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Abstract
The most promising eco-friendly green synthesized iron nanoparticles (FeNPs) using jujube leaf extract to decolorize 
methylene blue (MB) dye was established. Synthesized nanoparticles were characterized through different techniques like 
TEM, SEM, and FTIR. Various parameters such as dye concentration (5 to 20 mg  L−1), nanoparticles load (0.5 to 2.5 mg), 
temperature, pH, and contact time (30 to 150 min) were optimized. A maximum MB dye removal efficiency of 93.5% is 
achieved at a time interval of 150 min, temperature 30 °C and pH 9 with 2.5 mg FeNPs for a concentration of 20-mgL−1 
methylene blue. The adsorption behavior was monitored using a wide range of isotherm models which includes Freundlich, 
Dubinin–Radushkevich, Langmuir, and Temkin. The Elovich and intraparticle diffusion models, as well as the dynamical 
models of pseudo-first- and pseudo-second order has been analyzed for the data obtained from dynamic adsorption. Experi-
mental results were consistent along the paradigm of pseudo-second order. Langmuir adsorption isotherm well suited for 
adsorption data across exclusive concentration range in comparison to other models. The green synthesized FeNPs has high 
sorption capacity (1000 mg/g) and environmentally friendly in nature, makes it a potential candidate for wastewater treat-
ment applications.
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1 Introduction

Dyes find its utilization in various industries such as textile, 
paper, printing, and in other sector which produce a large 
amount of harmful colored effluent that endangering envi-
ronmental protection. In textile industries, dyes are majorly 
utilized due to their brilliant colors and excellent durability. 

Because of their complicated structure, high chroma, and 
toxicity, traditional procedures like biological treatment, 
adsorption [1], filtration [2], and coagulation [3, 4] are fac-
ing challenges for the removal of azo dyes [5, 6]. Hence, 
a new approach to deal the dye effluent is required. Iron 
nanoparticles (FeNPs) are nanoparticles with high activity 
and inexpensive, shown extraordinary possibility in treating 
dye effluent as well as color in recent years [7]. As a result, 
developing a simple, environmentally friendly approach for 
manufacturing high-performance FeNPs capable of remov-
ing dye molecules is vital. By virtue of their distinctive fea-
tures and their applications in the field of science, technol-
ogy, and medicine, the production, modification, and usage 
of nanoscale-level materials as well as nanoparticles has 
tempted interest [8].

Researchers have created iron nanoparticles from plant 
extracts and utilized them to adsorb color from aque-
ous solution. Because of the polyphenol concentration 
in plants, which is hypothesized to convert iron ions to 
zero-valent iron, plant extracts are employed as reducers. 
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Therefore, it is crucial for researchers to develop efficient 
and effective oxide nanomaterial employing environmen-
tally friendly techniques. One of the more environmentally 
friendly methods is to use plant extracts to reduce metallic 
salts and produce nanoparticles. It is a simple, affordable, 
environmentally responsible, and safe for applications. 
Recently, green generated iron oxide nanoparticles con-
taining plant extracts have been used for the adsorptive 
removal of colors [9].

Being eco-friendliness, cost-effectiveness, repeatability, 
and large-scale manufacturing, green and metal nanoparti-
cles biosynthesis has grabbed a lot of spotlight among syn-
thesis methods [10–12]. FeNPs are nanoscale metal frag-
ments that are employed in the conversion of solar energy, 
biological applications, drug administration, and also in an 
engine [13]. Many pathogenic bacteria and fungi are toxic 
to FeNPs [14]. FeNPs manufactured from biobased mate-
rials has drawn a lot of interest in nanoscience and tech-
nology because of their unique features and applications. 
The photocatalytic removal of organic dyes by plant extract 
nanoparticles is time-dependent, with no activity drop until 
the nanoparticles are reused [15]. FeNPs were created using 
microbes, enzymes as well as from plants [16, 17]. Plant-
derived materials are chosen over animal-derived materi-
als, because they include more bioactive compounds and 
secondary metabolites which are lessened and also act as an 
agent for closing for the formation of FeNP [18]. Number 
of reports on plant-based FeNP generation has been avail-
able [19–21].

Plant extracts have been proposed as a basic and safe 
method of producing nanoscale metals. Various biomole-
cule-rich plants have been suggested as possible candidates 
for producing organic Fe NPs [22]. Ziziphus jujuba is a 
Rhamnaceous deciduous plant found in tropical and sub-
tropical countries and the neighboring regions. The Z. jujuba 
mill tree is referred to as jujube in India. Stale jujube, typi-
cally, fruits are utilized as food and flavoring, and food addi-
tive due to its abundant nutritional value worth. According 
to recent studies, the Z. jujuba plant’s extract contains a vari-
ety of long-chain chemical substances, the following: fatty 
acids, alpha-tocopherol, beta-carotene, phenolic compounds, 
flavonoids, sterols, tannins, alkaloids, and saponin serve as 
a capping agent and stop the NPs. Flavonoids from jujube 
fruit have suitable reducing properties, making them excel-
lent reducing agents for the synthesis of environmentally 
friendly nanoparticles [23, 24]. The novelty of this work is 
the green synthesize of iron nanoparticles (FeNPs) using 
jujube leaf extract and employ it to decolorize methylene 
blue (MB) dye. A complete characterization of the fabri-
cated iron nanoparticles (FeNPs) was also performed. The 
present study is an attempt to synthesis and characterize the 
FeNPs using jujube leaf extract and to estimate the removal 
efficiency of methylene blue dye.

2  Materials and methods

2.1  Plants and chemicals

The reducing substance in the production of iron nanopar-
ticles was jujube leaf juice. The jujube plant leaves were 
freshly gathered from Anna University’s Engineering Col-
lege, BIT Campus, Tamil Nadu, India. Ferric chloride is 
purchased from the Himedia Private Limited, India. It is 
used as a precursor in the experiments.

2.2  Chemicals

Analytical grade ferric chloride and methylene blue (MB) 
dye were purchased from Merck, India. All chemicals are 
used without further purification.

2.3  Preparation of jujube leaf extract

Jujube leaf extract was generated in the following manner. 
Jujube leaves were harvested and washed with normal water 
for four to five times. Finally, the leaves were washed with 
distilled water. After that, the tree leaves were cleaned and 
chopped into little pieces in order to generate the extract in 
a simpler way. Six grams air-dried jujube leaves soaked in 
50 ml of double-distilled water. To separate the jujube stems, 
this mixture was heated to 100 °C in an Erlenmeyer flask for 
30 min. Whatman No. 1 filter paper was used to separate the 
filtrate. For further testing, the extract was collected and kept 
in a clean, dry, and air tight container.

2.4  Fabrication of iron nanoparticles using jujube 
leaf extract

Fifty milliliters of  10−3 M ferric chloride is added to the 
extract solution. Within 2 h, light orange color change is 
observed, which indicates the presence of iron nanoparti-
cles. The solution is allowed to age for 48 h to yield a deep 
orange/brown color. The visual observation of the color 
change during the reaction is given in Fig. 1. The extract is 
filtered using Whatman filter paper (No. 42) to separate the 
large aggregates. The extract is then lyophilized to get the 
iron nanoparticles.

2.5  Dye removal

The catalytic activity of green synthesized iron nanopar-
ticles was tested for methylene blue dye removal. A stock 
solution of dye was prepared, and various concentrations 
were prepared using double-distilled water (5 mg, 10 mg, 
15 mg, 20 mg, and 25 mg). 0.5 mg, 1.0 mg, 1.5 mg, 2.0 mg, 
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and 2.5 mg of green generated FeNPs were added to 100 ml 
of dye solution separately in each flask. The content was 
stirred in a magnetic stirrer for a specified length of time. 
The time was varied from 30 to 150 min, and samples (3 ml) 
were taken at a time interval of 30 min. UV–visible spec-
trophotometer was used to track the reaction progress by 
ensuring dye absorbance maxima at several time intervals, 
such as 30 min, 60 min, 90 min, and 150 min. An absorb-
ance control set lacking FeNPs was preserved for each color 
and measured. A calibration curve for methylene blue was 
built using % absorbance and standard dye solutions belong-
ing to different strengths. Using value of absorbance as a 
starting concentration, treated dye sample concentration was 
estimated. Removal efficiency belonging to methylene blue 
determined is as follows:

The initial and final MB dye concentrations are Co and 
Ci respectively. All tests were performed three times. The 
most significant variance was estimated as 3%. Adjustments 
were made to pH, temperature, adsorbent dose, interaction 
duration, and initial MB dye concentration. The equilibrium 
adsorption quantity, qe (mg/g), was computed as follows:

In the liquid phase, the initial and steady dye amounts are 
C0 and Ce (mg/l).

The amount of the solution is V (L), and M stands for the 
desiccated sorbent’s bulk (g).

2.6  Characterization of iron nanoparticles

Gas chromatography-mass spectrometry, (Perkin Elmer 
Spectrum RX1), Fourier transform infrared spectrom-
eter, (USA (GC–MS, Shimadzu Model No. GC–MS 
QP 2010 plus, Japan)), and X–ray diffractometer (X-ray 

(1)Y(%) =
(Co − Ci)

Co

× 100

(2)qe =
V(Co − Ce)

M

diffractometer, X’Pert Pro PANalytical diffractometer, 
Netherlands) were utilized for evaluating the formation 
and stabilization of iron oxide nanoparticles. The struc-
ture and chemical composition of iron nanoparticles were 
determined using scanning electron microscopy and energy 
dispersive X-ray spectroscopy (SEM, TESCAN, Czech 
Republic) (EDX, OXFORD instruments, UK), and then 
projected using VEGA3 software. The size distribution was 
determined using transmission electron microscopy (TEM, 
Technai T20; Philips).

3  Results and discussion

3.1  Characterization of synthesized FeNps

FTIR spectra of jujube leaf extract were used to identify the 
biomolecules responsible for synthesizing green synthesized 
iron nanoparticles (GSFeNPs). Figure 2 shows the FTIR 
spectrum of green generated iron nanoparticles before and 
after adsorption. The FTIR spectrum belonging to green-
produced iron nanoparticles displays rise at 3378, 2923, 
1621, 1385, 1108, 547, and 467  cm−1. Band at 3378  cm−1 
was allocated to polyphenol hydroxyl group. Unique peaks 
at 2923 and 1621  cm−1 were assigned for amide’s nitrile 
(–C–N) and carbonyl (–C–O) groups, respectively. Peaks 
at 1385 might be due to the –N–O bending. The stretching 
of the -C-N sensation in aliphatic amines was related to the 
absorption band at 1108  cm−1. Iron crystal deformation at 
the Fe–O nanoscale was associated with a strong absorption 
peak at 547  cm−1.  CH2 group –C–H bending vibration was 
observed to have a typical peak at 467  cm−1. A similar dis-
covery has been made in the past. Twenty absorption lines at 
3378, 2923, 1621, 1385, 1108, 547, and 467  cm−1 indicate 

Fig. 1  Visual observations for the formation of iron nanoparticles (a 
reaction mixture (a before reaction, b after reaction)

Fig. 2  FTIR spectra of the green synthesized iron nanoparticles 
(FeNPs) before and after adsorption
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the presence of polyphenols and proteins around the gener-
ated iron nanoparticles. Biomolecules included in jujube leaf 
extract such as polyphenols and proteins are accountable for 
the durability of iron nanoparticles and the decrease of  Fe3+ 
ions [25, 26]. After adsorption of MB iron nanoparticles, 
the two bands shifted to 1385 and 1108  cm−1, respectively. 
The shifts could have been caused by the interaction between 
MB molecules and iron nanoparticles. In comparison with 
iron nanoparticles, the adsorption band at 547  cm−1 of iron 
nanoparticles bond shifted slightly. Moreover, considering 
the rapid adsorption rate, the adsorption process might be 
mainly controlled by chemical adsorption.

3.2  X‑ray diffraction analysis

XRD spectrum with CuK radiation = 1.504A° across a 
broad range of Bragg angles 20°290° was used to estimate 
the particles average size and crystalline nature. Figure 3 
and Table 1 illustrate the XRD spectrum of the FeNPS syn-
thesized with various diffraction peaks. The information 
obtained matched the JCPDS (Joint Committee on Powder 
Diffraction Standards) File No. (39–1346). By measuring 
the width of the Braggs reflection, the approximated dimen-
sion of the synthesized iron nanoparticles was estimated 
as 47 nm. For an average size, by utilizing Scherrer equa-
tion (d = k/cos), where the X-wavelength ray (1.54 A°), the 
Scherrer constant (0.54). There were no differentiating sharp 
diffraction peaks because the large diffraction patterns of the 
peaks were overlapping. This might be due to the ephemeral 
character of iron nanoparticles.

3.3  Scanning electron microscopic analysis

Figure 4 shows two different magnifications of SEM images 
of produced iron nanoparticles using jujube leaf extract. The 
created nanocrystals of iron were generally spherical and 
size ranges from 20 to 40 nm (Fig. 5). The size and pattern 
of iron nanoparticles were changed. This could be as a result 
of nanoparticles accumulation. According to literatures, the 
presence of biomolecules on iron nanoparticles surface may 
be the cause for their aggregation [27, 28].

3.4  EDX analysis of iron nanoparticles

To determine the elemental make up belonging to the syn-
thesized iron nanoparticles, EDX analysis was utilized. EDX 
iron nanoparticles range was depicted in Fig. 5. According 
to spectra, they were primarily made up of iron, sodium, and 

Fig. 3  XRD pattern of phyto-
synthesized FeNPs prepared 
using jujube leaf extract
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Table 1  Data obtained from XRD

Pos. [°2Th.] Height [cts] FWHM 
Left 
[°2Th.]

d-spacing [Å] Rel. Int. [%]

23.5891 40.69 0.2952 3.77165 35.11
32.6159 115.88 0.1476 2.74550 100.00
35.1012 89.24 0.1476 2.55660 77.01
40.3315 40.85 0.2952 2.23630 35.25
48.9153 30.60 0.2952 1.86207 26.40
53.5758 28.20 0.5904 1.71057 24.33
61.7501 15.17 0.4920 1.50231 13.09
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chlorine atoms. The presence of carbon and sodium might 
be due to biomolecules in jujube leaf extract that serve as 
capping agents. They found comparable results when euca-
lyptus foliage compounds were used by Wang et al. [29] to 
create iron nanoparticles. Mass percentages of the generated 
iron nanoparticles are shown in Table 2. According to the 
table, the mass proportion of iron component in the pro-
duced nanoparticles was 36.1%. It was determined that the 
produced nanoparticles were in the form of iron using the 
EDX spectrum and EDX table.

3.5  Transmission electron microscopes

The size, shape, and structural image of synthesized 
FeNPs are validated using TEM. The presence of iron 
were found to be round in TEM images (Fig. 6a, b, c, and 

d). Size distribution of produced FeNPs is in the range of 
10 to 30 nm. The FeNPs generated has an average size of 
20 nm.

3.6  Effect of solution pH on biosorption

The impact of pH on MB adsorption was investigated at 
various pH values of 3, 5, 7, 9, and 11, and the result is 
demonstrated in Fig. 7. It is evident that under alkaline cir-
cumstances, the adsorption of MB rises and at a pH of 9, 
the maximum adsorption capacity was observed. A reduced 
adsorption capacity was observed at pH values under 7. 
The surface will be positively charged and repel positively 
charged MB particles at pH levels lower than 3. Adsorp-
tion of MB increased with a higher pH and decreased with 
a lower pH, according to the majority of studies [30, 31]. 
Because it is cationic, MB is drawn to negative charges. 
The surface of the biosorbent will be positively charged in 
an acidic environment. The large concentration of H + ions 
reduces the negative charges from the carboxyl and hydroxyl 
groups [32]. The surface will be more negatively charged at 
a higher pH, which will strengthen the electrostatic attrac-
tion between the pollutant and sorbent. The negative charge 
will increase as the carboxyl and hydroxyl groups fully 
deprotonate [32].

3.7  Effect of solution temperature on biosorption

In the range of 30, 40, 50, and 60 °C, the impact of tempera-
ture on sorption was examined. The results are displayed 
in Fig. 8. Since it is obvious that adsorption works best at 
lower temperatures, the intermolecular interactions between 
the MB molecules and the sorbent may become weaker as 
a result of the elevated temperature, according to literature 
[33]. Knowing how temperature affects adsorption is crucial 
since heating the mixture would consume a lot of energy and 
cost money. The process can be carried out effectively and 
safely at room temperature.

Fig. 4  SEM images of the iron 
nanoparticles: a at 100 nm and 
b at 40 nm

Fig. 5  EDX spectrum of the formed iron nanoparticles

Table 2  Mass percentage of 
iron nanoparticles as per EDX

Element Atomic% Weight%

Fe K 53.02 36.10
NaK 42.94 40.40
Cl K 4.04 23.50
Total 100
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3.8  Effect of contact time on biosorption

Impact of contact time (30–210 min) on MB sorption was 
investigated and the outcomes are shown in Fig. 9. It was 

discovered that, as contact time increases, the MB adsorp-
tion rises. The equilibrium was attained after 150 min, i.e., 
the adsorption sites were completely saturated. When most 
of the sites are occupied, saturation occurs because the 

Fig. 6  TEM images of FeNPs 
at different magnifications: a 
5 nm, b 5 nm, c 10 nm, and d 
20 nm

Fig. 7  Solution pH impact on 
the MB dye removal (time inter-
val — 150 min; temperature — 
30 °C; FeNPs — 2.5 mg)
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negatively charged MB molecules on the biosorbent sur-
face will repel the remaining MB molecules. This is well 
supported by the literature [34].

3.9  Methylene blue dye removal using synthesized 
FeNPs — effect of sorbent dosage

Figure 10 depicts the consequences of the adsorbent dose on 
the removal of dyes. The efficiency of dye removal improves 
when the FeNPs dose increases from 0.5 to 2.5 mg. The 
maximum color removal occurs when the sorbent dosage 
is 2.5 mg. Even though the color removal is low during the 
initial period for 1.5 mg dosage, the removal efficiency is 
found to be increases steadily. As the amount of adsorbent 
increases, more adsorption sites become available. This 
results in the percentage hike in color removal. This result 
is in consistent with literatures [35, 36]. When finding an 
adsorbent’s capability for an adsorbent of specified quantity 
in a particular working state, the adsorbent dose is a crucial 

process component. As adsorbent mass is elevated, dye pro-
portion extracted elevates. This is also well supported by 
literatures [37, 38].

3.10  Effect of initial dye concentration on MB dye 
removal using synthesized FeNPs

The rapid interaction among dye concentration and acces-
sible locations on the adsorbent’s surface determines the 
impact of original dye concentration on dye elimination. The 
quantity of dye that has been adsorbed (mg/g) increases with 
increase in dye concentration but the proportion of color 
removal declines. This could be owing to the significant 
driving power of the initial concentration which is sufficient 
to overpower the dye mass transfer barrier among phases 
which are aqueous plus solid [33, 34]. As seen in Fig. 11, 
the dye initial concentration has a notable impact on sorp-
tion. It is also expected that when the dye concentration 
rises, the dye sorption decreases. Because, the first batch of 

Fig. 8  Solution temperature 
impact on the MB dye removal 
[time interval — 150 min; pH 
— 9; FeNPs — 2.5 mg]
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Fig. 9  Contact time impact on 
the MB dye removal (tem-
perature 30 °C; pH 9; FeNPs 
— 2.5 mg)
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pigment molecules fills the pores of surface area, and hence, 
a decrease in sorption is observed. Hence, dye adsorption is 
influenced by the initial dye concentration. Similar results 
were obtained when malachite green was removed with acid-
activated low-cost carbon [39–41].

3.11  Equilibrium isotherms

The adsorption isotherm is crucial when designing an 
adsorption device. Adsorption equilibrium studies aid in the 
evaluation of adsorbent capacities. The goal of the isotherm 
research was to understand the relationship between pol-
lutant concentration and adsorbent surfaces, which would 
aid in improving the utilization of adsorbents for removing 
pollutants from aqueous solutions. Equilibrium isotherm 
testing determines the interchange among the adsorbed mol-
ecule, and also the sorbent surface. Equilibrium adsorption 

isotherms can be seen by plotting a curve between solid 
phase concentration (mg/g) and liquid phase concentration 
(mg/L). This study investigated the utility of the Langmuir, 
Freundlich, Temkin, and Dubinin–Radushkevich (D-R) iso-
therms in correlating the MB adsorption equilibrium data.

3.11.1  Langmuir isotherm

In 1916, in order to describe gas molecule sorption on metal 
surfaces, Langmuir [42] suggested a theory, which subse-
quently extended to include monolayer sorption processes. 
For single-layer sorption, the Langmuir isotherm relies on 
the assumption that the absorbent is uniform and homogene-
ous and that it adheres to a surface with a large number of 
open sites [43–47]. The primary flaw in the plan contains 
that it takes that each site’s absorbent energies are consistent. 
The following equation represents the Langmuir isotherm.

Fig. 10  Sorbent’s dosage impact 
on the MB dye removal (time 
interval — 150 min; tempera-
ture 30 °C; pH 9)

Fig. 11  Initial dye concentra-
tion’s impact on the MB dye 
removal (time interval — 
150 min; temperature 30 °C; pH 
9; FeNPs — 2.5 mg)
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where qe (mg/g) is the equilibrium quantity adsorbed, Ce 
(mg/L) is the balance focus, qm (mg/g) is the maximal 
potential for multilayer adsorption, b (L/mg) demonstrates 
the binding site attraction with the Langmuir constant. The 
RL, which should be less than one for fitness, determines the 
isotherm’s favorability. It is plotted in Fig. 12a

3.11.2  Freundlich isotherm

Freundlich adsorption isotherms can be applied to diverse 
surfaces and layered adsorption [44]. It is defined by the 
variability factor 1/n. The equation gives the linearized equa-
tion for the Freundlich isotherm.

where Ce is the equilibrium concentration (mg/L), qe is the 
quantity adsorbed at equilibrium (mg/g), and Kf is the Fre-
undlich isotherm strength (mg/g), which varies based on the 
heterogeneity of the material. 1/n is the measure for adsorp-
tion strength. The straight line with a intersection of 1/n and 
slope of Kf is produced by plotting ln qe vs. ln Ce. n value 

(3)
1

qe
=

1

qmbCe

+
1

qm

(4)Logqe = logKf +
1

n
logCe

defines the sort of either chemical or physical absorption. 
The plot is given in Fig. 12b

3.11.3  Dubinin–Radushkevich isotherm

Experimental data are utilized in determining whether sorp-
tion processes are physical or chemical using the D-R iso-
therm [48]. As a function of the Polanyi potential, it calcu-
lates the adsorbed quantity at equilibrium. The linear form 
of the D-R isotherm equation is as follows:

where qe is the quantity of pollutant per weight of adsorbent, 
adsorbed (mg/g), qm is the highest potential for sorption 
(mg/g), β is the coefficient of action linked to mean Swell-
ing energy  (mol2/kJ2), and Polanyi potential (ε) specified as

R is the atomic number (8.314 ×  10−3 kJ/mol K), T is the 
temperature (Kelvin), Ce is the pollutant’s balance in-solu-
tion content (mg/L).

The following equation is used to determine the mean free 
energy of sorption per sorbate molecule required to transport 

(5)lnqe = lnqm − ��2

(6)� = RTln(1 +
1

Ce
)
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Fig. 12  A Langmuir isotherm, b Freundlich isotherm, c Dubinin–Radushkevich, d Temkin isotherm
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one mole of ion from infinite solution to the surface of a 
nanocomposite:

qm and the Dubinin–Radushkevich (D-R) isotherm constant 
calculations are made using the intersection and slope of the 
lnqe plot against Ɛ. For chemical adsorption, the value of E 
is more than 8 kJ / mol. The energy estimates E value less 
than 8 kJ/mol indicate that adsorption is a physical process. 
Figure 12c shows a D-R plot for the MB sorption.

3.11.4  Temkin isotherm

According to the Temkin isotherm equation, adsorption is 
characterized by a uniform distribution of bonding ener-
gies up to the maximal binding energy and that the heat 
of adsorption of all molecules in a layer declines linearly 
with coverage due to interactions between the adsorbent 
and adsorbate [48]. The following equation represents the 
Temkin isotherm:

Equation (9) is linearly presented as

When plotting ln qe against ln Ce, the slope and intercept 
are used to determine the Temkin isotherm constants.

T  the temperature (Kelvin)

R  standard gas pressure (kJ/mol K)

(7)E =
1

√
−2β

(8)qe =
RT

b
ln(KTCe)

(9)qe =
RT

b
lnKT +

RT

b
ln Ce

(10)qe=BlnKT+Bln Ce

KT  binding equilibrium value (L/mg)

b  fluctuation of Swelling energy (J/mo)

B =  RT
b

  Temkin constant associated with sorption heat. 
Figure 12d shows the fit for Temkin isotherm.

3.11.5  Equilibrium studies on the adsorption of MB dye

Studies of isotherm are used better in understanding the 
link between pollutant concentration and adsorbent sur-
faces, allowing for more efficient use of adsorbents to fil-
ter contaminants out of watery liquids [49, 50]. Isotherm 
graphs are depicted in Fig. 12. Sorption data from the 
experiments are suited to all isotherms quite well. The 
experimental data are well-matched with model prediction 
when correlation coefficient is more than 0.90. Table 3 
depicts pollutant sorption model parameter values, and the 
R2 values for linear and nonlinear form. Unlike other R2-
based isotherms, the Langmuir isotherm suits the MB dye 
adsorption well. Table 3 contains the isotherm values that 
were determined from the graph represents the isotherms. 
The Langmuir isotherm exhibits the greatest coefficient of 
association of all the isotherms examined (R2 > 0.9955), 
suggesting that adsorption is a single-layered process. The 
1/n Freundlich isotherm constant, which varies from 0 to 
1, indicates good binding. In this instance, the 1/n value of 
0.5081 indicates that the sorption was effective. Temkin’s 
isotherm with a high R2 number indicates a good match 
between the model and the data. An E value of 1.63 indi-
cates the sorption is physical. The maximum uptake was 
found to be 1000 mg/g. Various sorbents used by various 
researchers and their adsorbent capacity were given in 
Table 4. From the Table 4, it can be seen that, the synthe-
sized FeNPs has comparable sorption capacity than other 
sorbents Fig. 13.

Table 3  Isotherm models 
factors for methylene blue 
adsorption

Isotherm Nonlinear equation Nonlinear equation parameters Linear equation parameters

Langmuir isotherm qe =
qmaxKaCe

1+KaCe

qmax (mg/g) = 911.7
Ka = 0.470
R2 = 0.9700

qmax (mg/g) = 1000
Ka = 0.6029
R2 = 0.9955

Freundlich isotherm qe = KFCe
1∕n Kf (L/g) = 348.9

1/n = 0.4130
R2 = 0.9083

Kf (L/g) = 316.01
1/n = 0.5081
R2 = 0.9148

Dubinin–Radu-
shkevich (D-R) 
isotherm

qe = qmexp(−��
2)

� = RTln(1 + 1∕Ce)

qmax (mg/g) = 691.5
β  (mol2/kJ2) = 0.2194
E (kJ/mol) = 1.16
R2 = 0.9150

qmax (mg/g) = 604.25
β  (mol2/kJ2) = 0.1874
E (kJ/mol) = 1.63
R2 = 0.9670

Temkin isotherm qe =
RT

B
ln(KTCe) B (J/mol) = 11.85

KT (L/mg) = 5.027
R2 = 0.9570

B (J/mol) = 21.69
KT (L/mg) = 5.0
R2 = 0.9696



Biomass Conversion and Biorefinery 

1 3

3.12  Adsorption kinetics

Kinetic studies explain the speed at which the solute uptake 
by describing the regulatory driving mechanism. It includes 
information on reaction pathways and the time it takes to 
achieve equilibrium. The goal of studying kinetics was to 
predict total response time, rate-controlling phases, and reac-
tion routes. Kinetics also provides essential details about the 
adsorbate characteristics both molecular and physical. Several 
concepts have been proposed to explain the adsorption mecha-
nism. The pseudo-first-order model suggested by Lagergren, 
the Weber–Morris intraparticle diffusion model, and Ho’s 
pseudo-second-order model are all used in this research. Both 
the power function and the Elovich model also used [58–61].

3.12.1  Pseudo first order model

According to the adsorbate and adsorbent, forming a weak 
connection is exclusively important in physisorption. Lin-
ear version of pseudo-first-order kinetics is shown below 
[62]:

where qe and qt- quantities of pollutant and equilibrium and 
at time t (mg/g) respectively.

k1 (1/min) is the pseudo-first-order dynamics rate constant. 
The parameters of kinetics and correlation coefficient were 
calculated using the plot t vs. log (qe–qt).

3.12.2  Pseudosecond order model

Pseudo-second order kinetics governs chemisorption [63]. It 
depicts adsorption process evolution over time.

qe and qt are, both at balance and at time t, the quantities of 
pollutant ions adsorbed on the adsorbent (mg/g), k2 is the 
adsorption rate factor of the second order (g/mg min).

3.12.3  Intraparticle diffusion model

Depending on the intra-particle diffusion model, sol-
ute uptake is proportionate to the square bases of contact 

(11)ln(qe − qt) = ln(qe) − k1t

(12)
t

qt
=

1

k2q
2
e

+
t

qe

Table 4  Comparison of sorbents 
material for MB adsorption

S. No Material Adsorption capacity 
(mg/g)

References

1 Indian almond 88.62 [51]
2 Sugarcane bagasse 9.40 [52]
3 MnO2-lignin BC composite 248.96 [53]
5 Wettorrefied microalgal BC 129.57 [54]
5 UiO-66/MIL-101(Fe)-GOCOOH composite 448.70 [55]
6 Banana peel BC/iron oxide composite 862 [56]
7 NaOH/bamboo HC 665.75 [57]
8 FeNPs 1000 This paper

Fig. 13  Isotherm plot for sorp-
tion of MB using FeNPs\
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time [64]. The below model is used to calculate the kinetic 
parameters.

kid, with C as the coefficient, is the parameter of intraparticle 
diffusion (mg/(g  min−0.5)).

3.12.4  Elovich model

The Elovich model incorporates both the initial adsorption 
rate (mg/g min) and the release constant [65]. When compar-
ing Qt to ln(t), a connection with an slope of (1/β).

(13)qt = kidt
0.5 + C where α is the Elovich model constant (mg  g−1  min−1), β is 

the Elovich model exponent (g  mg−1).

3.12.5  Power function model

Power functional theory [66] can be expressed as

The plot of log qt against log t gives the values of v and k.

(14)qt =
1

�
In(a�) +

1

�
Int

(15)logqt = logk + vlogt

(a)

y = -0.0292x + 7.1284
R² = 0.6492

0

2
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Fig. 14  Adsorption kinetics of MB using iron nano composite a pseuodofirst order model, b pseuodosecond order model, c diffusion within the 
particle, d model Elovich, and e power function models
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3.12.6  Kinetics of methylene blue adsorption

Figure 14a–e and Fig. 15 are the linearized kinetics graphs 
from which the kinetic constants were evaluated. Table 5 
lists the rate constants and other parameters. The concept 
of intra particle diffusions correlation coefficient (R2) was 
discovered to be much greater than compared to those of 
other versions, and the process of adsorption kinetics was 
controlled by this model.

3.13  Error functions

Five different error functions [67] were utilized in choos-
ing best isotherm models in describing the findings of MB 
sorption.

3.13.1  Error analysis

Adsorption isotherm parameters was evaluated using error 
functions in nonlinear regression. They are statistical meth-
ods for measuring the discrepancy between model forecasts 
and experimental evidence [68, 69]. Lowering error value 
improves predictable models performance. Parameters of 
adsorption isotherm were estimated by lessening error func-
tion by utilizing Microsoft Excel’s solver utility. The five illus-
trations of error mechanisms are given below:

3.13.2  Some of squares of the errors (ERRSQ/SSE)

The error function that is most usually used is [70]

Fig. 15  Kinetic plot for the 
sorption of MB using nanocom-
posite

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

qe
 (m

g/
g)

Time (Min)

qt (exp) Pseudo First order

Pseudo second order Intra particle diffuson model

Elovich model Power Function model

Table 5  Factors for kinetic simulations of the adsorption of MB using nanocomposite

Kinetics Nonlinear equation Nonlinear equation parameters Linear equation parameters

Pseudofirst order model q = qe
(
1 − e−k1 t

)
K1  (min−1) = 0.0980
R2 = 0.5920

K1  (min−1) = 0.0298
R2 = 0.6492

Pseudosecond order model q =
q2
e
k2 t

1+qek2t

K2((g/mg) min) = 0.00002443
R2 = 0.9836

K2((g/mg) min) = 0.0000344
R2 = 0.8935

Intraparticle diffusion model qe = kidt
0.5 Kid ((mg/g)  min−0.5) = 53.58

R2 = 0.9971
Kid ((mg/g)  min−0.5) = 26.414
R2 = 0.9946

Elovich model qt =
1

�
ln(1 + �βt) β (g/mg) = 0.0023

α (mg/g min) = 25.27
R2 = 0.9886

β (g/mg) = 0.00991
α (mg/ g min) = 69.743
R2 = 0.8963

Power function model qt = ktv K = 3.0
V = 1.136
R2 = 0.9670

K = 2.67
V = 1.1691
R2 = 0.9020
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3.13.3  Hybrid fractional error function (HYBRID) [71]

For improving fit at less concentrations, it is typical to divide 
the squares sum of errors by the value which had been cal-
culated. The isotherm equation also employs the amount of 
systems degrees of freedom as a divisor which is the sum of 
the factors and the number of data elements n and p.

3.13.4  Marquardt’s percent standard deviation [72]

An error distribution with a cubic mean is resembled by Mar-
quardt’s percent standard deviation (MPSD) in certain aspects, 
but it is modified for the total amount of possible device 
configurations.

3.13.5  Average relative error

The error function works to keep the fractional error distribu-
tion constant as minimal as feasible throughout the concentra-
tion range [73, 74]

3.13.6  Sum of absolute errors (EABS/SAE)

As the amount of the error increases, the factors produced by 
using this error function produce a superior fit, tipping the fit 
in favor of data with greater concentrations. Tables 6 and 7 
contain the values for adsorption isotherm factors and single-
system error analysis.

(16)
∑n

i=1

(
qe,cal − qe,exp

)
i

2

(17)
100

n − p

∑n

i=1

[
qe,exp − qe,cal

qe,exp

]

i

(18)100

√
1

n − p

∑n

i=1

[
qe,exp − qe,cal

qe,exp

]

i

2

(19)
100

n

∑n

i+1

|||
||

qe.exp − qe,cal

qe,exp

|||
||i

where, qe,calc is the estimated equilibrium adsorbate content, 
(mg/g); qe,exp is the maximum adsorbate quantity as deter-
mined by experiment, (mg/g).

The results of the error function values were compared and 
concluded that HYBRID model generated greater results of 
the error functions investigated. According to the HYBRID 
error model, Temkin offered a better match than other models.

4  Conclusions

A conventional and practical method of fabrication of 
iron nanoparticles using a novel green pathway employ-
ing jujube leaf extract was established in this work. The 
authenticity of nanoparticle synthesis was confirmed 
through SEM, TEM, and XRD results. The FeNPs that 
were produced were in the range of 10 to 30 nm in size 
with an average size of 20 nm. The decolorization of meth-
ylene blue is performed using the FeNPs, and a maximum 
of about 89.5% was attained. The Langmuir model was 
found to be the most accurate, with a maximum adsorp-
tion capacity of qmax (1000 mg/g). The results of adsorp-
tion kinetics showed that adsorption followed pseudo 
second-order kinetic equation for sorption of methylene 
blue onto synthesized nanoparticles. This research work 
provide a new technique for the controlled combination 
of size and shape-dependent iron nanoparticles, which 
can be used to treat dye effluent from textiles and other 
chemical industries. The technique employed in this study 
for the synthesis of FeNPs was simple, quick, low-cost, 
and environmentally benign, as it did not use any organic 
solvents or other harmful chemicals. In conclusion, this 
study has demonstrated the effectiveness of using adsorb-
ing reagents (biosorbents) made from inexpensive, read-
ily available, biodegradable, and non-hazardous materials 
to remove dyes like MB before they are dumped into the 
environment.
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