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Abstract
Synthetic fiber-based polymer matrix composites face significant nonbiodegradability problems, zero water absorption, and 
burn. The present investigation attempt to fabricate the epoxy resin-based polymer matrix composite with alkali-treated 
natural tamarind fruit fiber as the content of 0 wt%, 10 wt%, 20 wt,%, and 30 wt% via resin mold technique. The effect of 
(alkali-treated) tamarind fruit fiber on environmental degradability, tensile strength, and water absorption performance of the 
composite was evaluated and compared with untreated tamarind fruit fiber-synthesized composite sample. It revealed that 
30 wt% alkali-treated tamarind fiber composite facilitates good degradable (3.9% weight loss), maximum tensile strength of 
28.3 MPa, and limited water absorption of 5.8%. The revealed results permit the prospective effect from the tamarind fruit 
waste considered as a future polymer composite filler for automobile dashboard applications.
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1  Introduction

Traditionally, synthetic carbon and glass fiber fabricate the 
polymer matrix composite. Novel natural fibers are a signifi-
cant choice for replacing synthetic fiber in polymer matrix 
composite offering low density, good environmental protec-
tion, sustainability, biodegradability, non-toxic, economical, 
good mechanical strength, and eco-friendly [1–3]. Due to this, 
it is featured in the aerospace top roof cabin application [4, 
5], automotive dashboard, panel, roof, seat frame, construc-
tion fire weatherproof applications [6], insulation panel, par-
tition wall, engineering applications [7, 8], and membrane 
applications [9]. Millions of tons of synthetic fiber-reinforced 

polymer composites are used and landfilled yearly. These 
composites are facing the problem of toxic, non-biodegrada-
ble disposal problems, not recycling, and generating the maxi-
mum CO2. In addition, using synthetic fiber composite has 
to landfill leads to significant environmental pollutants. The 
investigational report showed that the waste plastics are recy-
cled by less than 10% [10]. To overcome the above drawbacks, 
recently, polymer matrix composites have been prepared by 
using different kinds of natural fibers and waste such as kenaf 
[11], tamarind nut powder [12], tamarind fruit shell powder 
[13], jute fiber [14], and flax, coir, ramie, sisal, and bamboo 
[15]. The kenaf fiber bonded with pineapple [16], almond 
[17], and date palm [18] found enhanced characteristics of the 
composite. Turning plant waste fibers were recycled with an 
advanced polymer matrix composite and found good compat-
ibility with improved mechanical, thermal, wear, and surface 
behavior [19].

The degradation rate and mechanical strength of poly-
mer matrix composite to be evaluated with poly lactic acid 
(PLA)-treated elephant grass, sisal, and jute fiber, and its 
experimental results were compared with untreated fiber 
composite. The investigational results revealed that the 
composite contained PLA-treated fiber showed good land 
degradation properties, reduced water absorption behavior, 
and good mechanical strength compared to untreated poly-
mer composite. TGA analysis found good thermal stability 
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[20]. The degradation behavior of natural fiber-reinforced 
polypropylene composites was evaluated by the open atmos-
phere, brine solution, water, and moist soil (15 weeks). The 
exposure to bonding change of composite is analyzed by 
FTIR spectroscopy and found the degradation range. The 
observation results on the tensile strength of composite offer 
high compared to open atmosphere treated [21]. The effect 
of discarded fruit wastes on anatomical, mechanical, SEM, 
thermal, physical, and chemical characterization of poly-
mer matrix composite is studied and is found to have high 
tensile strength, good thermal stability, and low density of 
1360 MPa, 238 ℃, and 1.27 g/cc [22].

The polyester composite was developed using tamarind 
fiber via hand layup technique and compared the modified 
and unmodified composite’s mechanical, microstructural, 
and chemical resistance. The experimental results found 
that the alkali/silane-treated composite has higher mechani-
cal strength than the total composite. Surface morphology 
revealed that the surface-modified composite found good 
interfacial bonding and resisted the chemical reactions [23]. 
The kenaf fiber-reinforced polyester composite fabricated by 
hand layup route and its compatibility and hydrophobicity is 
increased by ZnONP surface treatment. The performance of 
the composite was studied via mechanical, microstructural, 
and chemical structures [24].

Biocomposites are developed by using natural fiber for 
biomedical applications. The biofunctionalization behavior 
of the composite was evaluated by treated and untreated 
natural fiber-reinforced composites [25]. Agriculture bio-
waste like the seed, leaf, coconut, bagasse, rice husk, cereal 
crop stalks, eggshell, banana peel, almond nuts, aloe vera, 
cow horn, and corn hub-reinforced polymer matrix com-
posites was investigated and addressed by many researchers 
and reported that the chemical compositions offered sig-
nificant mechanical performance and good biodegradabil-
ity properties [26]. Recently, Sanjay et al. [27] discussed 
the various characteristics and behavior of natural fiber-
reinforced polymer matrix composite and concluded that 
natural fiber composite offered suitable physical, chemical, 
and mechanical properties and was economical compared 
to synthetic materials based composites and also discussed 
cellulosic plant fiber-reinforced polymer matrix composite 
for automotive, aerospace, and construction application [28]. 
Hemnath et al. [29] collected recent literature related to the 
characterization of inorganic filler bonded polymer matrix 
hybrid composite and concluded that inorganic fiber exhib-
ited good mechanical, electrical, and thermal properties. 
Adding alumina nanofillers enhanced basalt fiber-reinforced 
epoxy laminate’s mechanical and wear properties [30]. In the 
same way, banyan aerial root fiber-bonded epoxy composite 
characterization improved by using graphene powder [31], 
Phoenix pusilla, and carbon polymer composite mechanical 
strength increased by the additions of fish bone filler [32], 

and the polyester-based jute fiber mat bonded with eggshell 
composite mechanical strength enhanced by nano clay [33].

Moreover, the characterization of natural fiber-reinforced 
polymer matrix composite has improved by treating natural 
fiber such as NaOH, stearic acid, potassium permanganate, 
and benzoyl peroxide [34]. The effect of NaOH treatment on 
the surface morphological and mechanical performance of 
natural cellulosic fiber-reinforced epoxy composite evalu-
ated and reported that NaOH-treated natural fiber in epoxy 
composite facilitates good interfacial strength between 
matrix and fiber, and it leads to a reduction in the failure of 
composite and increased mechanical strength compared to 
untreated natural fiber composite [35]. Similarly, Sumrith 
et al. [36] found improved mechanical properties on alka-
line and silane-treated fiber. The alkali-treated Sansevieria 
ehrenbergii-Camellia sinensis fiber-blended epoxy hybrid 
composite found enhanced mechanical properties [37]. The 
composite’s water absorption and mechanical characteris-
tics are improved by silica-based porous cellulose nanocrys-
tals [38]. Aziz et al. [39] synthesized and studied cellulose 
nanocrystals’ mechanical and adsorption properties with 
various cationic dyes. They found a higher adsorption rate 
with superior mechanical strength. Recent challenges of 
cellulose composite are discussed for engineering applica-
tions [40, 41]. Natural fiber-synthesized epoxy hybrid com-
posite mechanical and thermal behavior was studied, and it 
reported that 0 and 90-degree cross-oriented fiber has good 
mechanical and thermal properties compared to zero fiber 
orientations [42]. Ficus benghalensis aerial root with flax 
fiber-bonded epoxy hybrid composite developed and uti-
lized for structural applications, and its evaluation outcome 
showed higher tensile and flexural strength [43]. The study’s 
authors prepared an epoxy composite by hand layup with 5 
wt% to 25 wt% alkali-treated Zanthoxylum acanthopodium 
bark fiber and studied its mechanical and water absorption 
properties. They reported that 20 wt% alkali-treated Zanth-
oxylum acanthopodium bark fiber composite showed excel-
lent tensile strength [44]. In addition, the properties com-
posite may depend on fiber orientation [45] and be enhanced 
by the incorporation of nano silica [46] and combinations 
of palmyra palm natural fiber and tamarind seed powder 
[47]. The several research investigations discussed above 
related to natural fiber-reinforced polymer matrix compos-
ite and found the research gap on natural plant fiber has 
low mechanical strength and hydrophilic effect due to the 
amorphous. To overcome the drawback mentioned above 
and improve the environmental sustainability/landfilling bio-
degradability and mechanical strength via novel alkali solu-
tion surface modification, treated tamarind fruit fiber with 
epoxy resin composite was found to enhance mechanical 
and degradability performance compared to untreated fiber 
composites. Moreover, the chemical treatment processes 
addressed in the above literature improved the composite’s 
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biodegradability behavior and water absorption properties. 
The exposed results of the present investigation for tamarind 
fruit waste are considered future fillers in polymer compos-
ites for automobile dashboard applications.

2 � Materials and methods

2.1 � Matrix selection

The waterborne transparent epoxy resin (liquid form-LY556) 
and hardener (liquid form-HY951) were selected as the base 
matrix of the 10:1 mixing ratio.

2.2 � Collection of natural tamarind fruit fiber 
and extraction

During the fruit collection period from April to July, the 
tamarind fruits were gathered at different locations of Anan-
tapur, Andhra Pradesh state, India, and its fruit shells were 
sheared in a series of kernels, pulp, and fibers. The sheared 
fruit fibers were separated and washed with normal water. 
After the process, it was dried at an ambient temperature of 
27 ± 1 ℃ for a week and kept in an electric oven (Metalab 
digital hot air oven—Indian make) for a day at 100 ℃. It 
helps to increase fiber compatibility [12, 13].

2.3 � Alkali treatment of fiber surface

The extracted tamarind fruit fibers are carefully treated with 
10% NaOH (sodium hydroxide) solution at an ambient tem-
perature of 27 ± 1 ℃ and maintained at a 20:1 ratio. After, 
it was dried in an electric oven for a day at 100 ℃ and then 
immersed into an alkali solution for 1 h. It helps to reduce 
the hydrophilic effect and eliminate the greasy materials and 

hemicelluloses from the fiber [22]. After that, the fiber was 
cleaned with water and acetic acid was used to neutralize 
the fiber. Finally, the surface-modified fibers were processed 
with distilled water for 30 min, dried at ambient temperature 
for a week, and dried at 100 ℃ for a day via an electric oven.

2.4 � Fabrication of composite

Figure 1 shows the flow process diagram for the tamarind 
fruit fiber-reinforced epoxy resin composite fabrication. 
Manual stir consists of twin stainless steel blades blended 
the waterborne transparent liquid state epoxy resin and hard-
ener. The base mold pattern was wrapped in a steel plate 
with a 200 × 200 × 8 mm3 Teflon sheet. After laying, mul-
tiple orientations filled the chopped tamarind fruit fibers 1 
to 3 mm into the epoxy lamina. The lamina was made using 
100% epoxy resin blended with 10% hardener through the 
hand layup.The developed epoxy resin composites were 
cured by natural convection (elevated temperature) for a day 
and then kept in a hot air oven at 100 ℃ for 2 h. The final 
composite contained 0 wt%, 10 wt%, 20 wt%, and 30 wt% 
of untreated and alkali-treated tamarind fruit fibers and is 
mentioned in Table.1.

2.5 � Characterization of developed composites

•	 Environmental degradability test (soil burial)

The weight loss technique evaluated the environmen-
tal biodegradability of advanced composites with and 
without the treatment of tamarind fruit fibers. A wire-cut 
EDM machine (MW250-Indian make) shaped it to find a 
40 mm × 10 mm × 8 mm specimen in a small flower pot. 
It was filled with farmland soil (pH = 7.5 to 7.77) and a 
sprinkling water system to provide the maximum relative 

Fig. 1   Flow process diagram for 
tamarind fruit fiber-reinforced 
epoxy resin composite fabrica-
tion



22650	 Biomass Conversion and Biorefinery (2024) 14:22647–22655

1 3

humidity of 98% daily. After 3 months, the soil-buried bio-
degradable test samples are dragged from the pot, cleaned 
using water, and dried at 100 ℃ for 2 h through a hot air 
oven. Its biodegradable percentage was measured by Eq. 1.

•	 Tensile strength test

The tensile strength of developed composites was ana-
lyzed by Instron 3369-UTM machine (made in India) con-
figured with 10 KN load and 5 mm/min cross slide speed. 
The tensile fractured surface of enhanced tensile strength 
was untreated, and alkali-treated sample was examined by 
using VEGA TESCAN scanning electron microscope. Based 
on ASTM 3039 standard, three trials were tested from each 
sample and average strength was considered the mean value.

•	 Water absorption test

The standard of ASTM D570-98 studied the water 
absorption behavior of synthesized composites. A digital 
weighing scale (Essae DS-252 from Indian make) weighed 
the test sample of 40 mm × 10 mm × 8 mm as W1 and was 
suspended in water for a day. After the process, it was dried 
at 100 ℃ for 1 day and weighed again as W2. The compos-
ite’s weight percentage (gain/loss) was calculated by Eq. 2.

3 � Results and discussions

3.1 � Environmental degradability characterization

The degradable weight loss percentages of untreated tama-
rind fruit fiber-reinforced epoxy resin composites are shown 
in Fig. 2. The degradability weight loss percentages of 

(1)
Percentage of degradable

=
Initia lweight−Final soil buried weight

Final soil buried weight
× 100

(2)Water absorption percentage =
W2 −W1

W1
× 100

unreinforced epoxy resin were found gradual improvement 
in weight loss on increased burial days from 0 to 90 days. 
The maximum weight loss of 2.1% was noted by 90 bur-
ial days maintained under the farmland soil platform with 
pH = 7.5 to 7.77. Similarly, untreated 10 wt%, 20 wt%, and 
30 wt% of tamarind fruit fiber-reinforced composite showed 
a progressive improvement in degradability with increased 
burial days. It was periodically monitored, and its weight 
was measured every 15 days.

To increase the degradable compatibility of composite, 
chemical-treated natural fiber-bonded composites are used. 
Generally, natural fiber has good biodegradable behavior 
compared to synthetic fiber [27]. Compared to conventional 
epoxy resin composite, 30 wt% untreated tamarind fruit 
fiber-bonded composite degradability increased weight loss 
by 11.5% at 90 days. However, the composite’s degradabil-
ity has been related to matrix and filler materials’ physical, 
chemical, and adhesive characterization [13].

Moreover, it was observed from its experimental results 
that the degradable weight loss of epoxy resin composite 
was increased progressively with an increase in burial days.

Figure 3 represents the epoxy resin composite developed 
with different weight percentages of alkali-treated tamarind 
fruit fiber evaluated by soil burial test. It was found that 
the degradability weight loss with and without fiber was 
limited by less than 4%. The T1 composite showed an aver-
age degradable weight loss of 1% and modified the weight 
loss by adding an alkali-treated fiber composite. T2 com-
posite found that the degradable weight loss of composite 
was improved from 0 to 2.8% from 0 to 90 days, and its life 
duration was extended by 1.32 times that of untreated UT2 
composite. The prime reason for the extended life of the 
composite was treated with an alkali solution, good adhe-
sive lamina of epoxy and fiber, and its constitutions able to 
withstand the maximum life utilization. Rajesh et al. [20] 
reported that alkali-treated natural fiber composite degra-
dability was found to optimum weight loss.

Table 1   Compositions of epoxy resin and untreated/alkali-treated 
tamarind fruit fibers

Sample ID Compositions in wt%

Untreated Alkali Epoxy resin Tamarind 
fruit fiber

UT1 T1 100 0
UT2 T2 90 10
UT3 T3 80 20
UT4 T4 70 30

Fig. 2   Degradability (% of weight loss) for untreated tamarind fruit 
fiber of composite samples
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Moreover, the chemical-treated natural fiber composite 
was found to have suitable physical, mechanical, and good 
morphological properties [34]. The degradability weight 
loss of T3 and T4 composite was controlled by 1.34 and 
1.94 times of untreated UT3 and UT4 composites. However, 
the maximum weight loss of untreated tamarind fruit fiber-
bonded epoxy composite was enriched by an alkali solution 
treated process and obtained an enhanced surface quality 
with hydrophobic that facilitates good adhesive properties 
and improved degradable behavior with superior mechani-
cal strength.

3.2 � Tensile strength characterization

Figure 4 illustrates the tensile strength variations of epoxy 
resin composite made by using 0 wt%, 10 wt%, 20 wt%, 
and 30 wt% of untreated and alkali-treated tamarind fruit 
fiber composite measured by universal tensile test machine 
with 5 mm/min cross slide speed. The composite’s tensile 
strength was gradually improved with increased weight 
percentages of fiber content and noted 8.5% approximate 
improvement in alkali-treated tamarind fruit fiber on load-
ing of 0 wt% to 30 wt% as compared to the tensile strength 
of untreated tamarind fruit fiber-bonded epoxy composites.

The tensile strength of untreated UT1 composite in 
Fig. 4 at 0 wt% showed 20.1 ± 0.7 MPa and 14.9% of tensile 
strength was hiked by adding 10 wt% tamarind fruit fiber 
(untreated—UT2). It was due to the pinning effect of filler 
material in the epoxy matrix to resist the failure on maxi-
mum tensile load.

Furthermore, an increase in untreated tamarind fruit 
fiber in the epoxy matrix (UT3) found improved tensile 
strength of 25.6 ± 1.1 MPa and decreased to 5.78% on 
30 wt% of untreated fiber composite (UT4). It was due 
to the poor interfacial bonding identified from the frac-
tured SEM analysis, evidenced in Fig. 5 and high moisture 

content such as fiber-hydrophilic (natural) and matrix-
hydrophobic. However, the alkali surface modification 
treatment will overcome the above drawback and increase 
the adhesive behavior between the matrix and filler mate-
rial. Figure 4 shows significant improvement in the tensile 
strength of epoxy composite with different weight percent-
ages of alkali-treated tamarind fruit fiber. The treated fiber 
of T1 composite exhibited a 5% improvement in tensile 
strength compared to untreated UT1 composite. Similarly, 
T2, T3, and T4 composite found enhanced tensile strength 
of 24.5 ± 1.2 MPa, 27.5 ± 0.9 MPa, and 28.3 ± 1.1 MPa 
respectively. The successive improvement in tensile 
strength obtained by the natural fiber alkali treatment 
resulted in good adhesive interfacial strength. Moreover, 
many researchers reported that the tensile strength of the 

Fig. 3   Degradability (% of weight loss) for alkali-treated tamarind 
fruit fiber of composite samples

Fig. 4   Tensile strength of untreated/alkali-treated tamarind fruit fiber 
of composite samples

Fig. 5   SEM micrograph of tensile fractured UT4 composite surface 
(untreated)
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composite improved by adding chemically processed fiber 
(natural fiber) to the epoxy matrix [34, 35]. The composite 
contained 30 wt% of treated fiber, observed as a 16.9% 
improvement in tensile strength due to the good interfacial 
bond strength between the epoxy resin and fiber seen in 
Fig. 6, and its fibers showed elongated failure.

3.3 � SEM analysis

Based on the tensile strength evaluation report, the high ten-
sile strength untreated (UT4) and alkali-treated T4 compos-
ite were subjected to surface morphology studies.

Figure 5 shows the SEM micrograph of tensile fractured 
UT4 composite (untreated -30 wt% tamarind fruit fiber) with 
their fiber condition. It showed the delaminated fiber failure 
during high tensile force and found few micro-cracks. It was 
due to the pullout of untreated tamarind fruit fiber from the 
epoxy matrix.

Figure 6 illustrates the SEM image of the T4 compos-
ite tensile fracture sample containing 30 wt% of treated 
tamarind fruit fiber. It was seen from Fig. 6 that the fibers 
were well bonded in an epoxy matrix with superior adhe-
sive bond strength. The fibers are elongated gradually 
without a slide of the epoxy lamina. The elongated fiber 
surface is illustrated the above Fig. 6. It helps to increase 
the interfacial strength, which results in improved ten-
sile strength of the composite. It was evidenced in Fig. 4. 
The pullout tamarind fruit fiber (treated) showed excel-
lent stress transfer during maximum tensile load rather 
than UT1 composite.

3.4 � Water absorption characterization

Water absorption characterization of epoxy composite with 
and without tamarind fruit fiber on untreated and treated 
conditions are shown in Figs.7 and 8, respectively. The 
test was evaluated for 24 h on hydrophobic nature (ASTM 
D570-98).

Water absorption of epoxy composite contained 0 wt% 
of untreated (UT1) fiber illustrated as minor improve-
ment with an increased period. The water absorption per-
centage was improved marginally by adding untreated 
fiber to an epoxy matrix. UT2 composite found increased 
absorption percentages of 80% compared to UT1 com-
posite. The highest water absorption of 8.2% was noted 
in an epoxy composite of 30 wt% of tamarind fruit fiber 
(UT4). Similarly, the water absorption percentage of the 
UT4 composite increased by 4.5 times compared to the 
UT1 composite. The enhancement of water absorption 
was due to the content of untreated tamarind fruit fiber 
and its hydrophilic character.

Fig. 6   SEM micrograph of tensile fractured T4 composite surface 
(treated)

Fig. 7   Water absorption percentages for untreated tamarind fruit fiber 
of composite samples

Fig. 8   Water absorption percentages for alkali-treated tamarind fruit 
fiber of composite samples
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The water absorption percentage of alkali-treated fiber 
epoxy composite contained 0 wt% showed 1% on the 24-h 
test. The increased fiber loading conditions of 10 wt% (T2) 
composite were observed as a 2.8% water absorption percent-
age. Further increase in treated fiber content as 20 wt% and 
30 wt% showed 3.9% and 5.8%, respectively. The T4 com-
posite with 30 wt% of treated tamarind fruit fiber of water 
absorption percentage was limited to 41.3% compared to the 
untreated water absorption percentage of UT4 composite. The 
limitations of water absorption were proved by alkali surface 
modification. The high alkali solution concentration in tama-
rind fruit fiber enhanced the hydrophilic effect. It results in 
reduced composite degradable behavior and increased tensile 
properties. Similar findings were reported during the tamarind 
fiber-reinforced composite [23]. Surface modification was one 
reason for variations in water absorption [38].

Figure 9 illustrates the tensile (Fig. 9a) and Young’s 
modulus (Fig. 9b) comparison of conventional automobile 
material and presents the T4 composite for a dashboard 
application. The tensile strength and Young’s modulus of 
the present T4 composite are improved by 41.5% and 9.09% 
compared to conventional copolymer material.

Moreover, the tensile strength and Young’s modulus of the 
present T4 composite are 28.3 MPa and 1.9 GPa, and the val-
ues meet their conventional automotive dashboard material 
required properties [48].

4 � Conclusions

The additions of untreated enriched epoxy resin composite and 
alkali-treated tamarind fruit fiber composite effectively made 
by conventional low-cost hand layup technique are used to find 
the enhanced degradability, mechanical tensile strength, and 
water absorption percentage. The natural fiber’s major draw-
back, such as low tensile strength and hydrophilic effect, was 
over looped by the alkali-treated process. The fracture surface 
of micrograph results revealed the nature of failure and its 
delaminated surface reaction. Compared to untreated tamarind 
fruit fiber-reinforced epoxy composite (UT4), alkali-treated 
tamarind fiber’s tensile strength with 30 wt% (T4) composite 
was a 16.9% improvement. The degradability on weight loss 
percentages of T4 composite was found to be 1.94 times the 
extended life compared to UT4-untreated composite sample 
and slow decompositions may occur. The T4 composite (alkali 
treated) found a 41.3% reduction in water absorb capability 
compared to untreated UT4 composite. The revealed results 
have to permit the prospective effect gathering from the tama-
rind fruit fiber waste treated by the alkali process to satisfy 
environmental sustainability/landfilling biodegradability and 
mechanical strength. It found that the tensile strength and 
Young’s modulus of the present T4 composite are improved by 
41.5% and 9.09% compared to conventional copolymer mate-
rial. The T4 composite will be recommended for automobile 
dashboard applications.
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