38]. The calculated 
dimension of the nanoparticles indicates that the CaO–NPs 
is under the mesoporous class of nanoparticles [39]. A simi-
lar dimension has been reported for CaO–NPs, which we 
synthesized from different oyster shells [40].

The scanning electron micrograph and the Fourier-
transformed infrared (FT-IR) of the CaO–NPs are shown 
in Fig. 2. The micrograph reveals the dispersing of porous 
appearance in the internal structure of the CaO–NPs. On 
the other hand, the infrared absorption bands manifested at 
the following frequencies: 3642, 1407, and 872  cm−1. The 
narrow band at 3642  cm−1 is due to OH stretching from the 
traces of  H2O [41], while the peak at 1407  cm−1 is typical 
for Ca–O vibration in the CaO–NPs [42].

The diffractogram obtained from the XRD analyses of 
the CaO–NPs is shown in Fig. 3a. The most intense peak 
was observed at [2Theta] = 34.2163° with an intensity 

of 1706.24 cps while others were found at 18.1561, 
29.4876, 47.1828, and 50.917°. The corresponding inten-
sities were 1011.77, 1466.09, 694.78, and 50.92° respec-
tively, and the full width at half maxima ( � ) are shown 
in Table 2. Such reference peaks (especially at 34.2163°) 
have been observed for CaO–NPs by other researchers, 
thereby confirming that the synthesized materials are 
CO–NP [43–45]. The application of Scherrer’s equation 
(Eq. 4) was useful in the determination of the size  (dx) 
of the CaO–NPs crystallite [46, 47].

In the above equation, k and λ represent Scherrer’s con-
stant and the X-ray wavelength, respectively. The evaluated 
particle sizes for the various peaks are also shown in Table 2. 
Consequently, the average size of the crystallite is evaluated as 
18.57 nm, which is comparable to results from works done on 
similar products using different precursors [48, 49].

The dislocation density for the nanoparticles was observed 
to range from 0.0524 to 0.0563 with an average value of 
0.0539  nm−1 (Table 1). The evaluated δ values showed a 
decreasing trend with an increase in the diffraction angle (from 
0.0563 to 0.0514  nm−1). However,  dx values tend to increase 
with an increase in the angle of diffraction from 17.77 to 
19.44 nm (Table 1). Generally, the observed δ values are rela-
tively low, which suggests that the CaO–NP is relatively stable 
against deformation. The reported mean crystallite size also 

(4)dx =
k�

�cos�

Fig. 2  a SEM micrograph. b 
FT-IR spectrum of CaO–NPs
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confirms that the synthesized product has a nano dimension. 
The crystallite size can also be evaluated using the Wiliamson-
Hall equation. This equation is based on the assumption that 
the total broadening is due to microstrain (i.e. �Micro = 4�tan�) 
and crystallite size (defined as �Cryst =

k�

dxcos�
 ). Therefore, the 

total broadening can be represented as,

The rearrangement and simplification of Eq. 5 generated 
Eq. 6 as follows:

(5)�Total = 4�tan� +
k�

dxcos�

The linearity of Eq. 6 for the tested CaO–NP was confirmed 
by an R2 value equal to 0.9776 while the crystalline, deduced 
from the intercept (i.e., 29.8 nm), showed some degree of 
agreement with the average value (18.574 nm) obtained from 
the Scherer equation. However, the slightly higher values 
obtained from the Williamson-Hall model are in agreement 
with most experimental findings that the Williamson-Hall 
model tends to overestimate crystallite size by over 35% [50].

In the crystal system, the interplanar distance is related 
to the Miller indices and the lattice constant of the CaO–NP 
according to Eq. 7.

Since CaO–NP is a cubic crystal, a = b = c. Therefore, Eq. 7 
can be simplified to the following equations (Eqs. 8 and 9).

However, the Bragg equation relates the dhkl with the 
diffraction angle according to Eq. 10, which is simplified to 
Eq. 11

For a first-order diffraction order, n = 1, and Eqs. 9 and 11 
were equated to obtain the lattice parameter for the synthesized 
CaO–NP as follows:

The miller indices were obtained from the JCPD data-
base corresponding to the different angles of diffraction and 
� = 1.5406 Å. Based on the above equations, the calculated 

(6)�Totalcos� = 4�sin� +
k�

dx

(7)
1

d2
hkl

=
h2

a2
+

k2

b2
+

l2

c2

(8)
1

d2
hkl

=
h2 + k2 + l2

a2

(9)
dhkl =

a
(

h2 + k2 + l2
)

1

2

(10)n� = dhklsin�

(11)dhkl =
n�

2sin�

(12)a =
�

2sin�
×
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Fig. 3  a XRD powder diffractogram. b Spectrum due to UV–visible 
absorption. c Variation of percentage adsorption with pH for CaO–
NPs

Table 2  Crystalline properties 
of the CaO–NPs

[2Theta](°) Intensity (cps) (hkl) �(Rad) d
x
(nm) SSA δ d

hkl
a(Å)

18.16 1011.77 001 0.47296 17.77 98.15 0.0563 4.8811 4.8811
29.49 1466.09 100 0.47299 18.15 96.10 0.0551 3.0265 3.0265
34.22 1706.24 111 0.47199 18.36 95.00 0.0545 2.6182 4.5349
47.18 694.78 200 0.4687 19.15 91.08 0.0522 1.9248 3.8497
50.92 725.40 220 0.4723 19.44 89.72 0.0514 1.7919 5.0682



 Biomass Conversion and Biorefinery

values of the lattice parameters (average = 4.2741 Å) and  
dhkl (average = 2.8485 Å) are recorded in Table 2. The spe-
cific surface area of the CaO–NP was also calculated using 
the Sauter equation given as Eq. 13:

The symbol  � in Eq.  13 defines the density of the 
CaO–NP, and its crystallite size is denoted by dx. Based on 
the reported crystallite sizes, the evaluated SSA ranged from 
89.72 to 98.15  m3/g, which is relatively higher than some 
literature values for CaO–NP, such as 77.4  m2/g reported 
by Jalu et al. [35] for CaO–NP obtained from egg shells. 
This suggests that with an enhanced specific surface area, 
the tendency towards photodegradation and adsorption 
is expected to be higher [51]. The evaluated surface area 
is lower than the value obtained from the BET method 
isotherm, which can be accounted for by the difference in 
the method of approach, explained by the consideration of 
pore diameter and crystallite size by the former and later 
methods, respectively.

However, the porosity of the nanoparticles based on 
the XRD density and the bulk density of the CaO–NP by 
applying Eq. 14.

The evaluated porosity is 59.74% and compares with the 
value of 47.84% deduced from the work of Jalu et al. [35] 
and therefore confirms that the synthesized CaO–NP is a 
mesoporous nanomaterial.

The spectrum arising from the absorption of UV by the 
CaO–NPs is shown in Fig. 3b. The spectrum reveals that the 
maximum wavelength ( �

max(CaO−NPS) ) of UV absorption by 
the nanoparticles is 239 nm, and therefore, we infer that the 
nanoparticles absorb in the UV range and have a character-
istic band gap of 4.12 eV. This band gap ( EBG(CaO−NPS) ) was 
evaluated from the Planck equation (Eq. 5) [52],

Other reported works have confirmed closely related 
�
max(CaO−NPS) and EBG(CaO−NPS) for CaO–NPs [52].

3.2  Variables influencing the adsorption of Pb2+ by 
CaO–NPs

The pH for optimum absorption of the  Pb2+ was evaluated 
at around 6.4, as shown in Fig. 3c. The rise in adsorption 
became sharper above the pH of 3 and displayed an almost 
steady trend at pH close to 6. The adsorption removal 

(13)SSA =
6000

�dx

(14)Porosity =

[

1 −
Bulkdensity

X − raydensity

]

×
100

1

(15)EBG(CaO−NPS) = h ×
1

�
max(CaO−NPS)

of the heavy metal ion progresses with increasing pH 
up to this optimum value. We could not continue the 
experiment beyond the pH of 6.4 to eliminate errors that 
could be introduced by precipitation. Such observations 
have been reported elsewhere with close pH values for the 
adsorption removal of  Pb2+ from aqueous solution [53–55]. 
The observed trend reveals that the adsorption of the 
positively charged  Pb2+ is favoured by alkaline pH, which 
is dominantly negative. At alkaline pH, the attraction of the 
metal ion is most likely because of the prevailing negatively 
charged surface. Still, at acidic pH, the surface can repel 
the lead ion such that as the population of positive charges 
increases, the uptake of  Pb2+ also increases. The observed 
pH for maximum adsorption is also consistent with reported 
values of the pH at the point of zero charge for CaO–NP but 
with irregularity after that optimum pH due to the changes 
in the mechanism from adsorption to precipitation [55, 56].

Figure 4 contains plots demonstrating the changes in the 
percentage lead (II) adsorbed under different experimental 
controlled conditions. Figure 4a shows that the magnitude 
of adsorption increases with an increase in the concentra-
tion of the heavy metal. The initial rise in the percentage of 
dye adsorbed with  [Pb2+] was very sharp between  [Pb2+] 
of 100 and 200 ppm corresponding to adsorption efficiency 
of 61 and 94%, respectively. However, above the  [Pb2+], 
the efficiency progressively rises to about 98%. Lead ion 
adsorption can be significantly dependent on the number of 
available surface area. The large surface area and surface 
area to volume ration that characterized nanoparticles such 
as CaO–NP suggest that the adsorption will progress until 
all the available site is occupied.

A consideration of interplay between the mass of the 
adsorbent and the concentration of lead ion on adsorption 
indicated that although adsorption was higher at higher 
concentrations, similarities in the pattern became obvious 
irrespective of the mass of the adsorbent dosages (Fig. 4a), 
indicating that the mechanism of adsorption is independent 
on the concentration of the lead ions or the mass of the 
adsorbent. The observed increase in percentage adsorption 
with increasing initial  Pb2+ concentration also confirmed 
that the number of lead ions that are transported to the 
surface of the CaO–NPs increases as the concentration 
increases.

Adsorbent dosage can display a significant influence 
on the adsorption of lead ions through its influence on 
the number of available adsorption sites and available 
surface area. Based on the pattern of plots displayed in 
Fig.  4b, maximum adsorption approaching 100% was 
observed at a lead concentration of 400 ppm and adsorbent 
dosage of 0.8 g. This optimum value is almost equal to the 
optimum observed when lead ion was a major factor under 
consideration. A short fall of only 2 from 100% efficiency 
(at a lower concentration of  Pb2+) is excellent and therefore 
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positioned the used CaO–NP as an excellent adsorbent for 
the removal of  Pb2+. A combination of the influence of the 
two factors showed an increase in the percentage removal 
of  Pb2+, tending to an optimum value of almost 100% 
within 70 min before a slight drop and steady trend. The 
observed trend for the variation of the amount of lead ions 
adsorbed with adsorbent dosage is consistent with some 
documented results concerning the adsorption of  Pb2+ by 
watermelon waste [57], wall nutshell [58], where an increase 
in adsorption was also observed as the adsorbent dosage 
increase.

The use of CaO–NPs for separating  Pb2+ from the aqueous 
solution also displayed better feasibility with time, as shown 
in Fig. 4c for various concentrations of  Pb2+. The effective-
ness of time factors also became more favourable for higher 
concentrations of heavy metal ions. The drifting of the  Pb2+ 
towards the CaO–NPs is a function of the time required for the 
 Pb2+ to approach the adsorption sites and become equilibrated 
before the actual adsorption. Under the present study, The pro-
gress of adsorption, therefore, becomes more effective as the 
extent of interaction between the adsorbate and the adsorbent 
becomes enhanced with time and concentration. Higher concen-
trations of  Pb2+ are also observed to show slight enhancement 
in adsorption, although the observed pattern of the plots for all 
concentrations follows a similar trend (Fig. 4c). A linear pattern 
between adsorption and period of contact was observed, and 
this corresponded to efficiency ranging from 83 to 99% within 
the first 70 min. After this, a further increase in time did not 
reflect a significant rise in adsorption. At a concentration of 100 
to 400 ppm, the maximum adsorption ranged from about 93 to 
99%, respectively. This also agrees with the role of adsorbate 
concentration in adsorption efficiency. When adsorption starts, 
it requires time to progress and two options are possible, namely, 

a decrease in adsorption with time that maybe attributed to an 
increased rate of desorption or a limited number of active and 
vacant adsorption sites. On the contrary, the observed increase 
in adsorption with time shows that the tendency towards adsorp-
tion is higher than the tendency towards desorption and that the 
surface of the adsorbent was not significantly deactivated as the 
adsorption progressed. Published works showing similarity in 
trend for the variation of  Pb2+adsorption with time have been 
documented for some adsorbents [59, 60].

Any factor that can slow down the rate of migration of the 
lead ion from the bulk solution to the surface of the adsor-
bent can affect the extent of adsorption. Such factors may 
result in physical changes. However, the effect of tempera-
ture can become more severe on the adsorption of ions to 
the surface of the nanoparticles. We observed from Fig. 4d 
that between a temperature of 303 and 333 K, adsorption 
efficiency achieved a maximum decrease to 92, 91.6, 91.2, 
and 9.05% for  [Pn2+] corresponding to 100, 200, 300, and 
400 ppm, respectively. The general trend shows a decrease 
in adsorption with an increase in temperature and confirms 
that the mechanism of adsorption is physical adsorption. 
This trend can be due to the deactivation of the adsorption 
surface, which may lead to an increase in desorption. We 
confirmed by some reported works that our observation has 
some support from some published works [61].

3.3  Kinetic of the adsorption

Although several kinetic models were tested for their fitness 
through linear plots and evaluated error values, the mod-
els that generated good fits for the adsorption of  Pb2+ were 
pseudo 1st order (PDFO) [62], pseudo 2nr order (PDSO) 
[63], Elovich (EL) [64], Weber Morris (W-M) [65], and 

Fig. 4  Variation of percentage 
Pb.2+ adsorbed by CaO–NPs 
with initial concentration (a), 
adsorbent dosage (b), time (c), 
and temperature (d)
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Liquid film (L-F) [66] kinetics. Therefore, these models 
are hereby assessed in this sub-section. The linear forms of 
the listed models are represented by Eq. 6, 7, 8, 9 and 10), 
while the respective plots are shown in Fig. 5a–d respec-
tively [67–70].

Also, from the slopes and intercepts of the plots, data 
calculated for the various kinetic parameters are provided 
in Table 3. The mean square errors are also provided for 
the respective model [71] The PDSO presents higher val-
ues of R2 and lowers the error values (Fig. 5a and Table 3) 
than the PDFO model (Table 3). Therefore, the assumptions 
behind the PDSO can explain the adsorption of  Pb2+ better 
than that of the PDFO. The PSFO model assumes that the 

(16)Ln
(

Qe − Qt

)

= Ln
(

Qe

)

− kFOt

(17)
t

Qt

=
t

Qe

+
1

kSOQ
2

e

(18)Qt =
1

�
ln(∝ �) +

1

�
ln(t)

(19)Qt = kM−Wt
0.5 + CM−W

(20)−ln

(

1 −
Qt

Qe

)

= kL−Ft + CL−F

diffusion through the interface is a significant mechanism 
in the adsorption of the metal ion. Theoretical equilibrium 
adsorption capacity evaluated from the PSFO plots ranges 
from 244.29 to 613.99 mg/g and tends to increase with an 
increase in the concentration of  Pb2+. From 100 to 400 ppm. 
On the other hand, Qe values obtained from the PDSO plots 
ranged from 104.09 to 104.49 mg/g and showed significant 
closeness with experimental values. The initial adsorption 
rate obtained from the  Qe values 

(

i.eh = k
2
Q2

e

)

[76] , ranged 
from 18.66 to 28.62 and tended to increase with an increase 
in the concentration of the lead ion. The PDFO rate con-
stants for the different concentrations of the  Pb2+ ranged 
from 0.0015 to 0.0084 /min, while those of PDSO showed 
a range of 0.001905 to 0.002622 /min. Both kinetic rate 
data showed an increasing trend as the concentration of the 
metal ion increased. This indicates that the adsorption is 
faster as the adsorbent dosages increase. Reported studies 
showing similarity in the fitness of PDFO kinetics concern-
ing  Pb2+ adsorption have been documented in the literature 
[72–74]. However, overwhelming literature supports the 
PDSO model. Based on the above analysis and the infor-
mation presented in Table 3, the PDSO model offers a bet-
ter description of the kinetics of the adsorption removal of 
the  Pb2+ than the PDFO model because the PDSO presents 
higher values of  R2 and lower values of the sum of squares as 
well as the mean square errors (Table 3). The applicability of 
the PDSO model suggests that the chemisorption mechanism 
tended to occur after the initial physical adsorption.

Fig. 5  Kinetic plots for the 
adsorption of Pb.2+ based on 
PSFO (a), Elovich (b), W-M 
diffusion (c), and T-L diffusion 
models (d)
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The EL plot is shown in Fig. 5b, and from a theoretical 
background, the EL is typical for the chemisorption mecha-
nism [44]. However, sensing from the trends observed for 
the variation of the amount of  Pb2+ adsorbed with tempera-
ture, the initial adsorption mechanism for  Pb2+ is physical 
adsorption; therefore, chemisorption might have been a suc-
ceeding mechanism to the initial adsorption. However, the 
calculated sum of square (SSE) and mean square (MSE) 
errors are much larger than those observed for the PDSO. 
Relatively, lower R2 values were also observed; suggesting 
that the Elovich model ix not the most suitable model for the 
explanation of the kinetic of the adsorption of  Pb2+ by the 
synthesized CaO–NPs.

Diffusion of the metal ions from the bulk solution to 
the surface of the nanoparticles is a significant factor in 
the adsorption kinetics. Consequently, the major diffusion 

models were tested, which are the L-F (Eq. 9) and M-W 
(Eq. 10) models. Based on the MSE, SSE, and  is2 values, 
lower errors, zero slopes, and better R2 are predicted by the 
L-F model than the W-M model, which suggests that thin 
film diffusion dominates the adsorption kinetics. Similar 
diffusion models have been observed for the adsorption 
of lead (II) by some adsorbents such as biosorbents [75], 
metal–organic framework [76], and biowaste [77]. The 
rate constants evaluated from the L-F models are in good 
agreement with those associated with the PDSO. The model 
shows some dependency on the concentration of  Pb2+, as 
shown by the observed variation in the diffusion constant 
and the liquid film boundary parameters (Table 3). This con-
clusion does not however rule out the influence of the intra-
particle diffusion model completely, especially when consid-
ering the influence of concentration on the diffusion of the 
lead ion. The observation of the W-M boundary parameter 
showed an increased improvement with an increase in con-
centration but higher rate values compared to those reported 
for the L-F model (Table 3).

From the presented data (Table 3), the kinetic of the 
adsorption removal of  Pb2+ from aqueous solution is best 
described by the PDSO and L-F models because the two 
models present the least error values and higher R2 values 
compared to other models.

3.4  Adsorption isotherms for Pb2+

Different adsorption models were tested for their applicabil-
ity in the explanation of the adsorption characters of  Pb2+ 
unto the surface of CaO–NPs. Tested models were evalu-
ated based on the  R2, SSE, and MSE values, and those with 
R2 > 0.9 were selected for further analysis. The models that 
met the listed conditions were the Freundlich (F-R), Temkin 
(T-N), Langmuir (L-N), Elovich (E-L), Dubinin-Radusk-
evich (D-R), and Halsey (H–S) isotherms. Expressions for 
the listed isotherms are shown in Eqs. 11 to 1, respectively. 
Figure 6 shows representative plots for the fitted models 
and parameters deduced from all the plots are recorded in 
Table 4 [78, 79].

(21)lnQe =
1

n
lnCe + lnkF−R

(22)Qe = BT−NlnCe + BT−NlnkT−N

(23)
Ce

Qe

= Ce

1

Qmax

+
1

QmaxkL−N

(24)ln

(

Ce

Qe

)

= ln
(

KE−LQmax

)

−
Qe

Qmax

Table 3  Kinetic parameter for the adsorption of  Pb2+ by CaO–NPs

Model/ 
parameter

100 ppm 200 ppm 300 ppm 400 ppm

PDFO
R2 0.9956 0.9774 0.9797 0.9799

kFO
(

min−1
)

0.0015 0.0029 0.0074 0.0083

Qe

(

mg.g−1
)

244.29 342.92 470.91 613.99
SSE 4.37E-04 0.00123 1.69E-04 4.78E-05
MS 2.18E-04 6.27E-04 8.43E-05 2.34E-05
PDSO
R2 1.0000 0.9998 0.9998 0.9998
Qe

(

mg.g−1
)

101.2146 104.0583 104.1667 104.4932

kSO
(

min−1
)

0.001905 0.001723 0.001723 0.002622
h 19.5122 18.65672 18.69159 28.62869
SSE 6.034E-05 2.34E-05 6.8096E-05 6.8606E-05
MSE 1.4086E-05 1.400R-05 2.4193E-05 1.5401E-05
E-L
R2 0.9227 0.9745 0.9221 0.8987
β 0.1216 0.1558 0.1696 0.1928
α 383,691.90 15,320.50 5397.62 135.50
SSE 7.9331 1.5111 4.1089 4.2083
MSE 1.9808 1.0521 1.0272 1.0521
W-M
R2 0.9708 0.9777 0.9163 0.9168
kW-M 2.4884 2.4554 2.6276 2.1332
Const 72.7246 73.7052 74.4201 80.9658
SSE 1.5574 2.3320 1.4640 3.4679
MSE 0.3894 0.7791 0.3505 0.8645
L-F
R2 0.9965 0.9992 0.9796 0.9800
kL-F 0.0057 0.0038 0.0034 0.0023
SSE 0.0200 0.0019 7.693E-04 0.0012
MSE 6.2939E-04 3.9785E-04 1.9234E-04 3.036E-04
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The Freundlich model (Eq. 11) explains the heterogenous 
adsorption project with the Freundlich constants  (kF-R and 
1/nF−R ) representing the adsorption capacity and intensity of 
the adsorption, respectively [80]. Judging from the value of 
nF−R adsorption can be predicted to be linear, cooperative, 
favourable, or unfavourable [81]. Also, the Langmuir 
isotherm (Eq. 13) has two major constants, namely, the 
Langmuir maximum adsorption capacity  (Qmax) and the 

(25)Qe = −kD−R

[

RTln

(

1 +
1

Ce

)]2

+ lnQmax

(26)lnQe =
1

nH−S

(

lnkH−S

)

−
1

nH−S
ln

(

1

Ce

)

adsorption–desorption equilibrium constant  (kL-N).  Qmax 
values are informative in the provision of the reference 
point for the prediction of favourable adsorption based on 
the magnitude of the separation factor (calculated values not 
shown) and the intensity factor [82]

Since the F-R model gave better R2 values and lower 
errors than the Langmuir model. The tendency for the 
adsorption of  Pb2+ largely included the multilayer process, 
which has also been observed for the adsorption of  Pb2+ by 
other adsorbents [81]. The evaluated values of nF−R are less 
than unity and show no significant difference for the various 
masses of the adsorbent. Literature concerning the nF−R is 
in support of normal adsorption for 1

nF−R
< 1 while 

cooperative adsorption is feasible for 1

nF−R
> 1 . Also, the 

values of nF−R within the range of 1 and 10 are consistent 
with favourable adsorption [83]. Based on the documented 
values of nF−R calculated for the adsorption of  Pb2+ by the 
nanoparticles (Table 4), it can be concluded that cooperative 
and favourable adsorption defined the adsorption 
characteristics of the adsorbate on the CaO–NPs.

The error values for the T-N model (Eq.  12) were 
relatively high compared to other models (Table 4), and the 
R2 values were comparable. Generally, the T-N isotherm 
is founded on the fundamental that the adsorption heat 
decreases as the surface coverage of the adsorbent increases 
[84]. Given the present results (Table 4), the values of the 
heat of adsorption for the various masses of the adsorbents 
are significantly low and technically support the involvement 
of physical adsorption, as observed in this study [85].

Although evaluated error values for the fitness of the D-R 
model were relatively high, the model displayed good R2 
values and from the slope and intercept values of the plots, 
the D-R adsorption variables for the different masses of the 
CaO–NPs were obtained and recorded in Table 3. The essen-
tial significance of the model is that the adsorption energy 
was evaluated as the inverse of 

√

2kD−R . Consequently, the 
calculated adsorption energies, which ranged from 24.1 to 
34.4 J/mol, are below the 16 kJ/mol threshold acceptable 
for the mechanism of chemical adsorption. Therefore, the 
operation of physic adsorption is confirmed. Such a report 
has been confirmed for the adsorption of  Pb2+ onto rice bran 
surfaces [86].

The Elovich model also displayed excellent adsorption 
parameters based on the evaluated coefficient of 
determination and error functions, as shown in Table 4. The 
model is aligned with multilayer adsorption and is founded 
on the basis of exponential increment of adsorption site with 
adsorption [87]. The model also displayed a better prediction 
of maximum adsorption capacity compared to the prediction 
from the L-N model. The adsorption removal of  Pb2+ has 
been reported elsewhere to be consistent with the Elovich 
isotherm, as observed in this work [88, 89].
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The Halsey isotherm also shows some degree of fitness 
based on the calculated  R2 and error values. The essential 
significance of this isotherm is that it is also applicable to 
multilayer adsorption processes involving porous material 
[90]. The fitness of the Halsey isotherm for the adsorp-
tion of  Pb2+ on silica-based adsorbent was confirmed 
by Chu et al. [91]. and the reported Halsey adsorption 
parameters are relatively comparable to those obtained in 
this work. However, the adsorption parameters we have 
obtained from the slope and intercept of the plots do not 

show significant differences at all levels of dosages of the 
nanoparticles (Table 4), suggesting that the isotherm may 
not be dosage-dependent concerning the nanoparticles. 
The error values were relatively minimal (i.e., within two 
decimal places), and the R2 values for the plots extended 
from a minimum value of 0.9051 to 0.9599. The inten-
sity parameters obtained from F-R ( nF−R) and H–S ( nF−R ) 
isotherms are in good agreement and predict that the mul-
tilayer adsorption process increases with an increase in 
adsorbent dosage.

Table 4  Isotherm parameter 
for the adsorption of  Pb2+ by 
CaO–NPs

Model/parameter 0.8 g 0.6 g 0.4 g 0.2 g

T-N
 R2 0.904 0.9996 0.9797 0.9988
 BT−N   694.34 225.91 470.79 113.24
  Slope 69.54 225.91 470.79 113.24
  SSE 5.03 3.11 5.52 3.09
  MSE 11.35 7.58 2.76 1.55

F-R
 R2 0.9998 0.9998 0.9998 0.9997
 nF−R 0.9246 0.9247 0.9196 0.9179
 kF−R 0.7151 0.7368 1.5014 3.0132
  Slope 1.0815 1.0814 1.0874 1.0894
  Intercept 1.1013 0.4064  − 0.0355  − 0.3354
  SSE 2.389 × 10

−4
2.482 × 10

−4
3.175 × 10

−4
3.405 × 10

−4

  MSE 1.194 × 10
−4

1.24 × 10
−4

1.587 × 10
−4

1.703 × 10
−4

L-N
 R2 0.95042 0.9710 0.9680 0.9672
 Qmax(mg∕g) 0.2880 0.5358 0.7516 0.9823
 kL−N 0.434 0.1410 0.1601 0.1676
  Slope 3.4683 1.83663 1.3305 1.0179
  Intercept 7.9472 13.2412 8.3082 6.1035
  SSE 6.803 3.090 3.811 3.811

  MSE 3.402 1.540 1.906 1.906

E-L
 R2 0.9707 0.9650 0.9230 0.9599
 Qmax(mg∕g) 909.09 478.47 313.47 238.10
 kL−N 2.5737 2.420 2.3461 2.2729
  Slope 0.0011 0.00209 0.00319 0.0042
  Intercept 7.7578 7.0716 6.6005 6.2938
  SSE 4.550 × 10

−2
4.971 × 10

−2
5.607 × 10

−2
5.945 × 10

−2

  MSE 2.275 × 10
−2

2.485 × 10
−2

2.804 × 10
−2

2.972 × 10
−2

H–S
R2 0.9051 0.9265 0.9278 0.9599
 nH−S 0.1233 0.0716 0.0825 0.0825
 kH−S 0.2859 0.1985 0.2139 0.2139
  Slope 8.1071 13.9622 12.1154 12.1154
  Intercept  − 10.135  − 22.5756  − 18.6860  − 18.6860
  SSE 2.219 × 10

−1
2.327 × 10

−1
9.261 × 10

−2
9.261 × 10

−2

  MSE 1.111 × 10
−1

1.116 × 10
−1

4.631 × 10
−2

4.631 × 10
−2
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A close examination of the isotherm parameters presented 
in Table 4 indicates that the best-fitted isotherms are the F-R, 
H–S, and E-L isotherms because less error and excellent 
coefficient of determination are associated with these 
isotherms. Consequently, the formation of a multimolecular 
layer and mechanism of physical adsorption is proposed for 
the adsorption of  Pb2+ by CaO–NPs.

3.5  Thermodynamics models for the adsorption 
of Pb2+

The relationship between the standard free energy change of 
adsorption ( ΔG∗

ads
 ), enthalpy ( ΔS∗

ads
 ) and entropy ( ΔH∗

ads
 ) 

changes are given by the Gibb equation (Eq. 17) and are related 
to the adsorption equilibrium constant according to Eq. 18. The 
combination of the two equations led to Eq. 19 [92, 93].

The thermodynamic significance of Eq. 19 is that the 
slope of the plot of  lnkads versus 1/T (Fig. 7) is equal to 
the enthalpy change divided by the gas constant while the 
intercept is equal to the entropy change divided by the gas 
constant. Calculated thermodynamic variables are recorded 
in Table 5. The favouritism of the model expressed by Eq. 19 
is strongly supported by the excellent values of  R2 and the 
low values of SSE and MSE (Table 5). The listed enthalpy 
and entropy changes show a proportional dependency on 
the initial  Pb2+ concentration. The adsorption is exothermic 
and displayed positive entropy changes, which may suggest 
less interaction between the adsorbate and the CaO–NPs and 
further confirm the operation of a physisorption mechanism.

3.6  Photoactivation of adsorption

The exposure of the batch adsorption experimental setup to a 
UV light source significantly enhances the adsorption capacity 
of the CaO–NPs for  Pb2+. This may be attributed to the activa-
tion of the adsorbent by UV radiation since the calculated band 
edge for the CaO–NPs (4.12 eV) suggests that it can absorb 
in this region. It can be confirmed from Fig. 8 that there is a 
significant enhancement in efficiency with an optimum value 
approaching almost 100% compared to about 98% observed in 
the absence of UV light. Therefore, the adsorption of Pb (II) by 
CaO–NPs is strongly favoured under UV light.

(27)ΔG∗
ads

= ΔH∗
ads

− TΔS∗
ads

(28)ΔG∗
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= −RTlnke = −RTln

(

C
0
− Ce

Ce

)

(29)ln

(

C
0
− C

e

C
e

)

=
ΔS∗

ads

R
−

ΔH∗
ads

RT

The reusability of the CaO–NPs was also investigated 
using different dosages of the used adsorbent for the re-trial 
experiment. The used adsorbent was washed severally with 
distilled water, dried, and reused. The results (Fig. 9b) indi-
cated that at initial  [Pb2+] of 10 and 40 ppm, the adsorbent 
displayed efficiency above 98 and 99% respectively. The 
recovered adsorbent did not show any change in the major 
FT-IR peak at 1400  cm−1, although there was a slight drop 
(by 0.7 units) in the intensity. This confirms that the adsor-
bent did not witness a significant denature after the first reuse. 
The concentrations of  Pb2+ removed from the surface of the 
adsorbent were also re-determined, and the results reflected 
an almost 100% recovery when added to the equilibrium con-
centrations in the solution.

In Table  6, some literature data concerning the 
application of CaO–NPs as an adsorbent for  Pb2+ are 
presented. From the recorded information, it is evident that 
most adsorption data favours the PDSO kinetics and that the 
present adsorbent has some levels of comparable advantages, 
especially when the photoactivated adsorption process is 
involved.
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Fig. 7  Variation of ln(ke) with 1/T based on the equation of the Tran-
sition state for  Pb2+ adsorption unto CaO–NPs

Table 5  Thermodynamic adsorption variables for  Pb2+ deduced from 
the plot of  lnkads against 1/T

Parameters 10 ppm 20 ppm 30 ppm 40 ppm

Slope  − 3.8233  − 3.8543  − 4.6501  − 4.6689
Intercept 22.0200 22.3560 25.2001 25.4730
R2 0.9879 0.9792 0.9636 0.9942
ΔHads(J∕mol)  − 31.7869  − 32.0447  − 38.6609  − 38.8172
ΔSads(J∕mol) 183.0743 185.8678 209.5136 211.7825
SSE 0.0089 0.04107 0.01141 0.00043
MSE 0.00446 0.020153 0.0057 0.00022
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3.7  Changes in the physicochemical quality 
of the water

Measurements of some physicochemical parameters such 
as pH, conductivity, dissolved oxygen (DO), and alkalinity 
(alk) for the respective solution containing different 
concentrations of lead (II) ions were conducted before 
and after adsorption. The results obtained are shown in 
Fig. 9a–d. The initial addition of lead ions led to a decrease 
in pH (tending towards the acidic range) and DO. However, 
the pH (pH(A)) and DO (DO(A)) after adsorption removal 
of Pb(II) were favourably adjusted compared to their initial 
pH (PH(B) and DO (DO(B)). However, the alkalinity 
(Alk(B)) and conductivity (Cond(B)) showed an increment 
with the [Pb(II)] but were also readjusted after adsorption. 
Also adjusted after adsorption were the turbidity and salinity 
of the aqueous solution (plots not shown).

3.8  Optimization of the adsorption process/
interaction

The response surface analysis was used to optimize the 
adsorption process and to study the interaction between the 
associated variables. Figure 10a shows the response surface 
plots for the effect of concentration (A), temperature (B), 
adsorbent dosage (C), and time (D) on the adsorption removal 
of  Pb2+ from aqueous solution. The results obtained indicated 
that the highest interaction was contributed by temperature 
(42.67%), followed by time (26.22%), while adsorbent dos-
age showed 5.95% and concentration showed the least con-
tribution (0.00197%). The interactions between the follow-
ing factors concentration/temperature, concentration/dosage, 
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icochemical parameters (pH, 
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concentration/temperature/dosage, concentration/dosage/
time, temperature/dosage/time, and concentration/tempera-
ture/dosage/time showed the following percentage contribu-
tions, 0.23, 0.82, 6.06, 2.22, 4.09, 4.09, and 0.17% respec-
tively. These results indicated that the highest interaction is 
between concentration, temperature, and dosage, contributing 

6.06%, while the least is between the four factors (0.17%) 
respectively. Based on the response surface analysis and the 
consideration of the four factors, optimum percentage removal 
approaching 70% can be achieved under the following condi-
tions: concentration = 250 ppm, temperature = 318 K, adsor-
bent dosage = 0.5 g, and contact time = 75 min.

Table 6  Literature values for 
the adsorption removal of  Pb2+ 
by some nanoparticles

Nanoparticles Removal  
efficiency (%)

Fitted isotherm Fitted kinetics References

CuONPs 87.00 Freundlich Pseudo second order [93]
MgSNPs 60.00 Freundlich Pseudo second order [94]
Dolomite-quartz  Fe3O4 NPs 95.02 Langmuir Pseudo second order [95]
Nanomaghemite 60.00 - Pseudo second order [96]
CaO–NPs from eggshells 99.67 Langmuir Osedo second order [97]
CaO–NPs from eggshells 99.07 Langmuir Pseudo second order [55]
CaSiO3 hydrogel 60.00 Langmuir Pseudo second order [98]
CaO–SiO3 composites 99.58 Langmuir Pseudo second order [108]

Fig. 10  Response surface analy-
sis showing optimum conditions 
for the removal of lead ion by 
CaO–NPs (R1 = percentage 
Pb.2+ removed)
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3.9  Recyclability of the adsorbent

The used adsorbents were washed thoroughly with 
distilled water, dried, and recalcined for fur ther 
application in the removal of the CaO–NPs. The results 
obtained after three trial experiments are shown in 
Fig. 10b. The Figure reveals that after three trials, the 
adsorbent could still retain more than 88% of its capacity, 
although a slight drop in efficiency was observed for 
every successive trial experiment.

4  Conclusion

CaO–NPs have been successful ly synthesized, 
characterized, and applied for the removal of lead (II) 
ions from an aqueous solution. The CaO–NPs is a 
mesoporous material with an average crystalline size of 
18 nm and shows a significant FT-IR peak due to Ca–O 
vibration. The adsorbent absorbs maximally in the UV 
region and displays a zeta potential that favours alkaline 
conditions for optimum removal of leaf (II) ions from 
an aqueous solution. Other optimum conditions were 
a rise in the initial heavy metal ion concentration, 
dosages of the adsorbent, and a decline in temperature. 
A physical adsorption mechanism is operational for 
this system and is controlled by liquid film diffusion 
from the bulk solution to the CaO–NP surface through 
the interface. The adsorbent surface shows a stronger 
degree of heterogeneity rather than the homogenous 
counterpart. The CaO–NPs has functional stability and 
re-usability and favourably adjusted the quality of the 
water concerning conductivity, pH, dissolved oxygen, 
and alkalinity.
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