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Abstract
Exopolysaccharides or extracellular polymeric substances (EPS) has become an important resource and is being increasingly 
used in the biotechnology and biopharmaceutical industries. However, its production from glycerol under thermophilic condi-
tions has not been reported. This study is aimed at isolating high-performance, EPS-producing bacteria under thermophilic 
conditions using glycerol as the substrate. Among the isolated microorganisms, Bacillus sonorensis strain NTV10 exhibited 
the highest EPS production. The optimum cultivation conditions in the enrichment medium (HS medium) were 1 g/L glyc-
erol, 45 °C, and pH 7, with the highest EPS production of 15.97 mg/mL. We confirmed that NTV10 prefers thermophilic 
conditions for the highest EPS production. However, the utilization of glycerol was low because of the presence of yeast 
extracts and peptone in the HS medium. Therefore, the ability of glycerol conversion into EPS by NTV10 was evaluated 
using minimal medium (medium E*). We found that 15 g/L glycerol exhibited the highest EPS production (8.8 mg/mL). 
The monosaccharide composition of EPS from both media was similar, containing glucose, mannose, and rhamnose in a 
relative ratio of 5.1:2.2:1. The results of the IR spectrum showed the presence of mainly carboxyl and hydroxyl groups in 
the EPS product, which was in accordance with the monosaccharide composition. These properties can be applied in various 
industries such as food processing, cosmetics, and pharmaceuticals. The experimental knowledge derived from this study 
can be used to promote the use of glycerol as a renewable substrate for bioconversion into highly valuable products, such 
as EPS production.
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1 Introduction

One of the major environmental problems is the consump-
tion of fossil fuels, especially in the transportation sector, 
which alone accounted for 24% of global carbon dioxide 
 (CO2) emissions in 2019. Approximately 75% of total  CO2 
emissions in this sector are from commercial vehicles [1]. 
Biodiesel, which is primarily used in busses and commercial 
vehicles, has emerged as a promising alternative to fossil 

fuel resources. However, the increase in biodiesel production 
can become troublesome due to the extreme surplus of waste 
glycerol, about 10% (w/w) of which is generated from the 
transesterification reaction during the biodiesel production 
process. This problem directly affects the refined glycerol 
market and causes a significant reduction in the price of 
glycerol [2, 3]. Improper disposal of crude glycerol can have 
adverse environmental effects; further, the expensive nature 
of the glycerol refining process can be challenging, espe-
cially for small and medium-sized biodiesel plants [4]. Con-
sequently, several efforts have been made to convert glycerol 
into a more valuable product, to reduce the cost of biodiesel 
production and the environmental problems associated 
with glycerol disposal [5, 6]. Moreover, most commercially 
available biotechnological products currently use sugars, 
starch, or molasses as feedstocks. In recent years, research 
has focused on the use of renewable and non-edible feed-
stocks as alternative raw materials. Therefore, glycerol can 
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be considered a potential candidate for use as a renewable 
and low-cost substrate in biological production platforms.

Exopolysaccharides or extracellular polymeric substances 
(EPS) from prokaryotes are widely used as polysaccharide 
materials in many industries, such as food, pharmaceuticals, 
petrochemicals, and cosmetics. EPS can be homo- or heter-
opolysaccharides, each having different structures and spe-
cific properties depending on the type of bacteria and sub-
strate used in its production. EPS has become an important 
resource and is being increasingly used in the biotechnology 
and biopharmaceutical industries [7]. The global market for 
hydrocolloids, which includes numerous polysaccharides, is 
still dominated by plant and algal polysaccharides, such as 
starch, galactomannans, and pectin. Considering the growth 
rate of the plants, eco-anxiety, and high extraction costs, 
EPS from microorganisms have the opportunity of becoming 
the dominant polysaccharide in the industry. Currently, some 
brands in the global market tend to use bacterial EPS such as 
xanthan, used in chromatographic media by Sigma-Aldrich 
Co. LLC.; alginate, used in Silvercel® antimicrobial alginate 
dressing by Johnson & Johnson; and dextran, used for the 
replacement of blood loss, plasma substitution, and volume 
expansion by Pharmacosmos [8].

The production of bacterial EPS normally uses different 
monosaccharides as substrates, such as glucose, fructose, 
and galactose, which is one of the reasons for their high pro-
duction cost. Therefore, investigating the use of a low-cost 
substrate, such as glycerol, for EPS production is of interest. 
Some bacterial strains have been previously reported, which 
have the potential to produce EPS from glycerol under meso-
philic conditions, such as Lactobacillus helveticus ATCC 
15807 [9], Enterobacter A47 [10], Gluconacetobacter xyli-
nus [11], and Acetobacter xylinum [12].

EPS production is commonly studied under mesophilic 
conditions (30–37 °C). However, some researchers have 
also investigated EPS production under thermophilic con-
ditions (41–65 °C) [13-15]. The advantages of thermo-
philic conditions—extraordinarily high biochemical reac-
tion rate, limit of bacterial contamination, and requirement 
of a smaller reactor volume—are attractive to investigate 
in the bio-production process [16]. These advantages are 
useful in industrial applications. However, EPS production 
from glycerol under thermophilic conditions has not been 
reported, because obtaining a remarkable isolated thermo-
phile with high efficiency of EPS production from glycerol 
remains challenging. For a mixed culture source for micro-
bial isolation in this study, a compost sample of synthetic 
food waste after 5 days of composting is considered as a 
potential resource. The composting temperature of synthetic 
food waste could reach 60 °C after 5 days of the process, 
and a high level of acetic acid accumulation occurred dur-
ing this period [17]. Ua-Arak [18] et al. reported that acetic 
acid-producing bacteria have the ability to produce a high 

molecular weight EPS. Consequently, there is a possibil-
ity that EPS-producing thermophiles exist in the compost 
samples after day 5.

This study focused on EPS production from glycerol 
using an isolated thermophile. The challenge of this research 
was to identify bacteria that naturally prefer to produce EPS 
from glycerol under thermophilic conditions. After isolation 
and identification, the optimum conditions for maximizing 
EPS production, such as temperature, initial glycerol con-
centration, and pH, were evaluated. Finally, the EPS product 
was characterized by its monosaccharide content, structure, 
and properties, to determine its functions and usefulness in 
various applications.

2  Materials and methods

2.1  Isolation of EPS‑producing bacteria using 
glycerol substrate, under thermophilic 
condition

A synthetic food waste sample, which was collected after 
5 days of composting and potentially contained EPS-pro-
ducing bacteria, was used as the source of a mixed culture. 
The Hestrin–Schramm (HS) medium [19], which contains 
20.0 g/L glucose, 5.0 g/L yeast extract, 5.0 g/L peptone, 
2.7 g/L  Na2HPO4, 1.15 g/L citric acid, and 16 g/L bacto-
agar, was modified by replacing the main carbon source from 
glucose with glycerol (20 g/L) and used for the isolation of 
EPS-producing bacteria. The culture conditions were 50 °C 
and shaking at 150 rpm. All microbial colonies with differ-
ent morphologies were isolated, purified, and inoculated in 
liquid medium to evaluate their EPS production potential. 
After 48 h of incubation, EPS was extracted from the cul-
ture medium and measured using the phenol–sulfuric acid 
method [20]. The isolated bacterium with the maximum EPS 
yield was classified by 16S rRNA gene sequence analysis, 
and the optimal conditions for this reaction were determined.

2.2  Microbial identification by 16S rRNA sequence 
technique

Total genomic DNA of the isolated bacteria was extracted 
using a DNA extraction kit (ISOIL for Beads Beating, 
Nippon Gene Co. Ltd., Toyama, Japan), from the granule 
sample. The extracted DNA was used as template for the 
amplification of full-length 16S rRNA, using a universal 
primer, with TaKaRa PCR Thermal Cycler Dice™ (TP600, 
Takara Bio Inc., Shiga, Japan). The PCR product was puri-
fied using Wizard® SV Gel and PCR Clean-Up System 
(Promega, USA). Four primer sets (9F-GAG TTT GAT CCT 
GGC TCA G, 515F-GTG CCA GCA GCC GCGGT, 785F-GGA 
TTA GAT ACC CTG GTA GTC, and 1099F-GCA ACG AGC 
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GCA ACCC) were used to read the sequences and derive 
high-accuracy sequencing results. Sequences were initially 
compared to the available databases using BLAST network 
services to determine their approximate phylogeny.

2.3  Optimization of the culture conditions 
and culture medium

Glycerol was used as the main carbon source in the HS 
medium. The suitable culture conditions—temperature 
(30–60 °C), glycerol concentration (0.5–20 g/L), and pH 
(5–8)—were investigated and optimized for EPS production.

Medium E* [21], a minimal medium, was modified and 
used to test EPS production from glycerol, by isolated EPS-
producing bacteria. Modified medium E* was composed 
of (g/L): 1.0 glycerol, 1.0 nitrogen source, 5.8  K2HPO4, 
3.7  KH2PO4, 10 mL  MgSO4 solution (100 mM), and 1 mL 
microelement solution. This microelement solution contains 
(g/L of 1N HCl): 2.78  FeSO4·7H2O, 1.98  MnCl4·H2O, 2.81 
 CoSO4·7H2O, 1.67  CaCl2·2H2O, 0.17  CuCl2·2H2O, and 
0.29  ZnSO4·7H2O. The effect of various nitrogen sources—
yeast extract, peptone, urea, ammonium phosphate dibasic 
((NH4)2HPO4), ammonium sulfate, ammonium chloride, and 
potassium nitrate—on EPS production was also investigated. 
Furthermore, glycerol concentration (1–20 g/L) was exam-
ined in the modified medium E*, to determine the optimum 
concentration, using  (NH4)2HPO4 as the nitrogen source. 
Finally, the growth kinetics, glycerol utilization, and EPS 
production by the isolated bacteria, in the modified medium 
E*, were evaluated.

2.4  Characterization of the monosaccharides 
and functional groups in the EPS products

Exopolysaccharide (EPS) products were extracted from 
the culture medium after 48 h of incubation. The sample 
was heated at 80 °C for 10 min to inactivate the hydrolysis 
enzyme and then centrifuged at 9800 × g for 20 min at 4 °C. 
EPS was precipitated out from the cell-free supernatant by 
mixing it with cold ethanol (3:1) at 4 °C for 48 h. The sam-
ple was then centrifuged at 10,000 × g for 30 min at 4 °C; the 
obtained pellet was rinsed and dried by evaporating the etha-
nol. It was then dissolved in water, dialyzed using a Thermo 
Scientific™ SnakeSkin™ Dialysis Tubing (10 K MWCO, 
22 mm) against distilled water at 4 °C for 48 h, and freeze-
dried overnight. Protein in EPS was removed by dissolving 
the powder in 10% trichloroacetic acid, then dialyzed against 
distilled water at 4 °C for 120 h, and freeze-dried again.

The monosaccharide content of the purified EPS product 
was characterized after hydrolysis with 2 M trifluoroacetic 
acid at 120 °C for 1 h, using reverse-phase high-performance 
liquid chromatography (RP-HPLC) equipped with Shodex 
Asahipak NH2P-50 4E; 250  mM  H3PO4 (aq.)/CH3CN 

(20:80 v/v) was used as the eluent. The major structural and 
functional groups were determined using Fourier transform 
infrared (FTIR) spectroscopy. The analyzed data was com-
pared with standard substances and previous reports.

2.5  Fourier transform infrared (FTIR) spectroscopic 
analysis

FTIR spectroscopy can determine the major structural and 
functional groups present in the purified EPS products. The 
purified EPS was ground and mixed with spectroscopy-grade 
potassium bromide (KBr) and pressed to form pellets using 
the KBr disk technique. FTIR spectral data were recorded 
from 64 scans in the region 4,000–400  cm−1, at room tem-
perature, using an FT/IR-610 JASCO spectrometer.

3  Results and discussion

3.1  Isolation and identification of EPS‑producing 
bacteria

After the initial isolation, 18 colonies (NTV1–NTV18) with 
different morphologies were observed, selected, and purified 
(Supplement 1). All isolated bacteria were cultured in the 
modified HS medium to test their EPS-producing potential. 
Of the 18 isolated bacteria, NTV10 was selected as the rep-
resentative of the isolated bacterium that produced the high-
est sugar content (Supplement 2). The results of 16S rRNA 
sequencing method (approximately 1500 bp) showed that 
NTV10 is closely related to Bacillus sonorensis (99.86% 
identity) (Accession number: MZ310519).

Bacillus sonorensis is a facultative anaerobic, gram-pos-
itive bacterium. Its growth temperature range is 15–55 °C 
(optimum, 30 °C). The growth can be inhibited by 5% NaCl 
and 0.001% lysozyme solutions. B. sonorensis can utilize 
citrate and propionate and hydrolyze casein and starch. Fur-
thermore, this bacterium can reduce nitrate to nitrite and 
facilitate acid fermentation without gas production using 
glucose and other carbohydrates as substrates [22]. Previ-
ously, Bacillus sonorensis MJM60135, which was isolated 
from ganjang (fermented soy sauce), was reported to pro-
duce EPS from tryptic soy broth (TSB) medium containing 
glucose, under mesophilic conditions (37 °C) [23]. In con-
trast, the EPS in this study was obtained from a modified HS 
medium containing glycerol, by B. sonorensis strain NTV10, 
under thermophilic conditions. After optimizing the culture 
conditions, EPS was extracted, purified, and freeze-dried 
(Fig. 1). The purified EPS product was further identified 
with respect to its monosaccharide content and functional 
groups.
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3.2  Optimization of culture conditions for EPS 
production in modified HS medium

First, the optimal temperature for EPS production was 
investigated in the modified HS medium, using 20 g/L 

of glycerol concentration and pH 6.27. Figure 2A shows 
that the highest EPS concentration (12.08 mg/mL) was 
obtained at 45 °C. This result confirmed that the B. sono-
rensis NTV10 strain preferred thermophilic over meso-
philic conditions, for EPS production. However, micro-
bial growth and EPS production declined gradually when 
the temperature was above 45 °C. Previously, Pediococ-
cus pentosaceus and Lactobacillus amylovorus were 
isolated from tropical fruits of Thailand and studied for 
EPS production under thermophilic condition. These two 
bacteria preferred high temperatures (45 °C) for growth 
and EPS production [13]. However, some bacteria, such 
as Pseudomonas oleovorans NRRL B-14682, preferred 
mesophilic conditions and were studied to evaluate the 
influence of temperature (20–40 °C) on EPS production. 
The results showed that a temperature of 30 °C provided 
maximum cell growth and EPS production from glycerol 
[24]. The optimum temperature of 45 °C for the NTV10 
strain offers several advantages, such as reducing the risk 
of contamination from mesophilic bacteria and increas-
ing the biochemical reaction rate of fermentation [16]. 

Fig. 1  Purified EPS product obtained from glycerol substrate, using 
Bacillus sonorensis NTV10, under thermophilic condition

Fig. 2  Effect of physical 
parameters on EPS produc-
tion from glycerol, in modified 
HS medium, by B. sonorensis 
NTV10 strain. (A) The effect of 
temperature (glycerol concen-
tration 20 g/L, pH 6.27); (B) the 
effect of initial glycerol concen-
trations (temperature 45 °C, pH 
6.27); and (C) the impact of pH 
(temperature 45 °C, glycerol 
concentration 1 g/L)
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Moreover, the reaction at 45 °C is energy-efficient as it 
reduces the cooling cost after the fermentation process.

Second, the optimal glycerol concentration was evalu-
ated at temperature 45 °C and pH 6.27 (Fig. 2B). The high-
est EPS concentration (14.17 mg/mL) was obtained with 
an initial glycerol concentration of 1 g/L. EPS production 
decreased with increasing glycerol concentrations. However, 
the EPS concentration at 0.5 g/L glycerol concentration was 
lower than that at 1 g/L. Enrichment substances such as yeast 
extract and peptone were preferred over glycerol. Therefore, 
to confirm the ability of B. sonorensis NTV10 strain to con-
vert glycerol into EPS, the modified medium E* was used 
for further experiments. Moreover, the inhibition at high ini-
tial glycerol concentrations might have occurred due to the 
high osmotic pressure conditions. Torino et al. [9] reported 
that the EPS production, by Lactobacillus helveticus ATCC 
15807, from glucose, was reduced because of the osmotic 
stress by adding 5% and 10% of glycerol concentration into 
the medium. The yield of EPS decreased 10-folds.

Finally, the optimal pH, which is an important factor for 
biological production processes, was evaluated (Fig. 2C). 
The highest EPS concentration (15.97 mg/mL) was obtained 
at an optimum pH of 7, for B. sonorensis. However, the opti-
mal pH for EPS production depends on the specific bacterial 
strain. Lactobacillus helveticus ATCC 15807 could produce 

EPS in acidic conditions (pH 4.5), two-fold higher than that 
at pH 6.5 [9], whereas Bacillus licheniformis T14 prefers 
alkaline conditions (pH 8) for EPS production [25].

3.3  Optimization of EPS production in medium E*

Medium E*, a minimal medium, was used to evaluate the 
ability of B. sonorensis strain NTV10 to convert glycerol 
into EPS, and to assess the impact of nitrogen sources on 
EPS production. Figure 3A shows that organic nitrogen 
sources (except urea) provide superior EPS production com-
pared to inorganic ones. EPS production did not vary signifi-
cantly among the inorganic nitrogen sources. This result is 
similar to that of Moghannem et al. [26], who reported that 
yeast extract was the best nitrogen source for EPS produc-
tion from sucrose, compared to peptone, urea,  (NH4)2SO4, 
 NH4Cl, and  KNO3, by Bacillus velezensis KY471306. Gor-
ret et al. [27] reported that yeast extract not only promoted 
microbial growth but also directly increased the biosynthesis 
of EPS.

To investigate the use of glycerol as the sole carbon 
source for EPS production by NTV10, ammonium phos-
phate dibasic, which was originally present in medium E*, 
was used for this experiment. We found that the highest 
EPS production (8.88 mg/mL) was observed at an initial 

Fig. 3  Comparison of EPS 
production from glycerol in 
the medium E* (A) using 
different nitrogen sources and 
(B) at varying initial glycerol 
concentrations
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glycerol concentration of 15 g/L (Fig. 3B). A higher glycerol 
concentration might cause high osmotic pressure, as previ-
ously described. NTV10 showed higher activity for glycerol 
conversion into EPS in medium E* than in modified HS 
medium, which contained yeast extract and peptone.

The dynamic relationship between microbial growth and 
EPS production in medium E* indicated that EPS produc-
tion corresponded with growth, especially during the log-
arithmic phase (Fig. 4). This phenomenon was similar to 
the growth and EPS production of Klebsiella oxytoca [28], 
Chelatococcus daeguensis TAD1 [29], and Lactobacillus 
delbrueckii subsp. bulgaricus RR [30]. Thus, the enhance-
ment of microbial growth may contribute in increasing the 
EPS production.

3.4  Characterization of the monosaccharides 
and determination of the structure of EPS 
products

The monosaccharide content in the purified EPS products 
obtained from the modified HS medium and medium E*, by 
the NTV10 strain, was identified. We found that the mono-
saccharide contents in the EPSs from both media were simi-
lar, containing glucose, mannose, and rhamnose in the ratio 
5.1:2.2:1.0. This result indicated that the use of different 
media (enrichment and minimal media) had no effect on the 
monosaccharide composition of the EPS. A previous study 

on EPS production by B. sonorensis MJM60135 strain used 
tryptic soy broth (TSB) as a substrate, which contains glu-
cose as a carbon source and tryptone and soytone as nitrogen 
sources. The results showed that only glucose and mannose 
were detected [23]. Although NTV10 and MJM60135 were 
similar species, their monosaccharide contents in the EPS 
were slightly different. Similarly, many previous studies used 
the same bacterial species and carbon sources, but the mon-
osaccharide contents in EPS varied, as shown in Table 1. 
Enterobacter A47 was investigated for EPS production using 
medium E* containing glycerol, which was similar to the 
present study, but the monosaccharide content of the EPS 
was different. Therefore, the type of medium was not the 
determining factor for the monosaccharide content in EPS. 
In addition, Bacillus licheniformis strains T14 and KS-17 
provide different monosaccharide compositions in EPS even 
when used with the same carbon source (sucrose) and nitro-
gen source (yeast extract) [25, 31]. Therefore, the monosac-
charides in EPS might depend on the microbial strains, but 
the types of carbon and nitrogen sources might not affect the 
monosaccharide content.

Figure 5 shows the results of the IR spectrum in the 
4000–400  cm−1 regions from FTIR spectroscopy that pro-
vided information on the major structural and functional 
groups of the EPS products of B. sonorensis NTV10 strain, 
in modified HS medium and medium E*. We found that 
there was no significant difference in FTIR results between 

Fig. 4  Time course of growth, 
EPS production, and glycerol 
utilization of B. sonorensis 
NTV10 strain in medium E*
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Table 1  Monosaccharide composition in EPS of various microbial strains and substrates

Microbial strain Substrate Monosaccharide composition References

Bacillus sonorensis NTV10 Glycerol (modified HS medium) Glucose, mannose, rhamnose Present study
Bacillus sonorensis NTV10 Glycerol (modified medium E*) Glucose, mannose, rhamnose Present study
Bacillus sonorensis MJM60135 Glucose (tryptic soy broth) Glucose, mannose [23]
Bacillus velezensis KY498625 Molasses (yeast extract) Glucose, galactose, mannose [26]
Enterobacter A47 Glycerol (medium E*) Fucose, galactose, glucose, glucuronic acid [10]
Bacillus licheniformis T14 Sucrose (seawater with yeast extract) Fructose, fucose, galactose, galactosamine, mannose [25]
Bacillus licheniformis KS-17 Sucrose (tryptone and yeast extract) Glucose [31]
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EPS products of both media, which corresponded to the 
results of the monosaccharide composition. The character-
istics of each band were assigned and are summarized in 
Table 2. The results of the FTIR spectrum of EPS in this 
study were similar to those assigned to the major bands of 
the EPS product from B. sonorensis MJM60135. In particu-
lar, the presence of carboxyl and hydroxyl groups is essential 
for binding divalent cations, which aid in enhancing floc-
culation [23, 32].

Together with the results of monosaccharide composition, 
the EPS product from NTV10 strain has the major monosac-
charides—glucose, mannose, and rhamnose—mostly related 
to EPS (GalactoPol) from Pseudomonas oleovorans, which 
contains galactose, glucose, mannose, and rhamnose in the 
ratio 1:0.3:0.06:0.04, respectively [33]. The properties of 
EPS include flocculating, film-forming, and emulsifying 
capacities, which can be applied to food processes, cosmet-
ics, pharmaceuticals, oil recovery, packaging, etc. [34]. The 
results of this study report the optimized culture conditions 

and efficiency of novel B. sonorensis NTV10 strain, for EPS 
production, from glycerol, under optimal thermophilic con-
ditions. This will be beneficial for industrial EPS production 
and will facilitate the efficient utilization of glycerol, which, 
in turn, will have a positive effect on the biodiesel and glyc-
erol industries.

4  Conclusions

Bacillus sonorensis strain NTV10 was isolated and selected 
as a representative of the EPS-producing bacterium, which 
can produce EPS from a glycerol-containing medium, under 
thermophilic conditions. The optimum culture conditions for 
EPS production by NTV10, using a modified HS medium, 
were initial glycerol concentration 1 g/L, temperature 45 °C, 
and pH 7. The highest EPS concentration obtained using 
the HS medium was 15.97 mg/mL. Glycerol utilization in 
the HS medium was low because of the presence of yeast 
extracts and peptones, which were preferred over glycerol. 
We found that yeast extract was the best nitrogen source for 
EPS production in minimal medium (medium E*) compared 
to other types of organic and inorganic nitrogen sources. The 
ability of glycerol conversion into EPS of NTV10 was evalu-
ated in medium E* using ammonium phosphate dibasic as a 
nitrogen source. The most suitable glycerol concentration for 
EPS production in medium E* was 15 g/L, and the highest 
EPS concentration was 8.8 mg/mL. The kinetic data for EPS 
production showed that the growth of bacteria corresponded 
to the production of EPS. The monosaccharide compositions 
of EPS from both modified HS medium and medium E* 
were similar and contained glucose, mannose, and rham-
nose. The IR spectra corresponded to the monosaccharide 
composition. The properties of EPS products obtained from 
NTV10 are applicable in many industries such as food, cos-
metics, and pharmaceuticals.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13399- 023- 04402-7.

Fig. 5  FTIR spectroscopic analysis of EPS products of Bacillus 
sonorensis NTV10 strain, from HS medium (  HS) and medium E* 
(  E) in the range 4000–400 cm.−1

Table 2  Characteristic IR 
absorptions of the EPS product 
from glycerol by B. sonorensis 
NTV10 strain

Frequency  (cm−1) Bond and functional group

3400 O–H stretching vibration of hydroxyls
2940 C–H stretching vibration of  CH2 and  CH3 groups
1700 C=O stretching vibration of carbonyls in acyl groups
1652 C=O stretching vibration and C–N (amide I)
1557 C–N stretching vibration and N–H deformation vibration (amide II)
1220 C–O–C, C–O stretching vibration between 1000 and 1200  cm−1 

corresponds to carbohydrates
1064 O–H stretching vibration of polysaccharides
863 α-configuration simultaneously present in EPS
1000–650  =C–H bending vibration of alkenes

https://doi.org/10.1007/s13399-023-04402-7
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