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Abstract
Short sugarcane bagasse fibers, an agro-residue vastly produced worldwide, with Brazil being the leading producer, were 
used to reinforce brittle phenolic-type thermosets formed from resins synthesized using lignosulfonate to replace phenol. 
Glutaraldehyde, which has a lower vapor pressure than formaldehyde, was tested in the lignophenolic resin synthesis to 
improve the composite processability. Both composites, Glu-SLig (C) and For-SLig (C), formed from glutaraldehyde/sodium 
lignosulfonate and formaldehyde/sodium lignosulfonate resins, respectively, showed a higher impact and flexural strength 
than their respective non-reinforced thermosets. This may be attributed to the compatibility between the lignophenolic matrix 
and sugarcane bagasse fibers, indicated by their nearby free surface energy density dispersive component values. Glu-SLig(C) 
presented impact resistance (≅20%), flexural modulus (≅45%), and Tg values higher than For-SLig(C). Lignophenolic ther-
moset composites formed from a high volume of plant-based materials can be an excellent alternative to materials used in 
non-structural applications, such as rigid packaging and automotive interior parts.

Keywords Lignosulfonate · Sugarcane bagasse · Thermoset matrices · Composites · Glutaraldehyde · Agricultural residues/
by-products

1 Introduction

Lignosulfonate results from the sulfite pulping process and 
presents particular properties as water-soluble from the 
abundance of hydrophilic groups in its macromolecules, 
especially sulfonic groups [1, 2]. Figure 1 illustrates sodium 
lignosulfonate's complex functional chemical structure 
(SLig), composed of several groups, like aromatic hydroxyl, 
methoxyl, and aldehyde, which confers particular proper-
ties to lignosulfonate, making it versatile for application in 
diversified areas: as water reducers [3, 4], dispersion agent 
for dyes and pesticides [5–7] and dust depressors [8]. Fur-
thermore, in the engineering field, lignosulfonate has been 

investigated as functional material due to compatible groups, 
hydrophilic and aromatic groups, to formulate phenolic 
resins to apply in the structured composites and adhesives 
[9–15], as a poliol in the synthesis of polyurethane-type 
polymers [14]. It finds application in various other fields, 
such as animal feed, stabilizer in colloidal suspensions, 
chelation, complexation, soil conditioning, and flotation [16, 
17]. Efforts have been made to broaden the applications of 
lignosulfonate, including its use as a biosurfactant to aid 
in the enzymatic conversion of lignocellulosic fibers into 
fermentable sugars. [18].

The annual worldwide production of lignosulfonates 
stands at approximately 1.8 million tons, and these techni-
cal lignins constitute roughly 90% of the commercial lignin 
market [19]. Due to their wide range of applications and 
tendency to increase demand, lignosulfonates have become 
an important component of the wood biorefinery platform. 
They also can play a significant role in advancing the bioec-
onomy in various countries.

Despite being widely available almost worldwide, its use 
as a reagent in advanced value-added applications still needs 
to be on a large scale [20].
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Thermosets, as the phenolic type, have been one of the 
most essential macromolecular materials used by industry 
worldwide, mainly due to their chemical and thermal prop-
erties. Biomass has the potential to replace fossil-based 
raw materials to meet society's growing demands for envi-
ronmental sustainability [21, 22]. Chen et al. [1] reported 
promising results demonstrating that using SLig to prepare 
phenolic-type nanospheres contributed to a high-density 
loading of silver nanoparticles, as SLig enhanced the num-
ber of silver ions that could be adsorbed in the spheres while 
also preventing the aggregation of the nanoparticles.

Together with phenols, aldehydes are fundamental rea-
gents to synthesize phenolic resins, being that formaldehyde 
(Fig. 1) has been used throughout the ages. Formaldehyde is 
in equilibrium with methylene glycol in an aqueous solution, 
which is its commercial form [23]. The reaction of formal-
dehyde with phenol forms hydroxymethyl phenols that can 
be later crosslinked through the formation of methylene and 
methyl ether bridges [24].

Glutaraldehyde (Fig. 1) has a much lower vapor pressure 
(16.4 mmHg at 20°C, 25% aqueous solution) than formal-
dehyde (33.2 mmHg at 20 °C, 37% aqueous solution) and 
is safer to handle. Furthermore, as a di-functional aldehyde, 
glutaraldehyde is an interesting candidate to substitute for-
maldehyde; its longer molecule can confer some flexibility 
to the formed networks [25].

Phenolic matrices are regularly reinforced with plant fib-
ers, such as sisal, jute, curaua, mauve, coconut, and others 
[26–28]. Brazil is the leading sugarcane producer in the world. 
The country’s raw sugar production accounts for 22% of the 
global output; over 750 million tons of sugarcane are produced 
annually [29]. This large crop leads to a relatively large amount 
of lignocellulosic residue in the form of sugarcane bagasse. 
Besides being burned to make up sugar mills’ own energy 
needs, diverse applications have been proposed for sugarcane 
bagasse in the last decades, as in the production of liquid or gas-
eous fuels [30–32], chemicals [33–35], and materials [36, 37].

This study aimed to produce composites from a high con-
tent of renewable raw materials (Fig. 2), i.e., lignosulfonate-
based phenolic matrices reinforced with sugarcane bagasse 
fibers (SBF) while evaluating the impact of the substitution 
of formaldehyde for glutaraldehyde on the properties of the 
thermoset matrix and the composite.

2  Materials and methods

2.1  Materials

Sugarcane bagasse fibers (SBF) were supplied by the Santa 
Lucia sugarcane mill (Araras, Sao Paulo, Brazil), where they 
were burned and ground for sugarcane processing for ethanol 

Fig. 1  Chemical structures of 
glutaraldehyde and formalde-
hyde; sodium lignosulfonate 
partial chemical structure

Fig. 2  Biomass-based composite: sugarcane bagasse fibers as a reinforcement of lignosulfonate-based phenolic matrix
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production. First, waxes, terpenes, and fatty acids on the fiber's 
surface were removed by subjecting the fibers to a cyclohexane/
ethanol mixture (1:1 v/v) reflux. Subsequently, the fibers were 
washed with distilled water and dried in an air-circulating stove 
at 105 °C until constant weight. The characterization of these 
fibers led to 56.50 ± 0.3%, 21.80 ± 0.30%, 20.90 ± 0.02% 
of cellulose, hemicelluloses, total Klason lignin, respectively, 
and 0.75 ± 0.04%, 5.50 ± 0.20%, and 47% of ashes, moisture, 
crystallinity, respectively, as described elsewhere [36].

The sodium lignosulfonate (SLig) used was a by-product 
obtained from the sulfite pulping processing of Pinus taeda 
wood, Vixilex SD-type (Mw approximately 6000 g  mol−1) 
composed of sulfur (5.5 wt %), magnesium (1.7 wt %), cal-
cium (0.2 wt %), and sugars (0.9 wt %), as informed by the 
supplier (Borregaard Group, LignoTech (Cambará do Sul, 
Rio Grande do Sul, Brazil).

All other reagents, formaldehyde (Synth, 37 %), glutaral-
dehyde (25%, Vetec), KOH (Synth), and HCl (Synth, 37 %), 
were used as purchased.

2.2  Methods

2.2.1  Prepolymer synthesis

All prepolymers were synthesized by heating on a mantle 
using a three-necked flask coupled to a condenser with ice 
water circulation, a mechanical stirrer, and a thermometer, as 
shown in Scheme 1. The reagent proportions, Table 1, were 
based on a previous study [36].

Upon reaching room temperature, the solution underwent pH 
adjustment using concentrated HCl until pH=7. Subsequently, 
a rotary evaporator was utilized to remove water under reduced 
pressure, with a bathwater temperature of approximately 45°C.

2.2.2  Unreinforced and reinforced thermoset synthesis

Scheme 2 shows the methods for synthesizing thermosets 
For-SLig (T) and Glu-SLig (T), using For-SLig (P) and 
Glu-SLig (P), respectively, and for their corresponding 

SBF-reinforced composites, namely, For-SLig (C) and 
Glu-SLig (C), respectively. The step cycles utilized in the 
process were established from a previous study [36]. The 
length of 15 mm was used due to the typical length of 
sugar cane bagasse fibers produced as agricultural waste. 
The percentage of 30wt%, Scheme 2, was chosen based on 
findings from previous research [36, 37].

2.2.3  Characterizations

Prepolymers, thermosets and composites were characterized 
to assess their main chemical groups, thermal behavior and 
mechanical properties, Scheme 3. In addition, the compos-
ites' dynamic-mechanical analysis (DMA) was conducted 
using the TA Instruments Q800 model. The specimens, 
measuring 64 mm x 12 mm x 3.2 mm, were subjected to 
bending mode with an oscillation amplitude of 20 mm and 
frequency of 1 Hz. The temperature range for the analysis 
was from 25 °C to 200 °C, with a heating rate of 2 °C/min. 
Also, to visualize the morphology of fractured surfaces, 
scanning electron microscopy (SEM) was conducted with 
a Leica Model 440 (Carl Zeiss Microscopy; Jena, Germany) 
under the same conditions described elsewhere [37].

3  Results and discussion

3.1  FTIR

Figure  3 shows the infrared spectra of (a) sugarcane 
bagasse fibers (SBF) and sodium lignosulfonate (SLig); 

Scheme 1  Prepolymers syn-
thesis

Table 1  Proportions of the reagents in the prepolymer synthesis

Prepolymer Aldehyde SLig KOH

For-SLig Formaldehyde 1.38 1.00 0.07
Glu-SLig Glutaraldehyde 1.00 1.00 0.07
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prepolymers, thermosets, and composites of (b) sodium 
lignosulfonate-formaldehyde (For-SLig) and (c) sodium 
lignosulfonate-glutaraldehyde (Glu-SLig) formulations. The 
large band at 3400  cm-1 can be attributed to the –OH group; 
methylene groups' C–H stretching was observed at around 
2900–2980  cm-1. Both bands are present in cellulose, hemi-
celluloses, and lignin, therefore, appeared in all spectra.

The band at 1730  cm-1 in the SBF spectrum (Fig. 3a) can 
be associated with C=O stretch in lignin and/or hemicellu-
loses [38]. An intense band at around 1630  cm-1 in the SLig 
spectrum (Fig. 3a) is related to C=O stretching and C=C 
aromatic skeleton vibrations [39], which was also present 

in the spectra of prepolymers, thermosets, and composites 
(Fig. 3b,c), where SLig replaced phenol.

The low-intensity bands at 1512  cm-1 and 1427-1462 
 cm-1 in the SLig spectrum (Fig. 3a) are associated with 
aromatic ring stretching vibrations [40]. Both bands are 
present in the spectra of the synthesized materials. The 
bands at 1250–1200  cm-1 were attributed to C–C, C–O, and 
C=O stretching [39]. The strong band around 1040  cm-1 
can be considered a consequence of vibrations in polysac-
charides: C-OH bending, C-O, and C-C stretching [41]. 
The band around 655  cm-1 is related to the vibration of 
sulfonate groups.

Scheme 2  Unreinforced and reinforced thermoset synthesis

Scheme 3  Characterizations of 
prepolymers, thermosets, and 
composites
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Figure 4 shows possible structures of the thermosets For-
SLig (T) and Glu-SLig (T), which are based on the reactivity 
of aldehydes with phenols in an alkaline medium.

Figure 4 highlights possible bridges between the aromatic 
rings generated by the reaction with formaldehyde (Fig. 4a) 
or glutaraldehyde (Fig. 4b).

3.2  Thermal analysis

All raw materials and composites were analyzed by TGA; 
Fig. 5 shows the TG and DTG curves. As usually noticed 
for bio-based materials, there was a slight weight loss 
below 100 oC, corresponding to volatilization of absorbed 

Fig. 3  FTIR spectra of (a) sugarcane bagasse fibers (SBF) and 
sodium lignosulfonate (SLig); prepolymers (P), thermosets (T), and 
composites (C) (b) sodium lignosulfonate-formaldehyde: For-SLig 

(P), For-SLig (T), For-SLig (C), and (c) sodium lignosulfonate-glu-
taraldehyde (Glu-SLig): Glu-SLig (P), Glu-SLig (T), Glu-SLig (C) 

Fig. 4  Possible chemical struc-
tures of the thermosets (a) For-
SLig (T) and (b) Glu-SLig (T) 
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or bound water [42]. Such mass loss was practically not 
observed for the composites For-SLig (C), Fig. 5b, and 
Glu-SLig (C), Fig. 5c. This suggests the surfaces of these 
composites are hydrophobic.

DTG curve of SLig (Fig. 5a) exhibited two intense 
peaks correlated to the thermal decomposition of sulfonate 
moieties and aromatic rings at 304 oC and 776 oC, respec-
tively. The DTG curve of SBF (Fig. 5a) displayed a sharp 

peak at 364 oC and a shoulder at 331 oC, attributed to the 
decomposition of cellulose and hemicelluloses, respec-
tively. SBF lignin decomposed above 530 oC.

The broad and intense peak between 120 oC and 150 
oC in the DTG curves of prepolymers (Fig. 5b,c) resulted 
from the volatilization of the water generated as a by-
product of the crosslinking reaction that occurred with 
the resols during scanning. However, there was no peak 

Fig. 5  TG and DTG curves of (a) sugarcane bagasse fibers (SBF) and 
sodium lignosulfonate (SLig); prepolymers (P), thermosets (T), and 
composites (C): (b) sodium lignosulfonate-formaldehyde: For-SLig 

(P), For-SLig (T), For-SLig (C), and (c) sodium lignosulfonate-glut-
araldehyde (Glu-SLig): Glu-SLig (P), Glu-SLig (T), Glu-SLig (C), 
under  N2 atmosphere (flow 20 mL/min), and heating rate 10 °C/min)
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at this temperature interval in the curves of thermosets 
and composites (Fig.  5b,c) because the samples were 
crosslinked before analyses through a gap that reached 
125 oC (Scheme 2).

Between 250 oC and 350 oC, the DTG curves of the 
thermosets (Fig. 5b,c) shows two peaks for For-SLig (T) 
and a broad peak for Glu-SLig (T), which can be attributed 
to a residual cure step during scanning, and the consequent 
released and volatilization of water. This appeared as much 
less intense peaks in the prepolymer´s DTG curves.

Some events might be overlapped regarding the com-
posites, such as the matrix residual cure and the thermal 
decomposition of the reinforcement fibers between 250 oC 
and 350 oC, Fig. 5. The curves for both thermosets, For-
SLig (T) and Glu-SLig (T), as well as composites, For-SLig 
(C) and Glu-SLig (C), showed no significant differences. 
This means that replacing formaldehyde with glutaralde-
hyde did not impact the thermal stability of these materials.
The peaks around 760 oC are related to the last decomposi-
tion step of the prepolymers, thermosets, and composites.

3.3  Mechanical properties

Figure 6 shows the results of the unnotched Izod impact 
strength for each matrix type. It should be emphasized that 
the thermosets proposed in this study, synthesized from ligno-
sulfonate, formaldehyde, or glutaraldehyde, resulted in a too-
fragile material, and the tests could not be performed, Fig. 6.

The phenolic-type thermosets are traditional polymeric 
matrices applied for a long in engineering. Its mechani-
cal properties are usually improved by adding fibers to the 
matrix, and synthetic or natural fibers are commonly used to 
reinforce the thermoset, increasing their impact resistance 
[43–45], as observed for the SLig-based phenolic thermoset 
matrices reinforced with sugarcane bagasse fibers, Fig. 6.

The results suggested that sugarcane bagasse fibers 
from the Brazilian agro-industry, generated on a large 
scale, despite having a short length (≅1.5 mm) resulting 
from processing generation at the mill restraints, have 
potential application as reinforcement of phenolic-type 
composites. In addition to improving the impact strength, 
the bagasse residue fibers and using lignosulphonate as 
a reagent in the matrices synthesis resulted in compos-
ites formed from a high content of raw materials from 
plant sources. Besides excellent interface adhesion, the 
micrographs (Fig. 6 b,c) show that the matrices filled and 
recovered the fibers.

The substitution of formaldehyde for glutaraldehyde in 
the prepolymers syntheses increased the impact resistance 
values of the composite, reaching 82 ± 8 J  m-1, Fig. 6a. 
Fig. 6b,c shows the fractured surface of the composites. Both 
composites, For-SLig (C) and Glu-SLig (C) showed similar 
characteristics when reinforced with sugar cane bagasse: 
fibers broke next to the fracture plane of the matrix, the 
fibers were filled with resin, and few pulled-out fibers were 
observed.

Fig. 6  (a) Unnotched Izod 
Impact test results of the 
lignophenolic thermosets 
(T) and composites (C) with 
sugarcane bagasse (30 wt%) 
as reinforcement of sodium 
lignosulfonate-formaldehyde 
(For-SLig) and sodium 
lignosulfonate-glutaraldehyde 
(Glu-SLig) matrices, (b) SEM 
micrographs of the fractured 
surfaces of For-Slig (C) and 
Glu-SLig (C)
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Due to the energy transferred to the fibers from the matri-
ces, some fibers were detached from the matrices (Glu-SLig 
(C), For-SLig (C), during the impact test. As shown in 
Fig. 4, the chemical structure of thermosets contains polar 
groups like hydroxyls. These same polar groups can also 
be found in the primary components of sugarcane bagasse 
fibers (lignin, cellulose, and hemicelluloses). Thus, strong 
hydrogen bonding interactions may occur at the fiber and 
matrix interface. Furthermore, the chemical structure of the 
matrix and lignin that make up the fibers contain non-polar 
domains, such as aromatic rings. These non-polar domains 
facilitate hydrophobic intermolecular interactions. Com-
bined with hydrogen bonding, these interactions create good 
adhesion at the fiber-matrix interface.

The fibers present at the interface are hydrophilic. 
According to the TGA results shown in Fig. 5, the compos-
ites contain mostly hydrophobic domains on their surfaces. 
This helps to protect the hydrophilic fibers from absorbing 
water. Therefore, it can be inferred that water did not sub-
stantially impact the adhesion between the fibers and matrix 
[46]. Figure 6b,c illustrates the adequate interface interac-
tion, corroborating the results of impact tests.

In Glu-SLig (C), Fig. 6c, some microcracks appeared 
around the fiber, which indicated that the impact load on 
the matrix was transferred to the fiber during the test. In 
this way, the energy involved in the process was distrib-
uted through the crack and absorbed by the fiber. The fiber’s 
energy absorption partially disrupts the interactions at the 
fiber-matrix interface, thus causing its detachment. This 
mechanism is commonly related to thermoset composites 
due to the matrix properties [47].

The sugarcane bagasse used in the present study was pro-
duced through a process in which it is burned, as reported 
in 2.1. In a previous study, unburned sugarcane bagasse 
from mechanized harvesting and a phenolic matrix (instead 
of lignophenolic, as in the present study) were used. The 
mechanization/unburn technique enabled the incorporation 
of fibers of varying lengths (1/3/5 cm, 30 wt%). The impact 
resistance of phenolic composites reinforced with 1 cm and 
3 cm fibers was around 50 J/m. Meanwhile, the composite 
reinforced with 3 cm fibers had an impact resistance of about 
40 J/m [37]. The decrease in impact strength observed while 
using 5cm fibers can be attributed to the possibility of fiber 
bending during processing due to their length, which may 
negatively affect the influence of fiber length on the impact 
property. When comparing the best impact strength result 
of these phenolic composites (50 J/m, fibers measuring 1 
cm and 3 cm) to the results of the present study for For-
SLig (C) and GLu-SLig (C), Fig. 6, it was found that the 
impact strength of these lignophenolic composites were 38% 
and 65% higher, respectively. Based on the findings, it was 
observed that adding burnt fibers that are 1.5 cm in length 
improved the strength of lignophenolic matrices.

The composites were also tested for flexural properties, as 
shown in Fig. 7. The composite flexural strength of For-SLig 
and Glu-SLig (C) are similar; however, a noticeable increase 
in the flexural modulus occurred when formaldehyde was 
replaced by glutaraldehyde, which agrees with the higher 
impact strength (Fig. 6).

In previous studies on SLig phenolic thermosets [36, 48], 
the dispersive component of the free surface energy (which 
can be considered as an indication of the density of surfaces´ 
non-polar domains) of For-SLig thermoset, Glu-SLig ther-
moset, and sugarcane bagasse fibers were evaluated using 
inverse gas chromatography, which led to 31 mJ  m-2, 42 mJ 
 m-2 and 45 mJ  m-2, respectively. It is possible to associate the 
better performance of Glu-SLig (C), compared to For-SLig 
(C), with better compatibility between the nonpolar domains 
of fibers and matrix, which were very close in value. There-
fore, it stands out that interface plays a significant role when 
designing composites, and replacing formaldehyde with glu-
taraldehyde is beneficial when using reinforcements present-
ing surfaces with a higher density of nonpolar sites.

The DMA curves for the For-SLig (C) and Glu-SLig (C) 
composites are presented in Fig. 8. It is worth noting that 
the thermosets were not included in this evaluation process 
due to their fragile nature.

Composites DMA curves are related to matrix properties, 
which are impacted by the presence of fibers [46, 49]. In the 
present study, the matrices differ by the chemical structure of 

Fig. 7  (a) Flexural strength; (b) flexural modulus of lignophenolic 
thermosets (T) and composites (C) based on sodium lignosulfonate-
formaldehyde (For-SLig) and sodium lignosulfonate-glutaraldehyde 
(Glu-SLig) matrices reinforced with sugarcane bagasse (30 wt%)
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the bridges between the aromatic rings, Fig. 4, and both have 
the same reinforcement. It is worth noting that the matrices 
are thermosets, which are crosslinked macromolecules. As a 
result, the changes in the storage modulus, loss modulus, and 
Tan δ curves are related to the movements of uncrosslinked 
short segments.

Throughout the temperature range examined in Fig. 8, the 
storage modulus of Glu-SLig (C) is slightly lower than that 
of For-SLig (C). This difference may be explained, at least 
in part, by the fact that the bridges between the aromatic 
rings of Glu-SLig (C) offer less resistance to movement (a 
consequence of the rotation of single bonds) when compared 
to the methylene bridges of For-SLig (C), Fig. 4.

The peaks in the loss modulus curves, Fig. 8b,c, can be 
related to the glass transition, Tg, associated with the move-
ment of many uncrosslinked segments. The Glu-SLig (C) 
exhibits a higher peak temperature, 170°C, than For-SLig 
(C), which peaks at 135°C. This can be attributed to the 
stronger intermolecular interaction between Glu-SLig and 
lignocellulosic fibers of sugarcane bagasse, as already men-
tioned. The restricted movement of segments in the layers 
closest to the fibers raises the peak temperature. Figures 8c 

and b highlight that the Tan δ peak temperature of Glu-SLig 
(C) is 204°C, which is also higher than that of For-SLig 
(C) at 157°C. The second peak observed in the loss modu-
lus Glu-SLig (C) curve at 220°C could be attributed to a 
crosslinking during scanning. Nonetheless, it is important 
to highlight that this temperature is proximate to the onset 
of the material's thermal decomposition, evident from its 
TG curve (Fig. 3c).

4  Conclusions

Reinforcing the lignosulfonate-based thermosets, synthe-
sized from glutaraldehyde or formaldehyde, with sugarcane 
bagasse fibers increased the flexural and impact resist-
ance compared to unreinforced thermosets. The composite 
formed from the prepolymer synthesized using glutaralde-
hyde showed ≅20% increase in impact resistance and ≅45% 
increase in flexural modulus compared to the formed using 
formaldehyde.

The results indicated that the interactions on fiber/matrix 
at the interface and a consequent good adhesion between 

Fig. 8  (a) Storage modulus of the composites based on sodium ligno-
sulfonate-formaldehyde, For-SLig (C), and sodium lignosulfonate-
glutaraldehyde, Glu-SLig (C) matrices reinforced with sugarcane 

bagasse (30 wt%); (b) and (c) Loss modulus and Tan δ curves of For-
SLig and Glu-SLig, respectively
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them might arise not only using fiber modification, as pri-
marily reported in the literature but can also be done by 
adjusting the matrix formulation.

A phenolic-type prepolymer was synthesized from a 
phenolic reagent derived from lignocellulosic biomass and 
an aldehyde with lower vapor pressure than formaldehyde, 
lignosulfonate, and glutaraldehyde, respectively. The prepol-
ymer, previously mixed with sugarcane bagasse fibers, was 
used in the crosslinking reaction that led to the phenolic-
type thermoset reinforced by such fibers. This process took 
place using molding under temperature and pressure. As a 
result, renewable raw materials available in various regions 
of the world generated composites through an uncomplicated 
process, facilitating the scaling up of such materials and 
promoting the circular bioeconomy.

Assessing the mechanical properties of composites is 
critical for identifying their potential applications. Based 
on the impact and flexural strength test results, the material 
can be considered suitable for use in applications involving 
moderate loads. In this scenario, given the excellent thermal 
stability at high temperatures, strong adhesion at the fiber-
matrix interface, and high Tg values exhibited by the com-
posites, they have the potential for use as internal panels 
in the automotive and aircraft industries, as well as in the 
furniture, civil construction, and rigid packaging sectors.
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