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Abstract
Bioethanol production from agro-food industry waste is one of the suitable alternatives to fossil fuels. In this study, six 
agro-food wastes were evaluated to select those with a high concentration of starch or fermentable sugars for bioethanol 
processing. Yeast’s ability to produce biofuels by fermentation is affected by temperature. In this study, thermotolerant yeasts, 
obtained from natural sources in Algeria (soil and agro-food waste), were selected for their capacity to produce and tolerate 
bioethanol. Three wastes were selected, two of which had significant starch content. In order to get fermentable sugars, these 
wastes underwent chemical and enzymatic hydrolysis. The selected yeasts were identified by morphological, physiological, 
biochemical, and molecular characterization. Enzymatic and acid hydrolysis of whole potato and durum wheat bran released 
(190 g/L and 130 g/L) and (138.40 g/L and 90.03 g/L) reducing sugars, respectively. Among the isolated strains, three were 
found to be able to produce bioethanol, namely Candida tropicalis, Candida glabrata, and Saccharomyces cerevisiae. These 
strains were identical to those stored in the data bank with 99%, 100%, and 100%, respectively. In addition, C. glabrata and 
C. tropicalis exhibited an ethanol tolerance of up to 14%, while S. cerevisiae tolerates up to 15%. Interestingly, enzymatic 
hydrolysis–treated potatoes produced a considerable amount of bioethanol after 48 h of fermentation by S. cerevisiae (7.525% 
(v/v)), C. glabrata (6.80% (v/v)), and C. tropicalis (4.50% (v/v)). Taken together, our findings suggest that S. cerevisiae and 
whole potato waste could be considered good candidates for industrial bioethanol production at high temperatures.

Keywords Agro-food waste · Thermotolerant yeast strains · Bioethanol · Saccharomyces cerevisiae · Candida tropicalis · 
Candida glabrata

1 Introduction

World demand for energy is continuing to rise significantly 
as a result of the rapid growth in the human population, 
the expansion of agriculture and industry, and the growth 
of the transportation industry. Thus, the increment in 
the consumption of fuels derived from petrochemicals is 
becoming a serious problem, particularly in terms of air 
pollution, which has an impact on both human health and 
global warming. Therefore, it is deemed necessary to find 

alternatives for these fuels. In this context, producing 
energy from agricultural and agro-industrial activity 
wastes could be a potential solution. Indeed, these wastes 
are rich in renewable organic matter (biomass), and they 
make it possible to reduce dependence on oil and thus the 
environment pollution [1]. In light of all this, particular 
attention must be given to the better management of organic 
waste and particularly the by-products from agricultural 
residues. Hence, their use as a raw material for bioenergy 
production could make a good alternative to fossil fuels. 
Bioethanol can be produced by renewable natural resources 
such as plants containing sucrose (beets, sugar cane, etc.) or 
starch (wheat, corn, potatoes, etc.); accordingly, it represents 
a promising source of energy. The production of biofuel is 
thought to be influenced by temperature, one of the factors 
that greatly affect yeast fermentation ability. The temperature 
in Algeria rises considerably and tends to increase with 
global warming, especially during the summer when average 
temperatures vary between 32 and 44 °C [2]. Therefore, 
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the selection of thermotolerant yeast strains is crucial to 
deal with climate change. Importantly, high-temperature 
fermentation has several benefits, such as lowering the cost 
of tank cooling, obtaining higher saccharification yields, 
and minimizing bacterial contamination [3]. Heretofore, 
plant crops were devoted to produce ethanol, which has 
drawn criticism because it competes with its use for human 
and animal food in countries such as the USA and Brazil 
[4]. The production of bioethanol from sources other than 
those used for human or animal consumption has attracted 
considerable interest in scientific studies [3, 5, 6]. According 
to Tse et al. [7], agricultural and agro-food industry wastes 
present an opportunity to produce ethanol due to the abundant 
and the available supplies, biodegradability, high carbon and 
nutrient content, and their utility in managing the economic 
and the environmental issues of the wastes from industry [5]. 
In Algeria, food industries have generated a huge amount 
of starchy wastes such as durum wheat bran, potato, rinse 
water, cutting water, quenching water, and process water. 
These wastes are produced annually at 60 million tons, 10 
million tons, 3.8 million  m3, 3.3 million  m3, 1.5 million  m3, 
and 58,000  m3, respectively. In this study, we sought to isolate 
and identify locally thermotolerant yeast strains from the soil 
of Bechar region as well as agro-food wastes. Moreover, 
we aimed to examine their ethanolic fermentation on some 
selected wastes at high temperature, in order to contribute to 
the recovery of agro-food wastes.

2  Materials and methods

2.1  Agro‑food waste selection

There are several raw materials used for the production 
of bioethanol. In this study, six wastes were chosen based 
on their abundance and availability (Table 1). Except for 
whole potatoes provided by Chipsou factory in Rouiba, 
Algeria, all other waste products were used directly. The 
potatoes were cleaned using tap water and sliced into small 
pieces measuring 2 cm in length, 2 cm in width, and 4 
mm in thickness using an electric slicer. The slices were 
dried in an oven for 9–10 h at a temperature of 60 °C. The 

resulting powder was obtained through grinding and siev-
ing with a 500-μm sieve. Finally, the powder was packaged 
in polyethylene bags and stored in a refrigerator at 4 °C 
until it was analyzed.

2.2  Physicochemical and biochemical analysis 
of agro‑food wastes

The physicochemical properties of agro-food wastes were 
analyzed to assess their potential for bioethanol production and 
biotransformation. AFNOR methods were used to measure 
the pH, total solids, ash, and fat contents of all the collected 
agro-food wastes [8]. The electrical conductivity at 20 °C 
was measured using a Jenway 4520 conductivity meter, as 
stated by Rodier [9], while total nitrogen and protein amounts 
were determined using the Kjeldahl method [8]. Also, the 
estimation of reducing sugars was conducted employing 
the 3,5-dinitrosalycilic acid (DNS) method, which was 
introduced by Miller [10]. In addition, glucose was measured 
enzymatically through the glucose oxidase–peroxidase 
GODPOD method developed by Trinder [11]. The starch 
content was carried out using a colorimetric method described 
by Uarrota et al. [12] with some modifications.

Three milliliters of the starch solution was placed in 
a test tube, and 1 mL of an I/KI solution was added. The 
resulting mixture was then assessed for the intensity of its 
blue color using a spectrophotometer set at 600 nm against 
a reagent blank; the amount of starch present in the sample 
was calculated according to a standard curve prepared in 
the range of 10–50 mg of soluble starch per milliliter (mL), 
treated in the same manner as the test sample. Additionally, to 
investigate the chemical oxygen demand (COD) of both liquid 
and solid samples, the protocols recommended by Rodier [9] 
and Noguerol–Arias et al. [13] were followed, respectively. 
Biological oxygen demand after 5 days (BOD5) of both liquid 
and solid samples was performed using methods described 
by Rodier [9] and Kolář et al. [14], respectively. Mineral salts 
such as  Na+,  Ca2+,  K+,  Zn2+, and  Mg2+ were quantified using 
atomic absorption spectrophotometry [8]. The phosphorus 
was measured by the colorimetric method [15], and chlorides 
were evaluated by titrimetry [8].

Table 1  Different sources of 
agro-food wastes Agro-food waste Nature Substrate Factory

Process water Liquid Corn TAFNA starch factory (Maghnia, Algeria)
Quenching water Liquid Corn
Rinse water Liquid Potato EURL MARAVILLA (Chipsou) (Rouiba, Algeria)
Cutting water Liquid Potato
Whole potato Solid Potato
Durum wheat bran Solid Wheat EX–SEMPAC (Corso, Algeria)
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2.3  Isolation, selection, and identification 
of thermotolerant yeast strains producing 
bioethanol

2.3.1  Isolation of the thermotolerant yeasts

Various yeast strains were obtained from diverse sources, 
including soil and agro-food waste. Soil samples were 
gathered from two distinct regions, namely Bechar and 
Jijel, while agro-food waste samples were obtained from two 
local factories, which were TAFNA starch plant (Maghnia, 
Algeria) and EURL MARAVILLA (Chipsou) (Rouiba, 
Algeria). Approximately 100 g of soil was placed in a 
sterile plastic bag, while liquid waste was put into plastic 
bottles. The solid sample mainly potato was crushed and 
homogenized in a sterile mortar. One gram of substrate 
was dissolved in a sterile sodium citrate solution (2% w/v) 
previously heated to 45 °C in order to soften it, dissolve 
its constituents, and release the microbial cells [16]. The 
yeasts were isolated on yeast peptone glucose (YPG) agar 
medium containing 10 g/L of yeast extract, 5 g/L peptone, 
20 g/L glucose, 20 g/L agar, and 0.05 g/L chloramphenicol. 
The different cultures were isolated by conventional methods 
of decimal dilutions [17]. The inoculation was done on the 
surface by spreading 0.1 mL of each dilution in transverse 
streaks. The dishes were then incubated at 37 °C for 72 h, 
and pure cultures were stored at 4 °C.

2.3.2  The selection of thermotolerant yeasts

The isolated yeast strains were purified and selected based 
on their ability to produce and tolerate high concentrations 
of bioethanol. A colony from a Petri dish was transferred to 
glass tubes containing 10 mL of YPG broth and incubated 
at 37 °C for 24 h. Five milliliters of the obtained culture 
was transferred into a 100-mL Erlenmeyer flask containing 
20 mL of YPG broth and was further incubated at 37 °C for 
18 h with stirring at 150 rpm [18]. The resulting active cells 
were centrifuged at 8000 rpm for 10 min, rinsed twice with 
sterile distilled water, and served as inoculum. The alcoholic 
fermentation was carried out in 250-mL Erlenmeyer flasks 
containing 100 mL of sterile synthetic YPG broth at pH 5 
and was incubated at 37 °C for 48 h with the agitation of 150 
rpm. The effects of temperature (37 °C, 40 °C, and 45 °C), 
pH (4, 5, and 6), and substrate concentration (glucose) (10%, 
15%, 20%, 25%, and 30% w/v) were studied on bioethanol 
production. The ethanol content was determined at the end 
of each fermentation.

2.3.3  Ethanol tolerance test

Yeast suspensions were transferred into glass tubes contain-
ing 10 mL of YGP broth mixed with a variable volume of 

absolute ethanol in order to obtain different concentrations 
(0%, 5%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, and 20% 
(v/v)) [6, 19, 20]. The tubes were then incubated at 37 °C 
for 48 h. The cell concentration in each tube was measured 
at the beginning and the end of fermentation by determining 
the optical density at 600 nm, which is proportional to the 
number of cells [21].

2.3.4  Identification of strains producing bioethanol

The yeast strains were identified through conventional 
techniques outlined by Kurtzman and Fell [22] according 
to their morphological, physiological, and biochemical 
characteristics. The cell morphology is examined using an 
optical microscope (MOTIC B3-220-PL). After incubation 
of yeasts for 48 h on YPG agar medium at 37 °C, a single 
colony of yeast was mixed in a droplet of sterile distilled 
water on glass slide and smeared until the smear dry off. 
The smear was then stained using diluted methylene blue 
dye, air dried, and observed under light microscope at mag-
nification × 100. Additionally, White et al.’s [23] molecu-
lar approach was employed for further identification. The 
QIA fast R genomic extraction kit was firstly used to extract 
DNA from the isolated yeast strains. Then, polymerase chain 
reaction (PCR) was performed for the internal transcribed 
spacer (ITS) region of 26S rDNA using the following prim-
ers: ITS1 5′-TCC GTA GGT GAA CCT GCG G-3′ and ITS4 
5′-TCC TCC GCT TAT TGA TAT GC-3′. The  D1/D2 domain 
of the 26S rDNA was also amplified by PCR using the fol-
lowing primers: LROR 5′ACC CGC TGA ACT TAAGC3′ and 
LR6 5′CGC CAG TTC TGC TTACC3′. The amplification of 
DNA and sequencing were done in a final volume of 50 μL 
reaction volume (10 mM Tris HCl, 50 mM KCl, 1.5 mM 
MgCl2, 0.2 mM dNTPs, 1.25 IU Taq polymerase, 0.2 mM 
each primer, and 0.2 μL of DNA). The PCR was conducted 
in a DNA thermal cycler (Biometra, Germany). The reaction 
underwent 35 cycles, and the resulting products, along with 
their restriction fragments, were detected by electrophoresis 
on a 1.5% agarose gel. Furthermore, the obtained sequences 
were matched with those available in the National Center 
for Biotechnology and Information’s (NCBI) GenBank 
using the Basic Local Alignment Search Tool (BLAST). 
The highest alignment score was then used to determine the 
species. Additionally, the neighbor-joining method was used 
to construct a phylogenetic tree, utilizing Mega 6 software, 
as described by Altschul et al. [24].

2.4  Production of bioethanol on selected agro‑food 
wastes

Three agro-food wastes were selected for bioethanol 
production based on their sugar content. Except quenching 
water, the potato powder and the durum wheat bran require 
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a pre-treatment by hydrolysis of starch to fermentable sugar 
mainly glucose which will be fermented into ethanol by 
alcoholic fermentation.

2.4.1  Starch hydrolysis in selected agro‑food wastes

The hydrolysis of agro-food waste was done by acid and 
enzymatic hydrolysis. The waste acid hydrolysis was 
performed as described by Taibi et  al. [25] with some 
adjustments. Fifty grams of both potato powder and durum 
wheat bran was suspended at 35% (w/v) of hydrochloric 
acid solution (1 M HCl) which was heated at 100 °C for 2 
h. After cooling in the open air, the substrate was recovered 
by filtration. pH was adjusted using a solution of 5 M NaOH 
until it was equal to 5 in order to eliminate the fermentation 
inhibitors [26]. The enzymatic hydrolysis process consisted 
of two stages: liquefaction and saccharification. According to 
Taibi et al. [26], liquefaction involved mixing 50 g of substrate 
with a phosphate buffer solution (Weight ratio 1:3) and 5 mL of 
0.15% (w/v) alpha-amylase (30 U/mg) and heating the mixture 
at 100 °C for 10 min, followed by a 2-h liquefaction step at 
90 °C and pH 6. The resulting solution was centrifuged, and 
the supernatant was analyzed for reducing sugars according 
to the method of Miller [10]. After liquefaction, the mixture 
pH was adjusted to 4.8 with 1 M HCl and cooled to 60 °C. 
Twenty milliliters of Aspergillus niger amyloglucosidase (120 
U/mg) was added, and saccharification was carried out for 4 
h at 60 °C. The enzyme was then inactivated by increasing 
the temperature to 100 °C, and samples were analyzed for 
reducing sugars as described above [26].

2.4.2  Fermentation conditions

Each pure isolated yeast was transferred from an agar culture 
colony to a glass tube containing 10 mL of YPG broth and 
incubated at 37 °C for 24 h. Then, 5 mL of this culture was 
added to 10 mL of sterilized YPG medium and stirred at 150 
rpm for 18 h at 37 °C [18]. Active cells were centrifuged 
at 8000 rpm for 10 min, washed twice with sterile distilled 
water, and used as an inoculum. The fermentations were 
carried out in Erlenmeyer flasks containing 100 mL of 
sterile fermentation medium with 10% (v/v) inoculum size, 
incubated at 37 °C for 48 h under agitation speed of 150 
rpm. All experiments were conducted in triplicate.

2.4.3  Analytical methods

Cell growth was determined by measuring optical density 
at 600 nm with a UV–Visible Spectrophotometer Varian 50 
Tablet, and cell numeration was carried out using a Thoma 
hemocytometer [27]. A standard absorbance curve was estab-
lished as a function of the cell population number. The etha-
nol concentration expressed in alcoholic degree % (v/v) was 

measured using an ebulliometer of the Dujardin– Salleron 
type (Paris, France) based on the variances in boiling points 
between water and alcohol, as indicated by a reference table 
[28]. Moreover, the concentration of ethanol (g/L) was meas-
ured using headspace GC–FID to establish a calibration curve 
between the ethanol concentration and the alcoholic degree.

Ethanol productivity (Qp, g/L/h) was calculated using the 
following equation:

where P is the ethanol concentration (g/L) and t is the 
fermentation time (h) giving the highest ethanol concentration.

Ethanol yield (Yp/s, g/g) was calculated as the actual produced 
ethanol and expressed as g ethanol per g of utilized sugar.

The ethanol fermentation efficiency (Ey, %) was calculated 
by the following equation:

Ey = (Yp/s/0.511) × 100
where Yp/s is the ethanol yield (g/g) and 0.511 is the 

theoretical maximum ethanol yield per unit of glucose from 
glycolytic fermentation (g/g).

2.5  Statistical analysis

All analyses were performed in triplicate, and results were 
expressed as average values ± standard deviation. The data 
were analyzed for statistical significance using one-way 
and two-way analysis of variance (ANOVA), followed by 
Duncan’s multiple range test (p < 0.05). The statistical 
software package XLSTAT v. 14 was used in the analysis of 
the experimental data.

3  Results and discussion

3.1  Physicochemical and biochemical 
characterization of agro‑food wastes

Based on the data presented in Table 2, various nutrient 
compounds in all the tested agro-food wastes showed 
diversity and richness. The variation in nutrient content may 
be linked to the origin and initial composition of the used 
material during the production process, as stated by Slopiecka 
et al. [29]. Bioethanol is generated by the fermentation of 
simple sugars present in biomass as well as sugars resulting 
from a prior treatment by enzymatic or chemical hydrolysis 
of agro-food wastes containing high starch content [30]. In 
the present study, only three wastes among the tested agro-
food wastes were selected as potential raw materials for 
bioethanol production regarding their important starch and 
sugar contents, namely quenching water with 50 g/L of sugar, 
whole potatoes with 60% of starch, and durum wheat bran 
with 41.50% of starch. These high amounts of starch and 

Qp = P∕t
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sugar in these three wastes are generally linked to the initial 
composition of starchy raw materials (potatoes, wheat, and 
corn) used during the production process and its operating 
conditions [31, 32]. The high initial sugar concentration is 
an important influencing parameter which has a direct effect 
on yeast cell growth and alcoholic fermentation rate [6, 7]. 
Furthermore, selected agro-food wastes have a slightly acidic 
pH and a total nitrogen concentration greater than 0.50% 
(w/w), corresponding to a protein concentration of more 
than 4% (w/w). The availability of nitrogen and proteins in 
the culture medium has a direct effect on the yeast growth. 
Insufficient amounts of these nutrients can impede or reduce 
the speed of alcoholic fermentation, resulting in the formation 
of undesirable sensory compounds, such as sulfur derivatives 
[33]. The agro-food waste contains low fat content which 
varies from 0.4 to 3.65%. This variation depends on the type 
of agro-food waste and its constituents [29].

The presence of fatty acids in the fermentation medium 
increases the tolerance of yeasts to ethanol, which leads to a 
high production of ethanol [34]. Additionally, our findings 
reported that biological oxygen demand concentrations 
over 5 days  (BOD5) vary from 903.80 to 7522 mg/L, while 
chemical oxygen demand concentrations (COD) present 
values between 907 and 14225 mg/L. The COD/BOD5 
ratio ranges from 1.53 to 2.48, demonstrating that COD 
values are higher than  BOD5 values in all tested samples. In 
general, these two parameters vary considerably depending 
on the type and characteristics of the waste [35]. The high 
values of COD and BOD5 in our agro-food waste constitute 
a crucial environmental pollution factor which affects on 
the one hand the physical and chemical structure of the 
soil, and on the other hand, it reduces the aquatic life by 
increasing the concentration of dissolved oxygen [36]. 
Furthermore, a high electrical conductivity was observed, 

Table 2  Average biochemical composition of different agro-food wastes

Corn Potato Wheat

Process water Quenching water Rinse water Whole potato Cutting water Durum wheat bran

pH 5.52 ± 0.10 4.49 ± 0.01 6.93 ± 0.06 5.48 ± 0.25 5.51 ± 0.19 6.51 ± 0.32
Total dry extract 

(%)
0.59 ± 0.06 7.00 ± 0.20 0.14 ± 0.04 91.31 ± 0.05 0.43 ± 0.02 91.22 ± 0.08

Moisture (%) 99.41 ± 0.06 93.00 ± 0.20 99.86 ± 0.04 8.690 ± 0.04 99.57 ± 0.01 8.78 ± 0.07
Electrical conduc-

tivity (mS/cm)
8.26 ± 0.18 11.70 ± 0.29 2.11 ± 0.01 2.01 ± 0.02 3.27 ± 0.24 0.74 ± 0.06

Ash content (%) 0.22 ± 0.03 1.38 ± 0.14 0.09 ± 0.02 5.25 ± 0.13 0.13 ± 0.02 4.03 ± 0.04
Starch content 

(g/L)/(g/100g)
0.28 ± 0.07 (g/L) 0.27 ± 0.03 (g/L) 0.10 ± 0.01 (g/L) 60.50 ± 0.02 

(g/100g)
0.16 ± 0.01 (g/L) 41.73 ± 0.09 

(g/100g)
Reducing sugars 

(g/L)/(g/100g)
0.62 ± 0.02 (g/L) 51.31 ± 0.35 (g/L) 0.04 ± 0.01 (g/L) 7.79 ± 0.13 

(g/100g)
0.21 ± 0.02 (g/L) 8.40 ± 0.17 (g/100g)

Glucose level (g/L)/
(g/100g)

0.50 ± 0.03 (g/L) 32.02 ± 0.26 (g/L) 0.02 ± 0.00 (g/L) 2.07 ± 0.21 
(g/100g)

0.08 ± 0.01 (g/L) 2.03 ± 0.07 (g/100g)

Fat content (%) 0.60 ± 0.14 0.40 ± 0.03 0.01 ± 0.00 1.75 ± 0.20 0.28 ± 0.09 3.65 ± 0.02
Total nitrogen con-

centration (g/L)/
(g/100g)

0.18 ± 0.05 (g/L) 0.64 ± 0.10 (g/L) 0.01 ± 0.00 (g/L) 1.59 ± 0.01 
(g/100g)

0.57 ± 0.10 (g/L) 1.34 ± 0.11 (g/100g)

Protein concen-
tration (g/L)/
(g/100g)

1.12 ± 0.08 (g/L) 4.04 ± 0.13 (g/L) 0.09 ± 0.00 (g/L) 9.93 ± 0.01 
(g/100g)

3.60 ± 0.15 (g/L) 8.38 ± 0.11 (g/100g)

COD (mg/L) 14225 ± 0.17 9179 ± 0.12 907 ± 0.06 3975 ± 0.01 1898 ± 0.04 3520 ± 0.11
BOD5 (mg/L) 7522 ± 0.03 3700 ± 0.01 453.50 ± 0.08 2380 ± 0.28 903.80 ± 0.21 2300 ± 0.16
COD/BOD5 ratio 1.89 2.48 2 1.67 2.10 1.53
Mineral salts (g/L) (g/100g)
Sodium (Na) 0.20 ± 0.03 0.20 ± 0.05 0.19 ± 0.03 0.09 ± 0.01 0.22 ± 0.01 0.03 ± 0.00
Calcium (Ca) 0.29 ± 0.05 0.01 ± 0.00 0.28 ± 0.01 0.07 ± 0.00 0.19 ± 0.02 0.11 ± 0.02
Potassium (K) 0.47 ± 0.07 2.12 ± 0.07 0.11 ± 0.02 0.40 ± 0.13 0.32 ± 0.06 1.90 ± 0.10
Zinc (Zn) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00
Magnesium (Mg) 0.18 ± 0.04 1.03 ± 0.01 0.04 ± 0.01 0.12 ± 0.01 0.05 ± 0.00 0.65 ± 0.07
Phosphorus (P) 0.42 ± 0.09 1.79 ± 0.14 0.03 ± 0.00 0.14 ± 0.02 0.10 ± 0.01 1.15 ± 0.09
Chlorides  (Cl−) 0.19 ± 0.04 (g/L) 1.62 ± 0.04 (g/L) 0.18 ± 0.02 (g/L) 0.15 ± 0.00 

(g/100g)
0.13 ± 0.02 (g/L) 0.07 ± 0.00 (g/100g)
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varying from 0.74 to 11.70 mS/cm depending on the 
presence of ions, their total concentration, their mobility, 
and their valence, as well as the temperature of the solution; 
these data demonstrate the abundance and richness of 
these discharges in various mineral salts [37]. These 
results were confirmed by atomic absorption spectrometry, 
and a diversity of mineral elements was revealed in the 
samples, including Na, Ca, K, Zn, Mg, and P, which vary 
in the range of 0.01 (Zn) to 2.12 (K) g/100g. Indeed, these 
micronutrients are crucial for microbial development and 
the synthesis of bioethanol [38]. They play an important 
role in the fermentation process and affect the ethanol yield 
[39]. Several studies have been carried out to highlight the 
importance of each element. Jones and Greenfield [40] 
cited that sodium (Na) improves the sugar assimilation 
by contributing to a good alcoholic fermentation, while 
magnesium (Mg) increases yeast tolerance to ethanol [41]. 
In addition, it has been demonstrated that magnesium 
in the fermentation medium affects cell growth, glucose 
consumption, and ethanol production; on the other hand, 
lack of magnesium triggers stress responses and reduces the 
expression of genes involved in energy metabolism [42]. 
In the presence of zinc (Zn), Ismail et al. [43] have also 
noted a considerable improvement in ethanol tolerance. 
According to Alminderej et al. [44], calcium (Ca) enhances 
bioethanol production and yeast tolerance to high ethanol 
concentrations. Also, phosphorus can be provided to yeasts 
in the form of phosphate salts, which are required for the 
creation of adenosine triphosphate (ATP), phospholipids, 
and nucleic acids [45]. According to Manuel Fernando et al 
[46], the addition of phosphate salt increased the ATP, which 
improved the efficiency of the fermentation process. Thus, 
the greatest improvement in ethanol production derived 
specifically from the increase in  K+ concentration and the 
reduction in acidity of the fermentation medium [47]. In 
the same line, our findings have proven that these wastes 
constitute attractive and nutrient-rich raw materials for yeast 
growth and biofuel production.

3.2  Isolation of yeast strains producing bioethanol

A total of thirty thermotolerant yeast strains were isolated 
from different natural sources (Table 3). Six of which were 
able to produce bioethanol on YPG broth at 37 °C. Strains 
Q1 and Q2 were isolated from quenching water, C1 from 
cutting water, P1 and P2 from whole potato, and B2 from 
the soil of Bechar. Our results are in line with previous stud-
ies, in which thermotolerant yeasts were able to grow and 
produce ethanol from 37 °C to 45 °C [48–50] and even up 
to 50 °C [51]. Consequently, the six isolates that produced 
ethanol at 37 °C were chosen to select the best-performing 
yeast strains in ethanol production and tolerance.

3.3  Selection of thermotolerant yeast strains 
producing bioethanol

The effects of temperature, pH, substrate concentration, 
and ethanol tolerance were studied in order to select the 
most efficient yeast strains that are capable of producing 
and tolerating large amounts of ethanol in the YPG broth.

3.3.1  Effect of the substrate concentration

Figure 1 demonstrates that all isolated yeast strains tolerate 
a sugar concentration up to 25% (w/v), at which point strains 
Q1, B1, P1, C1, P2, and Q2 produce ethanol the most, with 
maximum values of 11.45%, 9.15%, 8.35%, 7.05%, 5.45%, 
and 3.80% (v/v), respectively. Moreover, the data suggests 
that as the substrate concentration increases, the ethanol pro-
duction yield also increases until it reaches a maximum yield 
at a concentration of 25% (w/v). Our results are in concord-
ance with those reported by Lin et al. [27]; their data showed 
that the ethanol yield produced by S. cerevisiae starts to 
decline above a substrate concentration of 30%. Similarly, 
Osho [21] and Triwahyuni et al. [52] have conducted stud-
ies showing that high sugar concentrations (25% and 30% 
(w/v)) in the fermentation environment inhibit cell growth 
and ethanol production. At a concentration of 40% (w/v), 
cell growth is completely halted as water infiltrates through 
the cytoplasmic membrane of the cells to balance intra- and 
extracellular concentrations. This decrease in production 
yield decrement could be attributed to the high concentra-
tion of sugars which creates osmotic stress in the yeasts [53].

3.3.2  Effect of temperature

According to thermodynamic laws, temperature has an 
impact on biological processes. Indeed, yeasts can only work 
in a narrow range of “optimal” temperatures, and they cannot 
survive in a critical temperature, like all other living organ-
isms [54]. Figure 2 shows that the optimum temperature 
for ethanol production seems to be 37 °C for all the tested 
yeast strains with maximum ethanol contents of 11.45%, 
9.15%, 8.35%, 7.10%, 5.45%, and 3.80% (v/v) corresponding 
to strains Q1, B1, P1, C1, P2, and Q2, respectively. In addi-
tion, based on the aforementioned graph, we noted that any 
deviation from the optimum temperature, either increment 
or decrement, results in a decline in ethanol production yield 
for all the tested isolates. Eventually, at a temperature of 45 
°C, ethanol production stopped entirely for all strains except 
for strain B1, which managed to produce a minimal amount 
of bioethanol at a concentration of 0.5% (v/v). This decre-
ment in production can be justified by the denaturation of 
the tertiary structure and inactivation of enzymes that regu-
late microbial activity and the fermentation process [55]. 
Our findings are in agreement with those demonstrated by 
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Table 3  Yeast isolation from various natural sources

Natural sources Isolated yeast 
strains at 37 °C

Morphological characteristics

Agro-food waste Quenching water Q1 Round shape, cream, smooth surface, butyrous. Oval cells
Q2 Round shape, cream, smooth and shiny surface, butyrous. Elongated oval cells
Q3 Round shape, cream, smooth and shiny surface. Round to oval cells
Q4 Round shape, cream, smooth and shiny surface, butyrous. Elongated oval cells

Cutting water C1 Round shape, cream, smooth surface, butyrous. Round to oval cells
C2 Round shape, white, smooth and shiny surface. Round cells

Whole potato P1 Round shape, cream, smooth surface, butyrous. Oval cells
P2 Round shape, cream, smooth surface, butyrous. Oval cells

Soil Soil of Bechar B1 Round shape, cream, smooth surface. Oval cells
B2 Round shape, white, smooth and shiny surface. Oval cells
B3 Round shape, cream, smooth and shiny surface, butyrous. Elongated oval cells
B4 Round shape, white, smooth surface. Elongated oval cells
B5 Round shape, cream, smooth surface. Oval cells
B6 Round shape, cream, flat smooth surface. Globose cells
B7 Round shape, white, smooth and shiny surface. Round cells
B8 Round shape, cream, smooth and shiny surface. Round to oval cells
B9 Circular shape, white, smooth surface. Round cells
B10 Round shape, cream, smooth and shiny surface, butyrous. Elongated oval cells
B11 Round shape, white, smooth surface. Spherical cells
B12 Round shape, white, smooth and shiny surface. Oval cells

Soil of Jijel J1 Round shape, white to cream, convex surface. Spherical cells
J2 Round shape, white, smooth and shiny surface. Round cells
J3 Round shape, white to cream, convex surface. Spherical cells
J4 Circular shape, white, smooth surface. Round cells
J5 Round shape, white, smooth and shiny surface. Round cells
J6 Round shape, white to cream, convex surface. Spherical cells
J7 Round shape, white, smooth surface. Elongated oval cells
J8 Round shape, white to cream, smooth surface. Spherical cells
J9 Round shape, white to cream, convex surface. Spherical cells
J10 Round shape, white, smooth surface. Spherical cells

Fig. 1  Bioethanol production 
using the six isolated yeast 
strains at different substrate 
concentrations. Values represent 
the mean of three replicates and 
error bars represent the standard 
deviation
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Nuanpeng et al. [56] with a temperature of 37 °C as optimal 
for bioethanol production using S. cerevisiae DBKKUY–5. 
A number of publications have proven that temperature 
increment enhances the inhibiting effect of ethanol on cel-
lular activities by lowering yield cell and ethanol production 
[57, 58]. However, a very high temperature causes many 
changes in the cell that ultimately affect protein structures 
and function, accumulate denatured and aggregated bio-
macromolecules, and lead to growth inhibition or cell death 
[59]. Zhang et al. [60] showed that high temperature can 
not only trigger high DNA damage of S. cerevisiae but also 
trigger other biological abnormalities including loss of cell 
wall integrity. Moreover, Duhan et al. [61] have reported 
a temperature of 35 °C as optimal for bioethanol produc-
tion on potatoes using S. cerevisiae MTCC–170, whereas 

Ünal et al. [62] have noted higher ethanol yield at 30 °C 
using S. cerevisiae. Generally, ethanol production depends 
on fermentation temperature which profoundly affects yeast 
growth and fermentation performance [63].

3.3.3  Effect of pH

pH plays an essential role in the production of bioethanol. 
Figure 3 illustrates that the difference in pH affects the 
amount of the produced bioethanol. pH 5 gave the highest 
ethanol content for all six isolated yeast strains where they 
have maximum ethanol contents of 11.35%, 9.05%, 8.40%, 
7.00%, 5.45%, and 3.80% (v/v) corresponding to strains 
Q1, B1, P1, C1, P2, and Q2, respectively. According to 
Darvishi and Abolhasan [64], an increase in the rate of 

Fig. 2  Bioethanol production 
using the six isolated yeast 
strains at different temperatures. 
Values represent the mean of 
three replicates, and error bars 
represent the standard deviation
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Fig. 3  Bioethanol production 
using the six isolated yeast 
strains at different pH. Values 
represent the mean of three rep-
licates, and error bars represent 
the standard deviation
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ethanol production at pH 5 was noted. These results are 
in agreement with our finding as well as those obtained 
by Narendranath and Power [65], and they stated that 
yeast is an acidophilic organism and grows in an acidic 
environment. Because acidic conditions promote greater 
yeast development and inhibit the growth of harmful 
bacteria, alcohol production in acidic environments is 
important [27]. A pH between 4 and 6 is considered as 
optimum pH where the yeast can grow better, depending to 
several parameters such as the temperature, the amount of 
oxygen, and the yeast strain. Moreover, it has been noted 
that an increase or a decrease in the pH on either side of the 
optimum value for all the yeast isolates leads automatically 
to a decrease in the ethanol production yield. In addition, 
this inappropriate pH also has a negative effect on yeast 
cells because it can affect the structure of the cell wall and 
modify the conformation of proteins protruding from the 
plasma membrane; at the same time, it also impacts the 
organization and function of cell membrane lipids and 
disrupts the function of proteins embedded in membranes 
[66]. Narendranath and Power [65] have reported that the 
extracellular pH changes from the optimum pH may be too 
difficult for the cell to maintain a constant intracellular pH 
and the enzymes may not function normally. Also, if the 
enzymes are disabled, the yeast cell will not be able to grow 
and produce ethanol efficiently. Additionally, when the pH 
is lower than 4 or higher than 6, a more extended incubation 
period is required, and ethanol concentration decreases 
considerably [67]. It has been also signaled that more acidic 
and basic media retard yeast metabolic pathways and inhibit 
cell growth, resulting in a lower ethanol yield [68].

3.4  Ethanol tolerance

Figure 4 illustrates the tolerance of several yeast strains to 
different ethanol concentrations. A heterogeneity of ethanol 
resistance levels was reported in the different species. Strain 

Q2 seems to be less resistant compared to the other tested 
strains. Indeed, the Q2 strain has the capacity to withstand 
ethanol concentrations up to 11% (v/v). Above this value, 
only the other strains can survive. The strains C1 and P2 tol-
erate a concentration up to 12% (v/v) compared to 14% (v/v) 
for the strains P1 and B1, while the strain Q1 has the high-
est ethanol resistance compared to other strains (15%). This 
variability in ethanol tolerance could be explained by the 
variation of the strain’s biochemical composition. Numerous 
studies demonstrated the alteration of cellular lipid com-
position in response to ethanol exposure [69, 70]. Further-
more, You et al. [69] and Archana et al. [70] have reported 
that unsaturated fatty acids such as palmitoleic and oleic 
acids play an important role in overcoming the toxic effects 
of ethanol in S. cerevisiae cells, and when it is exposed to 
ethanol stress, the proportion of monounsaturated fatty acids 
increases with a concomitant decrease in saturated fatty 
acids. This unsaturated fatty acid composition could be a 
useful criterion to assess the potential ethanol tolerance of 
other microorganisms. Similarly, Boudjema et al. [71] have 
advocated a range of ethanol tolerance between 11 and 14% 
(v/v) for their isolated yeasts. In the same line, Nguyen et al. 
[72] have mentioned a total cell growth inhibition when the 
ethanol concentration is between 11.8 and 13% (w/v) for 
four different strains (C. tropicalis OP010088, Meyerozyma 
guilliermondii OP010064, C. tropicalis OP010090, and 
M. guilliermondii OP010065). On the other hand, yeasts 
generally cannot tolerate an ethanol concentration superior 
than 16%. Yet, several studies by Hawaz et al. [6], Urano 
et al. [19], and Moneke et al. [20] have succeeded to isolate 
yeast strains supporting up to 20% ethanol. This variation 
in tolerance could be attributed to the difference in genetic 
makeup of the yeast isolates and their ecological origin [6]. 
The ethanol resistance mechanism involves many interac-
tions between signal transduction pathways and regulatory 
networks, as well as a complex network at the genomic level. 
Transcription dynamics and profiling results of important 

Fig. 4  Ethanol tolerance of 
isolated yeast strains after 48 h 
of incubation at 37 °C. For each 
yeast strain, different letters 
indicate significant differences 
(p < 0.05) between the strains
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gene sets, such as heat shock proteins, provided an under-
standing of the tolerance mechanism [73]. According to our 
results, all selected yeast strains can produce bioethanol at 
significantly variable levels. Based on the one-way ANOVA 
statistical analysis of the data presented in Fig. 4, the toler-
ance to ethanol is significantly different according to the 
yeast strains tested. The Q1, P1, and B1 strains are signifi-
cantly distinguished from the other strains by their tolerance 
to high amounts of ethanol. Table 4 shows the efficiency 
of bioethanol production by the six isolates at the different 
tested parameters (temperature, pH, and substrate concentra-
tion). It has been shown that the concentrations of bioethanol 
produced at all parameters are significantly different (p < 
0.05) depending on the tested yeast strains. However, among 
these tested isolates, Q1, B1, and P1 strains produce sig-
nificantly higher concentrations of bioethanol than the other 
isolates at all tested parameters. Thus, these three strains 
could be good candidates for the bioethanol production from 
agro-food wastes and are selected for further study.

3.5  Identification of yeast isolates

The isolated strains were confirmed molecularly by com-
paring the obtained PCR-amplified sequences with those 
stored in GenBank of the National Center for Biotechnol-
ogy and Information (NCBI) using the BLAST algorithm. 
Phylogenetic analysis of the isolated strains revealed that 
they belong to two different genera: Saccharomyces and 
Candida. Strain Q1 is closely related to S. cerevisiae CBS 
2888 (KY109257.1) with similarity of 100% (Fig.  6), 
whereas strains P1 and B1 seem close to C. tropicalis L2 
(MK752673.1) and C. glabrata CBS 5278 (KY106475.1), 

respectively, with similarities of 99% and 100% (Fig. 7). 
Finally, these identified yeast strains are named S. cerevisiae 
Z0730–8635I (Q1), C. tropicalis Z0730–8636I (P1), and C. 
glabrata Z0730–8637VS (B1), and they are integrated in 
GenBank with the following accession numbers: OP876823, 
OP876824, and OP876825, respectively. The primary iden-
tification of yeast isolates is based on the morphological 
characteristics of colonies grown on solid medium. Table 5 
reveals the presence of white, rounded, creamy, smooth, 
domed, and buttery texture colonies, showing pseudomy-
celium development only in P1 strain. Furthermore, micro-
scopic examination demonstrated that all strain isolates 
have ovoid cell shapes with budding asexual reproduction 
(Fig. 5).

The morphological identification of the strains was 
followed by physiological and biochemical characterization 
(Table  6). These results indicate a variation in sugars 
fermentation and assimilation from one strain to another. 
Interestingly, all our isolates were able to use glucose 
during their growth. Moreover, trehalose was also efficiently 
assimilated by all strains, whereas it was fermented only by 
P1 and B1 strains. On the other hand, all the isolates present 
a negative test for lactose and starch. Furthermore, only the 
P1 isolate showed an ability to assimilate xylose and adonitol 
which are not assimilable by the others, while unlike the other 
strains, the Q1 isolate was able to use raffinose. The selected 
yeast isolates seem to belong to two different genera of yeast 
such as Saccharomyces and Candida, based on comparisons 
between all of our findings and the characteristics listed by 
Kurtzman and Fell [22], Boudjema et al. [71], Silva et al. 
[74], and Zhang et al. [75]. Indeed, isolate B1 was found to 
have the characteristics of C. glabrata. Interestingly, as stated 

Table 4  Ethanol production efficiency of thermotolerant yeast strains at different parameters

Values bearing different superscript letters within the same row are significantly different based on one-way ANOVA and Duncan’s multiple 
range test at p < 0.05. Results are expressed in means ± standard deviation

Ethanol concentration (% v/v) at 
different

Isolate

Q1 Q2 C1 P1 P2 B1

Temperature (°C) 25 8.16 ± 0.10a 2.00 ± 0.08f 3.95 ± 0.04d 5.20 ± 0.16c 3.20 ± 0.14e 6.30 ± 0.00b

30 10.20 ± 0.08a 2.90 ± 0.08f 6.60 ± 0.12d 7.33 ± 0.23c 4.70 ± 0.08e 8.05 ± 0.00b

37 11.45 ± 0.07a 3.80 ± 0.16f 7.10 ± 0.08d 8.35 ± 0.22c 5.45 ± 0.12e 9.15 ± 0.00b

40 5.60 ± 0.16a 1.40 ± 0.04e 3.60 ± 0.00c 3.70 ± 0.04c 3.10 ± 0.16d 4.20 ± 0.12b

45 0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b 0.00 ± 0.00b 0.60 ± 0.00a

pH 4 10.40 ± 0.00a 2.10 ± 0.00e 5.00 ± 0.10d 6.50 ± 0.00c 1.20 ± 0.04f 7.80 ± 0.14b

5 11.35 ± 0.04a 3.80 ± 0.16f 7.00 ± 0.40d 8.40 ± 0.04c 5.45 ± 0.12e 9.05 ± 0.08b

6 10.80 ± 0.08a 2.00 ± 0.16e 5.00 ± 0.04d 7.60 ± 0.04c 1.30 ± 0.08f 8.50 ± 0.08b

Substrate concentration 
(glucose) (% w/v)

10 5.10 ± 0.08a 1.20 ± 0.28d 2.20 ± 0.16c 2.80 ± 0.04b 2.90 ± 0.08b 4.80 ± 0.14a

15 6.85 ± 0.21a 1.00 ± 0.08f 3.00 ± 0.16e 4.80 ± 0.18c 3.67 ± 0.23d 5.80 ± 0.16b

20 9.10 ± 0.14a 3.10 ± 0.14f 5.25 ± 0.20d 6.50 ± 0.12c 4.50 ± 0.20e 7.20 ± 0.08b

25 11.45 ± 0.04a 3.80 ± 0.16f 7.05 ± 0.12d 8.35 ± 0.12c 5.45 ± 0.08e 9.15 ± 0.00b

30 10.80 ± 0.16a 0.00 ± 0.00f 3.66 ± 0.12d 4.30 ± 0.08c 3.00 ± 0.08e 6.70 ± 0.12b
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Table 5  Morphological characteristics of yeast strain isolates and the reference strain S. cerevisiae ACTIFLORE BO213

(–) Negative test

Strain 1 (Q1) Strain 2 (P1) Strain 3 (B1) S. cerevisiae ACTIFLORE BO213

Colony margin Entire Entire Entire Entire
Colony color Cream Cream Cream Cream
Colony texture Butyrous Butyrous Butyrous Butyrous
Surface Smooth Smooth Smooth Smooth
Filaments No hyphae Pseudohyphae No hyphae No hyphae
Asexual reproduction Budding (multilateral budding) Budding (multilat-

eral budding)
Budding (multilat-

eral budding)
Budding (multilateral budding)

Cell shape Oval Oval Oval Oval
Ascospores shape 3 to 4 ascospores per ascus  – – 3 to 4 ascospores per ascus 
Sexual reproduction – – – –

Fig. 5  Microscopic character-
istics of isolated yeast strains 
by methylene blue staining 
cultured in YPG agar at 37 °C 
after 48 h (magnification ×100; 
Q1 and B1: scale bar = 10 μm; 
P1: scale bar = 15 μm)

Fig. 6  Phylogenetic tree 
of strain Q1 based on the 
neighbor-joining method with 
a bootstrap analysis of 1000 
replications

Fig. 7  Phylogenetic tree of both 
strains P1 and B1 based on the 
neighbor-joining method with 
a bootstrap analysis of 1000 
replications
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by Risan [76], C. glabrata does not produce pseudohyphae 
at temperatures above 37 °C and has smooth, oval, cream-
colored colonies. Risan [76] and Devadas [77] have 

mentioned that C. glabrata only ferments and assimilates 
glucose and trehalose. In fact, the Q1 isolate was found to 
have the characteristics of S. cerevisiae. Kavanagh [78] stated 
that colonies of S. cerevisiae are typically creamy with an 
oval shape. Based on the findings of Asyikeen et al. [79], 
Boudjema [80], and Moussan et al. [81], isolate Q1 can be 
identified as S. cerevisiae due to its ability to ferment sucrose, 
maltose, fructose, glucose, and raffinose but not lactose. This 
idea is confirmed by El Nemr [82] who has reported that S. 
cerevisiae cells are unable to ferment lactose due to a lack of 
lactase or β-galactosidase. Table 5 reveals that the P1 isolate 
is highly similar to C. tropicalis, which is consistent with 
the findings of other researchers. For instance, Ebabhi et al. 
[83] and Maikan et al. [84] successfully isolated C. tropicalis 
strains from local food samples, which exhibited creamy, 
flat, and smooth colony characteristics. Similarly, Boudjema 
et al. [71] and Shariq and Sohail [85] identified a yeast strain 
with ovoid cells, mycelium formation, and fermentation 
capabilities for glucose, galactose, sucrose, xylose, maltose, 
and trehalose as C. tropicalis.

3.6  Production of bioethanol from selected 
agro‑food wastes

Table 7 summarizes the results of bioethanol production 
from three selected agro-food wastes using the different three 
isolated yeast strains. On the basis of the statistical analysis 
of the data presented in Table 7, it has been shown that the 
bioethanol production is significantly varied according to 
the tested yeast strains and the selected agro-food wastes. 
This variation could be related to different factors, namely 
the substrate, the hydrolysis process, and the strain type used 
in the fermentation process [67]. Bioethanol concentrations 

Fig. 8  The radar plot of ethanol yield obtained using three isolated yeast strains on agro-food wastes after acid and enzymatic hydrolysis: a 
whole potato, b durum wheat bran

Table 6  Biochemical 
characteristics of yeast strain 
isolates

(+) Positive growth reaction, (–) 
negative growth reaction, (w) 
weak growth reaction

Q1 P1 B1

Fermentation
  Glucose + + +
  Galactose + + –
  Maltose + + –
  Saccharose + + –
  Lactose – – –
  Raffinose + – –
  Trehalose – + +
  Starch – – –
Carbon assimilation
  Glucose + + +
  Maltose + + –
  Saccharose + + –
  Galactose + + –
  Lactose – – –
  Raffinose + – –
  Inositol – – –
  Cellobiose – – –
  Trehalose + + +
  Adonitol – + –
  Melezitose + + –
  Xylose – + –
  Arabinose – – –
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and their productivity values vary significantly from 10.81 
to 62.46 g/L and from 0.19 to 1.30 g/L/h, respectively. Addi-
tionally, from Table 7 and Fig. 8, the highest ethanol con-
centrations are produced by S. cerevisiae and C. glabrata, 
at 7.85% and 6.80% (v/v), respectively; these results are in 
agreement with those cited by Techaparin et al. [58] which 
showed that the thermotolerant S. cerevisiae KKU–VN8 
strain could produce the maximum amount of ethanol at a 
temperature of 37 °C from a nutritional substrate containing 
15% (w/v) of glucose.

Unlike S. cerevisiae, several Candida strains are recog-
nized for their inability to grow sufficiently and produce 
ethanol under anaerobic conditions [86]. Importantly, our 
results indicate that C. glabrata was able to produce ethanol 
more efficiently and grow under anaerobic conditions and 
that its fermentation efficiency was not significantly different 
from that of S. cerevisiae (p < 0.05).

With regard to S. cerevisiae, the obtained results have dem-
onstrated that this strain presents a significantly high yield (p 
< 0.05) compared to C. tropicalis and a significantly better 
ethanol productivity (p < 0.05) than the other tested strains 
(Table 7, Fig. 8). These results support the widespread use 
of S. cerevisiae as the most effective starter in the industrial 
production of bioethanol [57] because it tolerates high ethanol 
concentrations and a wide pH range which makes the pro-
cess less susceptible to infections [27, 67, 87]. On the other 
hand, the C. tropicalis strain has demonstrated its ability to 
produce ethanol from agro-food waste, but at a lower concen-
tration comparing to the other two strains. These results are 
in concordance with those cited by Mussato et al. [88], who 

have obtained an ethanol yield of 5.45% (v/v) by C. tropicalis 
and 14.8 (v/v) by S. cerevisiae. Whole potatoes and durum 
wheat bran were used as raw materials, and they underwent 
acid and enzymatic hydrolysis to release fermentable sugars 
into the medium and avoid slow progress of fermentation due 
to insufficient intake of fermentable carbohydrates for yeast 
metabolism [7]. The amounts of bioethanol produced from 
the two agro-food wastes after acid and enzymatic hydrolysis 
ranged from 22.24 to 52.60 g/L and from 28.55 to 62.46 g/L, 
respectively. The initial concentration of substrate seems to 
have an impact on the production capacity, which explains 
the high yield of bioethanol production from potatoes in 
both processes. In addition, the statistical analysis shows that 
the fermentation of the enzymatic hydrolysates produces a 
higher bioethanol yield than that of the two tested residual 
acid hydrolysates. This difference could be attributed to the 
high amount of fermentable sugars that are released during 
the enzymatic hydrolysis comparing to acid hydrolysis which 
is characterized by releasing other inhibitor substances such 
as organic acids and furaldehydes (furfural and 5-hydroxym-
ethyl furfural) [89]. Despite their low concentrations, these 
substances are able to alter the metabolism, lengthen the lag 
phase, damage cell membranes, and acidify the cytoplasm, 
which results in the reduction of ethanol production and 
productivity [90]. On the other hand, enzymatic hydrolysis 
already has high yields of simple sugars (85–95%), generates 
few phenolic compounds and effluents to be treated, and does 
not cause corrosion problems [91]. Regarding our results, the 
additional amylases were crucial for the alcoholic fermenta-
tion of the three tested yeast strains. This was demonstrated 

Table 7  Ethanol yield obtained using three isolated yeast strains on agro-food wastes after acid and enzymatic hydrolysis

Values bearing different superscript letters within the same column are significantly different based on two-way ANOVA and Duncan’s multiple 
range test at (p < 0.05). Results are expressed in means ± standard deviation

Substrate Type of 
hydrolysis

Yeast Reduc-
ing sugar 
(g/L)

Ethanol concentration Ethanol 
productivity 
(g/L/h)

Ethanol yield 
(g/g)

Fermentation 
efficiency (%)

(% v/v) (g/L)

Whole potato Acid liquefac-
tion

S. cerevisiae 130.00 6.60 ± 0.03ca 52.60 ± 0.04ca 1.09 ± 0.05ca 0.40 ± 0.10a 79.18 ± 0.01a

C. tropicalis 130.00 3.10 ± 0.06c 25.00 ± 0.05c 0.52 ± 0.02c 0.19 ± 0.02ab 37.63 ± 0.03ab

C. glabrata 130.00 4.40 ± 0.07cb 35.25 ± 0.07cb 0.73 ± 0.04cb 0.27 ± 0.11a 53.06 ± 0.02a

Enzymatic 
hydrolysis

S. cerevisiae 190.00 7.85 ± 0.10a 62.46 ± 0.11a 1.30 ± 0.01a 0.33 ± 0.04a 64.33 ± 0.06a

C. tropicalis 190.00 4.50 ± 0.09ac 36.04 ± 0.09ac 0.75 ± 0.07ac 0.19 ± 0.03ab 37.12 ± 0.08ab

C. glabrata 190.00 6.80 ± 0.02ab 54.17 ± 0.02ab 1.13 ± 0.12ab 0.29 ± 0.10a 55.79 ± 0.13a

Durum wheat 
bran

Acid liquefac-
tion

S. cerevisiae 90.03 3.05 ± 0.05da 24.61 ± 0.04da 0.51 ± 0.01da 0.27 ± 0.12a 53.49 ± 0.03a

C. tropicalis 90.03 2.75 ± 0.14dc 22.24 ± 0.13dc 0.46 ± 0.03dc 0.25 ± 0.01ab 48.34 ± 0.06ab

C. glabrata 90.03 3.18 ± 0.08db 25.63 ± 0.08db 0.53 ± 0.07db 0.28 ± 0.09a 55.71 ± 0.02a

Enzymatic 
hydrolysis

S. cerevisiae 138.40 6.70 ± 0.02ba 53.39 ± 0.02ba 1.11 ± 0.06ba 0.39 ± 0.15a 75.49 ± 0.01a

C. tropicalis 138.40 3.55 ± 0.11bc 28.55 ± 0.09bc 0.59 ± 0.14bc 0.21 ± 0.01ab 40.36 ± 0.07ab

C. glabrata 138.40 5.90 ± 0.15b 47.08 ± 0.03b 0.98 ± 0.04b 0.34 ± 0.05a 66.57 ± 0.05a

Quenching 
water

S. cerevisiae 51.31 1.70 ± 0.06ea 13.97 ± 0.20ea 0.29 ± 0.02ea 0.27 ± 0.02a 53.28 ± 0.13a

C. tropicalis 51.31 1.30 ± 0.10ec 10.81 ± 0.01ec 0.22 ± 0.15ec 0.21 ± 0.10ab 41.23 ± 0.10ab

C. glabrata 51.31 1.50 ± 0.11eb 12.39 ± 0.08eb 0.26 ± 0.14eb 0.24 ± 0.09a 47.26 ± 0.03a
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in the previous study of Vincent et al. [92] by the fact that C. 
glabrata did not produce ethanol from starch in the absence of 
these enzymes. The fermentation of the quenching water has 
been carried out. This contained 51.31 g/L of reducing sugars, 
and the production of bioethanol using the three tested yeast 
strains was between 10.81 and 13.97 g/L. Although this waste 
did not require any treatment contrary to other tested wastes, 
the rate of bioethanol production remains low. This could be 
explained by the low concentration of fermentable sugars 
that are released in this waste, which leads to low bioethanol 
production [93]. Several studies have been conducted on the 
production of bioethanol from different substrates including 
sugarcane, sugar beet, and sweet sorghum. The most com-
mon starches are corn and wheat [3, 44, 62]. The variations 
of ethanol yields change considerably from one substrate to 
another, mainly due to differences in the conversion efficiency 
of the different raw materials (acid hydrolysis and enzymatic 
hydrolysis), the composition of the culture medium, the fer-
mentation process, and the used yeast strain whether com-
mercially or isolated locally.

4  Conclusion

In the study, thirty strains of yeast were isolated from two 
Algerian natural sources (soil and agro-food waste). Among 
them, three thermotolerant yeast strains were successfully 
selected, specifically S. cerevisiae Q1, C. tropicalis P1, and 
C. glabrata B1. The strains, isolated from three agro-food 
wastes, were chosen for their ability to produce and to tolerate 
ethanol from three agro-food wastes. Interestingly, tolerance 
levels have been observed at high temperatures up to 40 °C 
and at ethanol concentrations up to 16% (v/v). The ethanol 
production capacities of these yeast strains were maximal at 
37 °C. Moreover, whole potato wastes and durum wheat bran 
underwent acid and enzymatic hydrolysis of starch in order 
to release fermentable sugars. According to the results, the 
enzymatic hydrolysis made it possible to have a better yield 
of sugars, in particular from potato (190 g/L). The highest 
ethanol concentrations are obtained after 48 h of fermentation 
as follows: 7.525% (v/v), 6.80% (v/v), and 4.50% (v/v) on 
potatoes treated by hydrolysis enzymatic by S. cerevisiae, C. 
glabrata, and C. tropicalis, respectively. Taken together, our 
results provide important information regarding S. cerevisiae 
and whole potato waste for bioethanol production and repre-
sent a promising starting point for improving high-tempera-
ture industrial ethanol production processes in the near future.
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