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Abstract
The hydrothermal liquefaction (HTL) of mixed household waste (MHHW) was carried out at varying temperatures from 
260 to 360 °C, residence times of 30–90 min, and catalyst loads of 2.5–12.5 wt. %, in the presence of four heterogeneous 
catalysts, namely, bentonite clay, diatomaceous earth (DE), nanoporous ZnO (nano ZnO), and zeolite ZSM-5. Maximum 
bio crude yield of 48.10% was obtained at 360 °C and 75 min, in the presence of 5 wt. % nano ZnO. Among the naturally 
occurring catalysts, DE yielded a bio crude percentage of 48.52% at 12.5 wt. %, 360 °C, and 75 min. The addition of catalysts 
increased the bio crude yield and inhibited the formation of bio char and gaseous products. Also, the bio char and bio crude 
obtained from catalytic HTL (cat-HTL) presented with higher carbon and hydrogen content, thus possessing a significantly 
higher H/C ratio and HHV. Among cat-HTL, DE and nano ZnO yielded higher carbon and energy recovery percentage for 
bio char and bio crude, respectively. Also qualitatively, cat-HTL in the presence of DE yielded a higher fraction of hydro-
carbons, when compared with non-cat HTL and cat-HTL in the presence of nano ZnO. N-containing compounds, phenols, 
furfurals, etc., were found to be present in the range of 16.2 to 18.6% for all bio crudes.
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1 Introduction

The study of renewable energies has become significant in 
the present scenario of continuous economic development, 
rapid progress of society, depletion of traditional fossil fuel 
resources, and changing climate patterns. Biofuels, produced 
from renewable sources, have the potential to accommodate 
30% of the world’s energy demand by the year 2050 [1, 2]. 
Accordingly, many biomasses from different origins, pos-
sessing varying biochemical compositions, such as algae, 
lignocellulosic wastes, agricultural residues, and aquatic 
trashes, have been investigated for their prospect as practi-
cal alternatives for fossil fuels [3]. In this regard, munici-
pal solid waste (MSW) holds within itself, huge untapped 

energy, which is intentionally squandered into open dumps 
and landfills due to mishandling solid waste management 
policies. The mixed household waste (MHHW) forms a 
major portion of MSW, which retains within it both organic 
and inorganic portions in the form of food waste, plastics, 
and paper. And MHHW from residential households, with 
high energy potential, is disposed off in an unsegregated 
manner into community bins, which is then transported to 
transfer stations and/or finally disposed into open dumps 
and landfills. Thus, this MHHW biomass from community 
bins, prior to their transportation for final disposal, is a valu-
able bio-resource that, in addition to posing no competi-
tion to food resources, is abundantly and readily available, 
environmentally friendly, and  CO2 neutral, thus making it a 
sustainable and economical feedstock for bioenergy and bio 
refinery. Many researchers have worked on effective energy 
retrieval and safe disposal of MSW, including methods such 
as landfills, incineration, and pyrolysis [4–6]. These methods 
present with limited feed variety and extensive pre-treatment 
methods such as segregation, drying, size reduction, and safe 
disposal of by-products [7–11].

Hydrothermal liquefaction (HTL) is a promising technol-
ogy that uses water at subcritical temperatures as a reaction 
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medium to convert biomass into biofuels [12]. This process 
is specifically useful in the case of raw materials with high 
moisture content, which can be effectively converted into 
useful bio-intermediates for the production of high-value-
added chemicals and liquid bio fuels. The products of HTL 
self-separate into solid, liquid, and gaseous phases which 
are typically called bio char, bio crude, aqueous phase, 
and gaseous phase products, respectively. Typically, HTL 
is conducted at medium temperatures of 250–400 °C and 
moderately high pressures of 5–25 MPa [1, 13, 14] target-
ing the bio crude component of the liquid product. Owing 
to its advantages over other thermochemical conversions 
like pyrolysis and gasification on biomass selectivity and 
feedstock heterogeneity, HTL has become one of the most 
practically implementable technologies demonstrating great 
potentials for the production of biofuels and solving the bio-
mass choice obstacles. Accordingly, a plethora of biomasses 
have been analyzed for their capabilities for production of 
bio crude through HTL technology, both singularly and in 
combination, which include, but are not limited to, various 
types of lignocellulosic biomass wastes, numerous spe-
cies of micro and macro algae, and sludges [15–19]. Also, 
sequential HTL, or two-stage HTL, has also been garnering 
immense attention to enhance the bio oil yield and to reduce 
the occurrence of nitrogen heteroatoms in bio oil that arise 
due to the high protein content of microalgal feedstocks [20, 
21]. Furthermore, artificial intelligence techniques such as 
machine learning and decision support systems have been 
employed to predict and optimize bio oil yields in HTL pro-
cesses [22–24].

The bio crudes obtained from the HTL process are dark 
brown-colored viscous semiliquids that require a set of down 
streaming process for its upgradation and final usage. Thus, 
the viscosity of the final product along with low yields limit 
the practical application of HTL, warranting the usage of 
catalysts. Several homogeneous and heterogeneous catalysts 
have been investigated for their ability to positively impact 
the overall process and the liquid bio crude in particular. 
Under homogeneous catalysts, acidic and alkaline ones such 
as NaOH, KOH,  Na2CO3, and  K2CO3 have been commonly 
employed for efficient HTL conversion of biomass into bio 
crudes [25–27]. These catalysts exhibit high activity due to 
their superior diffusion properties which at the same time 
leads to increased corrosion effects due to difficulties in their 
separation and recycling. To overcome these difficulties, 
heterogeneous catalysts such as metal oxides, and zeolites 
are being largely focussed not only for their capabilities of 
efficient hydrothermal conversion but also their recyclabil-
ity, thus presenting environmental benignity and economic 
sustainability [2, 14]. Also, the above-mentioned advantages 
are incremented many folds in the case of naturally occur-
ring catalysts, which are increasingly safe and accessible 
than chemically synthesized ones.

Since each catalyst plays a different role in promoting 
the production of bio crude from the HTL process, the aim 
of this research lies in figuring out the effect of naturally 
occurring and chemically synthesized heterogeneous cata-
lysts such as bentonite clay, diatomaceous earth (DE), nano-
porous zinc oxide (nano ZnO), and zeolite ZSM – 5. Also, 
to the best of our knowledge, the use of unsegregated and 
MHHW, obtained solely from residential dwellings, as bio-
mass feedstock for the HTL process has never been reported 
before. Thus, to address the above knowledge gap, HTL of 
MHHW for the production of bio crude in the absence and 
presence of specified catalysts were investigated at various 
temperatures and residence times. Also, the properties of 
bio crude and bio char thus obtained were also analyzed in 
detail by means of elemental analysis, gas chromatography 
mass spectroscopy (GC MS), and Fourier transform infrared 
spectrometry (FTIR).

2  Materials and methods

2.1  Waste feedstock and characterization studies

The MHHW biomass feedstock was collected from commu-
nity bins of residential establishments around SSN College 
of Engineering, Kalavakkam, Tamil Nadu, India. The col-
lected waste was separated of inert materials such as glass, 
ceramics, textiles, construction waste, and hazardous wastes 
such as batteries and e-waste, and the usable portion was 
taken for further analysis. The analyzed portion of MHHW 
constituted majorly of food waste both raw and cooked, plas-
tic waste consisting of packaging and disposal materials, 
and paper waste from packaging, cleaning, and sanitation 
applications. Thus, the MHHW biomass feedstock, for all 
experiments, is a mixture of these sub-portions in the fol-
lowing compositions—food sub-portion 60%, plastic sub-
portion 25%, and paper sub-portion 15%. The elemental C, 
H, N, and S compositions of samples were determined as 
per ASTM D5291 and D3176 standards directly by means 
of the Thermo Scientific Flash 2000 auto-analyzer (Thermo 
Fisher Scientific, USA). All catalysts used were analytical 
grade and used directly as such without processing.

Table 1 depicts the CHNS elemental analysis, proximate 
analysis, and biochemical analysis values for the MHHW 
biomass sample. It can be seen that MHHW biomass con-
tains a substantially high amount of carbon (50.25 ± 2.53%) 
and a low amount of oxygen (27.93 ± 3.25%) which are in 
and below par with most of biomasses [28–33]. The MHHW 
biomass sample also contains a considerably high amount of 
hydrogen which is found to be 7.26 ± 0.68%, thus resulting 
in a desirable H/C ratio of 1.73. The HHV of the sample is 
in the range of 22.06 ± 2 MJ/kg. Also, the noticeable amount 
of volatiles (60.25 ± 2.2%) present in MHHW along with a 
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low amount of fixed carbon (16.88 ± 1.35 %) render it as a 
good feedstock choice for the production of biofuels. From 
the proximate analysis of MHHW biomass, the ash content 
of the sample was found to be 5.24 ± 0.98%. This is sig-
nificantly lower than most of algal biomasses [34–37]. Ash 
content has a negative impact on the overall HTL oil-form-
ing efficiency by causing heat transfer limitations, fouling, 
and deactivation of catalyst. It also increases the probability 
of the presence of inorganic substances in the bio oil, thus 
affecting the quality [38, 39].

The biochemical composition (ash-free basis) is attrib-
uted by the food sub-portion of MHHW biomass and was 
found to contain 17.92 ± 0.98% of lipids and 13.23 ± 2.41% 
of protein, respectively. The influence of the biochemical 
composition of feedstock on bio crude production by HTL 
is highly dependent on the presence of lipids and proteins 
than carbohydrates [40].

2.2  HTL reactor

HTL was carried out in a custom-made cart-mounted SS316 
high-pressure stirred autoclave reactor with a volume of 2 L, 
ID 80 mm, thickness 30 mm, and height 400 mm, designed 
for a pressure and temperature of 200 bar and 450 °C. The 
schematic diagram of the reactor is shown in Fig. 1. The heat 
supply of the reactor is ensured by the SS-coated ceramic 
strip heaters around its surface. Reactor agitation is handled 
by a 100–1400 rpm three-blade turbine impeller connected 
to zero-flux magnetic duty switches with a torque of 2 Nm.

The pressure and temperature of the reactor are moni-
tored by an SS316 pressure regulator with a manometer and 
a K-type thermocouple connected to the temperature regula-
tor (placed in a heat well), both attached to the end of the 
reactor. Cooling water is supplied by an SS304 automatic 
cooling system consisting of a circulating water pump, hose 
disconnect switch, and cooling coils and is connected to both 

the reactor and mixing system magnetic drive to initiate auto-
matic cooling above 450 °C. The reactor system also con-
sists of a high-pressure reflux condenser with a reservoir to 
facilitate the regeneration of gaseous products. The recycling 
of liquid and solid products is made possible by a 10 mm 
diameter hole equipped with a bottom flow valve.

2.3  HTL experiments

For all HTL experiments, 120 g of MHHW biomass was 
loaded into the reactor with 1600 ml of water. The tempera-
ture of the reactor contents is raised by heating them at a rate 
of 10 °C/min and was held at the required final operating 
temperature for the desired residence time. Then, the reactor 
was cooled down to ambient conditions before collecting 
the products. The experiments to determine the effect of 
operating temperature and residence time were analyzed in 
the range of 260–360 °C and 30–90 min, respectively. For 
catalytic HTL (cat-HTL) experiments, respective catalysts 
were added in varying ratios of 2.5–12.5 wt. % of feed. After 
the stipulated time, a solid and liquid product mixture was 
obtained from the bottom flush valve, and both phases were 
separated by means of filtration. The obtained solid phase 
was then dried to remove moisture, and the recovered liquid 
phase was taken to solvent extraction. Polar solvent such 
as dichloromethane (DCM) was used in a ratio of 3:1 to 
separate the hydrocarbon-rich organic phase and water-rich 
aqueous phase.

2.4  Product yields

All experiments were triplicated, and the obtained product 
streams were quantitatively analyzed. Using Eqs. (1) and (2), 
the specific product yield was determined as the ratio of the 
total mass of the product phase to the total mass of MHHW 
biomass feedstock.

Table 1  Ultimate and proximate 
analysis values of MHHW

*O = 100 – (C + H + N + S) obtained by difference

Elemental analysis (wt. %) Proximate analysis (wt. %)

C 50.25 ± 2.53 Volatile matter 60.25 ± 2.2
H 7.26 ± 0.68 Fixed carbon 16.88 ± 1.35
N 14.46 ± 1.62 Moisture 17.63 ± 3.12
S 0.1 ± 0.18 Ash 5.24 ± 0.98
O* 27.93 ± 3.25 Bio chemical composition (wt. %)
H/C 1.73 Carbohydrates 38.85 ± 1.46
O/C 0.42 Proteins 13.23 ± 2.41
HHV (MJ/kg) 22.06 Lipids 17.92 ± 0.98

(1)Bio crude yield (%) =
mass of bio crude (g)

mass of MHHW biomass (g) ∗ (100 − ash%)
∗ 100
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2.5  GC MS and FTIR analysis

The liquid products were analyzed for their composition by 
gas chromatography mass spectroscopy (GCMS) by means 
of Agilent 7890 GC equipped with Agilent 7683A auto-
injector and flame ionization detector (FID). Here, 1 μL of 
the diluted sample that is to be tested was injected into the 
system with Helium (99.9995% purity) as the carrier gas. 
The initial temperature of the column was maintained at 50 
°C and was increased to 300 °C at the rate of 10 °C/min, and 
the sample was held for 5 min at this temperature.

The Fourier transform infrared (FTIR), Perkin Elmer 
FTIRC 100566, UK, analysis was used to determine and 
elucidate the major organic constituents of bio char samples, 
based on the absorption peaks for functional groups between 
400 to 4000  cm−1.

2.6  Thermo gravimetric analysis and boiling point 
distribution of bio crude

The thermo gravimetric analysis (TGA) of MHHW was 
analyzed using a Shimadzu Thermogravimetric Analyzer 
(50H) at a heating rate of 10 °C.min−1 using nitrogen ambi-
ence. Around 20 mg of waste was placed inside the furnace, 
and the temperature increased from 100 to 800 °C, and the 
weight loss was noted. The boiling point distribution of 
various fractions in bio oil was obtained as per ASTM 7169 
standard [41, 42].

2.7  Carbon and energy recovery

The recovery percentages of carbon in bio crude and bio 
char were calculated by Eq. (3) [43, 44]:

Fig 1  Schematic representation 
of HTL reactor

(2)Bio char yield (%) =
mass of biochar (g)

mass of MHHW biomass (g) ∗ (100 − ash%)
∗ 100

(3)
Carbon recovery (%) =

C in product (wt.%)

C in MHHW biomass (wt.%)
∗ Product yield (%)
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Fig. 2  a, b Effect of tempera-
ture and time on HTL products 
yield. c Effect of usage of vari-
ous catalysts on HTL products 
yield. d and e Effect of weight 
percent of diatomaceous earth 
and nanoporous ZnO on HTL 
products yields

The percentage of energy recovery for bio crude and bio 
char was calculated by Eq. (4) [27, 42].

(4)Energy recovery (%) =

HHV of product
(

MJ

kg

)

HHV of MHHW biomass
(

MJ

kg

) ∗ Product yield (%)

3  Results and discussions

3.1  MHHW biomass characterization

3.1.1  Effect of operating temperature and residence time

The effect of operating temperature and residence time on 
different product streams for HTL of MHHW biomass is 

depicted in Fig. 2a and b. From Fig 2a, it can be seen that 
the formation of bio crude increases from 13.68 to 37.60% 

as the temperature increases from 260 to 360 °C. The same 
trend of increase can be noted in the formation of gaseous 
products. On the contrary, a 67.24% decrease is noted in 
the amount of bio char, indicating that the reaction pro-
ceeds in the desired direction as temperature is increased. 
The formation of the aqueous phase varies in the range of 
24.20 to 41.83 % as the temperature is varied from 260 to 
360 °C.
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The operating temperature for HTL highly depends on 
the type of feedstock used and also highly impacts the for-
mation of various HTL products [45]. In this present work, 
the MHHW biomass feedstock is a consortium of three 
major sub-portions—food, plastic, and paper—due to which 
slightly higher temperatures are required for the occurrence 
of effective fragmentation and degradation reactions. Hav-
ing said that, any further increase in temperature fails to 
maintain the hydrothermal medium (water) in subcritical 
temperatures, driving it to supercritical conditions [46]. This 
above state critically affects the HTL product yields, thus 
making the reliance on operating temperature for an efficient 
HTL process a paramount one.

From Fig. 2b, it can be seen that the bio crude formation 
increases initially with an increase in residence time up to 75 
min and then falls with a further increase to 90 min. In this 
regard, the highest yield of bio crude for HTL of MHHW 
biomass (40.82%) is obtained at a residence time of 75 
min, beyond which an increase of residence time to 90 min 
decreases the bio crude yield falls by almost 16%. Similar to 
the trend followed in the previous section, the yields of bio 
char and gaseous products fall and rise, respectively, with 
an increase in residence time from 30 to 90 min. As stated 
above, the feedstock investigated in this work is a mixture 
of various individual sub-portions; a slightly increased resi-
dence time is needed for effective HTL of all components. 
This residence time of 75 min is on the higher side when 
compared with other existing works in literature [1, 47]. 
Also, as the feedstock contains a substantial amount of plas-
tics, high operating temperatures such as 360 °C are favora-
ble for the HTL process due to their heat-resisting proper-
ties [48]. Also, such severe conditions can be moderated by 
the usage of liquefaction solvents instead of pure water as 
hydrothermal medium that can beneficially aid not only in 
the fragmentation and decomposition of MHHW feedstock 
but also in increasing the yield of bio crude [49–51]. Fur-
thermore, the bio crude yield obtained is in par and below to 
other works in literature for HTL of food waste, in spite of 
high operating conditions, is due to the presence decreased 
of lipids in MHHW feedstock and its inherent complexity 
[52–55]. Since, in this present work, an operating tempera-
ture of 360 °C and a residence time of 75 min presented with 
the highest bio crude yield, the same was used for further 
investigations.

3.2  Effect of usage of catalysts

Non-catalytic HTL of a heterogeneous feedstock may lead to 
operation at higher temperatures and the formation of non-
desired products that reduce the overall yield of the process. 
This disadvantage can be overcome by the usage of catalysts 
which can provide a beneficial pathway to attain specific 
product yields. Previous studies on catalytic co-liquefaction 

have concluded that the type of catalyst used is very feed-
stock-specific and has a high impact on the distribution and 
composition of products obtained. Zeolite-based catalysts are 
most commonly used in the thermochemical conversion of 
plastics, owing to their high thermal stability and efficient 
cracking of large hydrocarbons leading to the formation of 
branched, cyclic, and smaller ones by accelerating dehydra-
tion and deoxygenation reactions [56–60]. Metal oxide-based 
catalysts have provide efficiency and low cost for catalytic 
thermochemical conversion of various biomasses and plastic 
feedstock [61, 62]. These nanoporous metal oxides possess a 
high surface area to volume ratio and form complexes with 
the liquefaction solvents aiding in the supply of electrons [63]. 
Clay or silica-based catalysts serve as green catalysts that can 
be used for the production of high-grade bio oils and hetero-
geneous bio chars with improved adsorption capacity. In addi-
tion to being inexpensive, they also produce a positive effect 
on the boiling point distribution of the obtained bio oil, by 
increasing medium-temperature distillates, energy recovery, 
and heating value [43, 64, 65]. Owing to the heterogeneous 
nature of the feedstock, a right sample set of catalysts that 
cater to both food waste fraction and plastic waste fraction 
were thoroughly analyzed.

In the present work, four catalysts—bentonite clay, diato-
maceous earth, Zeolite ZSM-5, and nanoporous ZnO—were 
tested for their capability for the production of liqud prod-
ucts in HTL of MHHW biomass. Figure 2c depicts the effect 
of usage of various catalysts on formation of HTL products. 
It can be seen that, among the catalysts used, nano ZnO 
presented with highest bio crude yield of 49.58%, which is 
17.5% higher than the no catalyst condition. The bio crude 
yields for the analyzed catalysts followed the trend: nano 
ZnO > zeolite ZSM-5 > diatomaceous earth > bentonite 
clay. The addition of catalyst during HTL of MHHW bio-
mass resulted in a higher portion of liquid products with less 
bio char and gaseous product formation.

Also, among the naturally occurring catalysts, DE pre-
sented with a high bio crude yield of 48.52%, which is 9% 
lower than the yield obtained by nano ZnO, a chemical-
based catalyst. Naturally occurring catalysts pose multiple 
advantages over chemical ones, including safety and acces-
sibility, along with being economical and environmentally 
benign. Also, the choice of catalyst depends on the desired 
composition of obtained bio crude, which plays a crucial 
role in its further upgradation and end-usage. Due to the 
above reasons, both diatomaceous earth and nano ZnO were 
used for further investigations.

The effect of the amount of catalyst (wt. %) for both DE 
and nano ZnO in cat-HTL mode was tested under previously 
optimized reaction temperature and residence time condi-
tions, and the results are depicted in Fig. 2d and e, respec-
tively. It is clear that, in the case of both catalysts, as the 
amount of catalyst used is increased from 0 to 12.5 wt. %, 



14259Biomass Conversion and Biorefinery (2023) 13:14253–14265 

1 3

the yield of bio crude increased by 18.87% and 21.46% for 
cat-HTL by DE and nano ZnO, respectively. Also, the maxi-
mum bio crude yields of 48.52% and 49.58% were obtained 
for cat-HTL of 12.5 wt % diatomaceous earth and nano ZnO, 
respectively.

Furthermore, in cat-HTL with diatomaceous earth, usage 
of 10 wt. % catalyst could be more beneficial economically 
than 12.5 wt. %, as the bio crude yields for both condi-
tions differ by a miniscule percentage of 1.06. Whereas, in 
the case of cat-HTL with Nano ZnO, the bio crude yields 
remain more or less the same over the catalyst range of 7.5 
to 12.5 wt %. Thus, in cat HTL with nano ZnO, 7.5 wt % 
is considered more beneficial economically. Also, though 
the bio crude yield that was obtained at 10 wt % diatoma-
ceous earth could be achieved with 5 wt. % nano ZnO, it is 
also important to take note that any chemically synthesized 
catalyst, apart from being environmentally hazardous, is 
also costly, thus making the whole process economically 
less feasible.

Thus, the introduction of a catalyst increased the yield 
of bio crude and decreased gaseous products and solid 
residue yield. Also, when a lignocellulosic biomass is 
co-liquefied with plastics, the decomposition of biomass 
occurs first, and the products of this reaction positively 
impact and promote the breakdown of plastics in feed-
stock by affecting its thermal stability. Also, the quan-
tity of plastics present in the feedstock is also a signifi-
cant operating parameter for efficient HTL. Studies have 
shown that there exists a critical plastic concentration in 
the feedstock, beyond which the bio crude yield decreases, 
increasing the formation bio char yield [43, 66–68]. Also, 
the liquefaction products of paper organics reduce the 
decomposition temperature of plastics promoting its depo-
lymerization. The free radicals from decomposed paper 
portions are readily taken by the depolymerizing plastic 
portions, thus enhancing bio crude yield and contributing 
to the overall synergetic effect [69, 70].

3.3  Elemental composition analysis of bio crude 
and bio char

The elemental analysis for bio char and bio crude obtained 
from HTL of MHHW biomass at 360 °C and 75 min, in 
the presence of diatomaceous earth and nanoporous ZnO as 
catalyst is presented in Table 2.

It can be seen that the carbon content of bio char and bio 
crude obtained from HTL of MHHW biomass feedstock in 
the presence of both catalysts is higher than that obtained 
from non-cat HTL by 6–10%. The C (wt. %) was found 
to be highest at 61.23% and 56.69% for bio crude and bio 
char in the presence of nano ZnO and diatomaceous earth, 
respectively, which resulted in significantly higher HHV of 
29.56 MJ/kg and 25.42 MJ/kg. This significant increase in 
carbon content can be attributed to enhanced fragmentation 
resulting in better passage of hydrothermal medium into the 
matrix of biomass feedstock.

Similarly, the hydrogen content of bio crude and bio char 
obtained from cat-HTL with diatomaceous earth is substan-
tially higher than ones obtained from cat-HTL with nano 
ZnO and non-cat HTL, thus leading to an H/C ratio that is 
1.02 to 1.08 times higher than the others. Furthermore, the 
N content of the bio crude and bio char obtained follows 
the trend cat-HTL nano ZnO > non-cat HTL > cat-HTL 
DE. This relatively high nitrogen content in bio crude ren-
ders it less suitable for transport applications and also has 
the potential to cause fouling of catalysts causing upgra-
dation processes strenuous. Various treatment techniques, 
adsorption and extraction techniques have been intensively 
researched for removing nitrogen from petroleum in addi-
tion to catalytic treatments since they are less expensive and 
operate under benign circumstances [71–73].

The S content of all bio crudes obtained remained con-
stant throughout. The O content of bio crude and bio char 
is on the higher side for non-cat HTL than cat-HTL by 
41.22% and 26.4%, respectively. The lowest O/C ratios 

Table 2  Elemental analysis of 
bio char and bio crude obtained 
from HTL of MHHW

*O = 100 – (C + H + N + S) obtained by difference

Parameters No catalyst Diatomaceous earth Nanoporous ZnO

Bio char Bio crude Bio char Bio crude Bio char Bio crude

C 51.85 55.67 55.68 59.23 56.69 61.23
H 7.06 7.98 7.70 8.98 7.36 8.56
N 14.09 12.53 12.36 12.26 13.96 13.35
S 0.10 0.08 0.10 0.08 0.05 0.05
O* 27.80 23.74 24.16 19.45 21.94 16.81
H/C 1.63 1.71 1.66 1.82 1.56 1.68
O/C 0.41 0.32 0.32 0.25 0.29 0.21
HHV (MJ/kg) 22.49 25.64 25.17 29.02 25.42 29.56
CR (%) 11.55 45.22 11.46 56.84 10.12 58.61
ER (%) 11.79 47.43 11.41 63.41 10.33 64.42
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of 0.29 and 0.21 for bio char and bio crude, respectively, 
were obtained for cat-HTL with nano ZnO. The O/C 
ratios of the bio crude and bio char thus obtained fol-
low the trend non-cat HTL > cat-HTL DE > cat-HTL 
nano ZnO, indicating efficient deoxygenation of MHHW 
biomass feedstock by means of catalysts during the HTL 
process.

Furthermore, the carbon and energy recovery percent-
ages for bio char follow the trend non-cat HTL > cat-HTL 
DE > cat-HTL nano ZnO. Also, the carbon and energy 
recovery percentages for bio crude follow the trend cat-
HTL nano ZnO > cat-HTL DE > non-cat HTL. This indi-
cates that the usage of catalyst helps retain most of the 
carbon and energy from the MHHW biomass is retained 
in the primary product (bio crude) than the secondary 
(bio char). Thus, in particular, cat-HTL nano ZnO proves 
advantageous bio crude regime and non-cat HTL for bio 
char, respectively.

3.4  GC MS analysis

The chemical composition of bio crude analyzed by 
GC MS is presented in Fig. 3. The organic compounds 
obtained are classified into 4 major classes—hydrocar-
bons, oxygenates, esters and fatty acids, and others. From 
Fig. 3, it can be seen that cat-HTL DE yielded the high-
est fraction of hydrocarbons (HCs) of 45.57%, which is 
6.77% and 39.76% higher than the yield of HCs obtained 

from cat-HTL nano ZnO and non-cat HTL, respectively. 
Similarly, the yield of oxygenates and esters and fatty 
acids followed the trend non-cat HTL > cat-HTL nano 
ZnO > cat-HTL DE. The others fraction, consisting of N 
compounds, furfurals, phenols, etc., constitute 18.54% in 
cat-HTL DE, which is comparatively higher than non-cat 
HTL and cat-HTL nano ZnO. Thus, the usage of dia-
tomaceous earth and nano ZnO as catalysts aided not 
only in increasing the yield of desirable HCs, but also 
in reducing the yield of undesirable products like oxy-
genates and fatty acids. Furthermore, in view of results 
obtained in the previous section, though the bio crude 
obtained from cat-HTL of DE did not present with the 
highest carbon composition, it possessed the highest 
amount of hydrocarbons than cat-HTL of nano ZnO and 
non-cat conditions.

Furthermore, GCMS analysis of the accumulated aqueous 
phase revealed the presence of acids (40%), alcohols (35%), 
aldehydes and ketones (15%), and others (10%), attributing 
its use as a precursor for the production of many platform 
chemicals [74–77] and also as a hydrothermal agent by means 
of recirculation [1, 78]. Also, in many occasions, the aque-
ous phase was tested for its ability as a co-solvent in addition 
to water as a hydrothermal medium [79–81]. Thus, though 
the HTL process aims at the production of liquid bio crude, 
such auxiliary products that are formed during the process 
augment its overall effectiveness and thus contribute to the 
bio-refinery aspect of the technology.

Fig. 3  Composition of bio crude 
obtained from HTL of MHHW 
biomass
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3.5  TGA and boiling point distribution of bio crude

To ascertain the thermal stability of the bio crude, TGA 
test was performed, and the curve is plotted in Fig. 4. It 

can be seen that bio crude presented with the following 
thermal degradation patterns: a low temperature decom-
position range between 25 and 110 °C with centered 
peak at 70 °C—corresponding to loss of moisture and 
degradation of low molecular weight organic acids and 
oxygenates, a broad moderate temperature decomposi-
tion range between 120 and 360 °C with centered peak 
at 240 °C—corresponding to decomposition of medium 
to high molecular weight compounds and final decom-
position range 380 °C and 480 °C with peak at 440 °C—
corresponding to degradation of PAHs and long chained 
polymers. Beyond 500 °C, no notable change in mass 
was deducted.

Fractional distillation was performed to identify the boil-
ing point of bio crude obtained from the HTL process of 

Fig. 4  TGA of bio crude 
obtained from HTL of MHHW 
biomass

Table 3  Boiling point analysis of bio crude obtained from HTL of 
MHHW

Name Temperature range % fraction

Gasoline <190 °C 28
Diesel 190–340 °C 31.5
Vacuum oil 340–540 °C 24.7
Residue > 540 °C 15.8

Fig. 5  FTIR spectra of bio 
char obtained from cat-HTL in 
the presence of nano ZnO and 
diatomaceous earth
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MHHW biomass, and the results are presented in Table 3. 
It can be seen that the bio crude is fractionally distilled into 
four temperature ranges: < 190 °C as gasoline, 190–340 °C 
as diesel, 340–540 °C as vacuum oil, and > 540 °C as resi-
due [82]. This suggests that HTL bio crude obtained from 
MHHW biomass resulted in a greater degree of gasoline 
and diesel fraction formation, with 60% of bio crude was 
detected in < 340 °C, with 28% in gasoline, and 31.5% in 
diesel range.

3.6  Analysis of bio char

The bio char obtained from both cat-HTL of MHHW bio-
mass were evaluated for their composition by means of FTIR 
analysis, and the results are depicted in Fig. 5. For both bio 
char samples, the peaks centering around 3500–3550  cm−1 is 
mainly due to the –OH stretching of absorbed water, alcohol, 
and carboxylic acids. Also, both bio char spectra showed 
prominent bands by N–H and C–H stretching around 3400 
 cm−1 and 2950  cm−1, respectively. Also, the peaks around 
3000 to 2700  cm−1 could occur due to C–H stretching of 
aliphatic hydrocarbons. Furthermore, C=C stretching at 
1600  cm−1 and C=O stretching at 1750  cm−1 can also be 
observed in the IR spectra indicating the presence of con-
jugated acids and aldehydes. In addition to the above, the 
FTIR spectra of nano ZnO bio char and diatomaceous earth 
bio char showed pronounced peaks at 461 and 545  cm−1, 
respectively, corresponding to zinc oxide and Al-Si-O, Si-
O-Si presence in them. This detail that the bio char contains 
the leftover catalyst supports the fact that the obtained bio 
chars can serve as catalyst for further processes [16, 83–85]. 
Recyclability and reusability of catalyst play a very crucial 

role not only in the economic aspect of the process but also 
in its bio-refinery feature.

The bio char obtained from cat-HTL of MHHW biomass 
in the presence of diatomaceous earth and nanoporous ZnO 
was subjected to SEM imaging to analyze the surface char-
acteristics as depicted in Fig. 6a and b. From the images, it 
is clear that, at a 100 nm length scale, the bio char possessed 
irregularly shaped pores exhibiting wide pore size distribu-
tion. The average pore sizes for both bio chars were 130.94 
nm and 120.89 nm for cat-HTL with ZnO and cat-HTL of 
DE, respectively. These pores may be a result of moisture 
and volatile degradation reactions [86]. Also, intense aggre-
gate formation is also visible from the FESEM images. This 
may be a result of finer inorganic particles binding with each 
other at severe operating conditions forming aggregate com-
plexes [87].

4  Conclusions

Catalytic hydrothermal liquefaction of mixed household 
waste resulted in high bio crude yields with significant 
hydrocarbon fractions. The maximum bio crude yield of 
49.58% was obtained from cat HTL at a reaction tempera-
ture of 360 °C, for a residence time of 75 min, and catalyst 
loading of 12.5 wt. % nanoporous ZnO. The bio crude thus 
obtained possessed an HHV of 29.6 MJ/kg, with carbon 
and energy recovery of 58.61% and 64.42%. Solid residue 
obtained from HTL possesses an HHV of 25.42 MJ/kg and 
also contained remaining catalyst presenting economical 
and reuse benefits. Mixed household waste can be consid-
ered a valuable biomass feedstock for the production of 

Fig. 6  a and b: FESEM images of bio char obtained from cat-HTL in the presence of diatomaceous earth and nano ZnO
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high-quality bio crude and bio char by means of catalytic 
hydrothermal liquefaction, thus paving a path for the possi-
ble role of mixed household waste in bio-refinery application 
in the future.
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