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Abstract
The development of innovative reinforcement and the expansion of their potential applications will be aided by research on 
unique natural fibers in polymer-based composites. In this work, new cellulosic fibers were mechanically separated from the 
stem of Ficus benjamina L. and reinforced in polyester matrix. The effect of varying fiber parameters (weight percentage and 
length) on the tensile, flexural, hardness, impact, water absorption, and thermal characteristics was investigated in this study. 
It was revealed that the composite sample with a length of 40 mm and a weight percentage of 30 wt% had the maximum 
mechanical properties. The impact, tensile, hardness, and flexural strength of composite found to be 9.31 kJ/m2, 77.71 MPa, 
88 HRRW, and 87.4 MPa respectively, which are comparative to many natural fibers investigated. However, increased fiber 
content will increase the composite water absorption which leads to failure of the composite system. As compared to the 
pure polyester resin, the heat stability temperatures of composites raised by 62.49%. The surface characteristics and fractured 
surface of the composites were examined using scanning electron microscopy and the fibers had better interfacial bonding 
with the polyester matrix with reduced failure mechanisms.

Keywords  Ficus benjamina L. stem fiber · Polymer composite · Natural fiber · Fractography · Mechanical characterization · 
Water absorption

1  Introduction

Renewable, sustainable, and eco-friendly materials 
are gaining popularity. Nature has provided several 
renewable, eco-friendly sources. Identifying new raw 
material sources is crucial for industry sustainability 
[1, 2]. Natural fibers may experience better market 
circumstances in the future due to global environmental 

concerns. Their biodegradability appeals to modern 
environmental requirements. Polymers and natural 
fibers from renewable resources are used in sustainable 
composites for lightweight structural purposes. Natural 
fiber may bring up fresh scientific perspectives for cutting-
edge uses. They have low density, resilience to corrosion, 
less tool wear, specific strength, and modulus, as well 
as being ecologically benign [3–7]. The glass, carbon, 
kevlar, nylon, etc. are frequently employed in structural 
applications [8]. But now they are replaced with natural 
fiber, since synthetic material’s life cycle, disposal causes 
the most immediate economic and societal impacts [9]. 
Although employing natural fibers has numerous benefits, 
they nevertheless fall short in terms of temperature 
resistance, robustness, and mechanical properties. 
Recent studies have concentrated on enhancing these 
characteristics to lessen drawbacks. Plant fiber strength 
depends on plant components, topography, and extraction 
method. Size, type, orientation, reinforcement quantity, 
bonding nature, physical/chemical reinforcement property, 
and manufacturing method influence polymer composite 
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attributes [10]. When polymer composites are reinforced 
with high-strength fibers, stress is transferred to the matrix 
before failure, whereas low-strength fibers cause failure, 
restricting composite performance.

Polyester is a suitable material to use for making 
composites for multi-engineering applications. It is all 
because of the polyester matrix easy availability and 
manufacturing capability [11]. Polyester matrices are very 
sticky, stiff, dimensionally stable, and heat and fire resistant 
because of their strongly cross-linked aromatic structure [11]. 
Polyester resins are less brittle and exhibit less cure shrinkage 
when fibers, particle fillers, or elastomeric components are 
added. Strong fiber-resin connections are created when 
polyester resin chemically binds with lignocellulosic 
reinforcement. Bio-fibers and polymers offer excellent system 
compatibility as a result. Natural fiber-reinforced polymer 
composites have grown in popularity due to their advantages 
in production, low cost, and great strength [12–14].

Natural fibers may be harvested from different plant 
sections. This work extracts fiber from Ficus benjamina 
L. plant stem for potential reinforcement in composite 
materials. Ficus benjamina L., a member of the moraceae 
family in the angiosperm division, is one of several fibrous 
plants that are common in tropical regions. This plant is a 
perennial, terrestrial shrub or tree that may reach a height 
of 30 m. It is extensively found in India, Taiwan, Malaysia, 
China, Indonesia, and the Philippines. This plant is native to 
Asia and Australia [15, 16]. The monoecious plant produces 
spherical inflorescences that are 1.5 cm in diameter and 

Fig. 1   Photographs of (a) F. 
benjamina L. plant; (b, c) 
Extracted stem fiber; (d) FBSF 
reinforced composite at differ-
ent weight percentage

Table 2   Properties of liquid and cured polyester resin utilized to pre-
pare composite

Liquid resin
  Appearance Yellow viscous liquid
  Density 1.25±0.10 gm/cc
  Viscosity at 25 °C 200 – 300 cP
  Volatile content (wt.%) 41 ± 1
  Specific gravity at 25 °C 1.12 ± 0.01
  Acid value (mg KOH/g) 25 ± 4
Cured resin
  Tensile strength 34.0 MPa ± 1.5 MPa
  Tensile modulus 1.0 GPa ± 0.3 GPa
  Shear strength 4.10 MPa ± 1.01 MPa
  Impact strength 0.55 J/cm2 ± 0.06 J/cm2

  Flexural strength 44.67 MPa ± 1.15 MPa
  Flexural modulus 1.63 GPa ± 0.17 GPa
  Elongation at break 1.20% ± 0.24%
  Melting point 2800c
  Rockwell hardness 62 HRRW ± 3HRRW​
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have leaves that are 6–13 cm long. The plant contains latex, 
certain allergic reactions have been associated and eating 
any plant parts may cause nausea, vomiting, and diarrhea 
[17, 18]. Therefore to increases the value of this plant, fibers 
from this plant can be used in manufacturing composite for 
industries. They have no defined fiber harvesting season 
and have always access to this fiber source. Using F. 
benjamina L. stem fiber (FBSF) composite manufacturing 
will produce economic value to agriculturist. In order to 
explore the F. benjamina L. stem fiber’s potential for 
composite reinforcement, it was reinforced in polyester 

composite specifically the impact of varying fiber length 
and weight percentage. Stem fiber from F. benjamina L. 
plant has not been studied yet in composites. The composite 
was created using hand lay-up techniques. According to 
ASTM standards, measurements of tensile, flexural, impact, 
hardness, and water absorption were made. Measurements of 
composite’s heat stability were made using a TGA analyzer. 
SEM was used to examine the processes of failure occur in 
the composites under tensile testing [19].

Various investigations carried out on new natural fibers 
in polymer composites, in order to determine the optimal 

Table 3   Listing the chemical properties of some investigated natural fiber

Fiber Cellulose (Wt.%) Hemi celluloses (Wt.%) Lignin (Wt.%) Wax (Wt.%) Moisture 
content (Wt. 
%)

Ash (Wt.%) Reference

FBSF 68.71 10.15 11.31 0.91 9.83 3.97 This work
Phoenix dactylifera L.0 

(trunk)
35 15.40 20.13 - 15.6 12.6 [46]

Borassus fruit 68.94 14.03 5.37 0.64 6.83 - [47]
Root of Ficus religiosa tree 55.58 13.86 10.13 0.72 9.33 4.86 [48]
Althaea officinalis L. 44.6 13.5 2.7 - - 2.3 [49]
Arundo donax 43.2 20.5 17.2 - - 1.9 [50]
Aerial roots of banyan tree 67.32 13.46 15.62 0.81 10.21 3.96 [51]
Phoenix dactylifera L. 

(stalk)
44 26 11.45 - 9.6 1.85 [46]

Phoenix dactylifera L. (leaf 
sheath)

43.50 24 18 - 6.8 7.73 [46]

Dracaena reflexa 70.32 11.02 11.35 0.23 5.19 6.23 [52]
Pergularia daemi 53±2 26±1 15±0.8 4 10 1.2 [53]
Coccinia grandis 62.35 13.42 15.61 0.79 5.6 4.388 [54]
Pergularia tomentosa L. 

seed fiber
43.8 16 8.6 1.88 8.5 2.74 [55]

Coccinia grandis stem 63.22 - 24.42 0.32 9.14 - [42]
Areca palm leaf stalk 57.49 ± 0.66 18.34 ± 0.24 7.26 ± 0.12 0.71 ± 0.024 9.35 ±

0.15
1.43 ± 0.01 [56]

Tridax procumbens 32 6.8 3 0.71 11.2 - [57]

Fig. 2   a, b The effect of varying 
fiber length and weight percent-
age with respect to tensile and 
Young’s modulus
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weight and critical length of the fibers, were presented in 
Table 1.

2 � Materials and methods

The water retting process was used to separate the fibers 
from the plant’s bark stem (Fig. 1a–c). After extraction 
of fiber, it is sundried for two days and kept in oven in 

60 °C to remove the moisture for composite preparation. 
The unsaturated polyester, methyl ethyl ketone peroxide 
[MEKP], and cobalt naphthenate were used as a resin, 
curing catalyst and accelerator. Resin, catalyst, and the 
hardener used for the composite were provided by M/s. 
Covai Seenu and Co., Tamil Nadu, India. The matrix 

Fig. 3   a, b, c Different fracture pattern observation in pure polyester 
matrix at 500X magnification

Fig. 4   (a, b, c) Tensile property tested 30 wt.% reinforcement of 
FBSF sample SEM fractography at various magnification
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resin was examined at Saint-Gobain Vetrotex India Ltd. 
in Thimmapur, Andhra Pradesh, India. Tests on the hard-
ened resin were carried out by the Composites Technol-
ogy Center at the Indian Institute of Technology-Madras 
in Chennai, Tamil Nadu, India. The experiments were 
conducted under ambient conditions of 21 °C and 65% 
relative humidity. The matrix resin test results are shown 
in Table 2.

In the beginning, the F. benjamina L. stem fibers were 
sliced in lengths of 10, 20, 30, 40, and 50 mm. At each 
gauge, length fibers were evenly dispersed, and prepressed 
from 10 to 50% weight percentage. The 2% MEKP (cat-
alyst), 0.5% cobalt naphthenate, and 97.5% unsaturated 
polyester resin were mixed (accelerator) in a container. 
A mild steel mold (300 mm by 125 mm by 3 mm) sur-
face was completely cleaned, and wax coating was formed 
inside the mold’s interior to serve as a releasing agent. 
This makes it possible to remove the molded components 
from the cavity quickly. Fibers and matrix material were 
then added one layer at a time. To provide a superior sur-
face finish and prevent the layers from sticking to the mold 
surface, polyethylene sheets were positioned beneath the 
bottom layer and on top of the top layer. Matrix solution 
was degassed prior to pouring. With degassed matrix solu-
tion, the compressed sheet was created, and air bubbles 
were eliminated with a grooved roller. The composite 
laminates were then compressed for three hours at a hold-
ing pressure of 35 MPa and a temperature of 60 °C. The 
closed mold was pressurized for the full 24 h. Total of 20 
flat plates (Fig. 1d) were made by altering fiber length and 
fiber weight percentage [32].

2.1 � Chemical testing

The chopped fibers were aged in 95% ethanol and oven-
dried at 700 °C. Then, Kurshner and Hoffer’s approach 
used to measure cellulose [33]. The fibers were heated 

with hydrobromic acid, as per NFT 12-008 standard to 
determine hemicellulose [34, 35]. Klason’s approach 
used to assess lignin content [36]. The dichloromethane-
extracted fibers were crushed and hydrolyzed in sulfuric 
acid. Soxhlet extraction using the Conrad technique was 
used to assess fiber wax content [37].

2.2 � Mechanical testing

A universal testing machine (S-Series H25K-S; Instron, 
UK) of 400 kN capacity was used to conduct tensile and 
three-point flexural testing. For tensile testing, 100 mm 
gauge length, and 1 mm/min cross head speed in accord-
ance with ASTM Standards D 3039M-95 were used [5, 
38]. With a 5 metric tonne capacity, gauge length of 50 
mm, and a cross head speed of 1 mm/min, flexural test 
comprising three points (two supports and one load) was 
carried out accordance to ASTM Standards D 790-10 [39]. 
A Zwick R5LB041 digital Shore hardness tester (Zwick 
Roell, Ulm, Germany) was used to evaluate the compos-
ite’s Rockwell hardness in accordance with ASTM D 
785–98 [40]. According to ASTM D256, the Unnotched 
composite impact energy were assessed using a Coesfeld-
Material impact tester (Dortmund, Germany) [41]. The 
results represent an average with standard deviations 
across the samples. At least six samples from each event 
were evaluated, and the average was given. The conditions 
for all experiments were 21 °C and 65% humidity. With 
the use of a pycnometer and toluene solution, the density 
of the composite material was determined [42].

2.3 � Fractography analysis

Using a JEOL 6390 scanning electron microscope with a 
142-eV acceleration voltage, composite failure surfaces was 
investigated. Using a vacuum sputter coater, the samples 
were coated with platinum at ten nano meter thickness to 
make the surface conductive and the samples were then 

Fig. 5   a, b The effect of varying 
fiber length and weight percent-
age with respect to flexural 
strength and flexural modulus
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examined under a microscope [43]. Tensile broken speci-
mens were examined at various magnifications.

2.4 � Thermal behavior

For diverse applications, the composites reinforced with 
varying weight percentage of fibers are very important to 

examine the thermal decomposition behavior [44]. Ther-
mogravimetric analysis was performed in EXSTAR TG/
DTA6300 RT (RT Instruments Inc. Woodland, CA, USA). 
TGA tests were conducted from room temperature to 600 °C 
with a heating rate of 10 °C min-1 in a nitrogen environment 
at a constant flow rate of 200 ml/min.

2.5 � Water uptake behavior analysis

Based on ASTM-D 570, the water absorption test was car-
ried out [30]. In this, 60-mm square specimens were sub-
merged in saltwater and distilled water for around 48 h. They 
were routinely taken out, cleaned with tissue paper, weighed, 
and then returned to the water. Samples were weighed using 
an electronic mass balancer of accuracy 0.0001 g (AUX220; 
Shimadzu, Japan), and the percentage of water absorption 
was calculated with equation 1 as follows:

3 � Results and discussion

3.1 � Chemical and physical analysis

The FBSF density was determined to be 886 kg/m3 which 
are comparable to other natural fibers [45]. Low weight com-
posites can be produced with lower density fiber. Cellulose 
is the strongest element that gives mechanical strength in 
fiber. The FBSF had a higher cellulose content of 68.71% 
which is comparable to widely used fiber listed in the 
Table 3. Additionally, the hemicelluloses, lignin content, and 
wax content were assessed as 10.15, 11.31, and 0.91%. The 
minor amount of this component observed helps the FBSF 
bind better with the polymer matrix.

3.2 � Analysis of FBSF reinforced composite 
properties

Addition of fibers in the polyester matrix makes the com-
posite ductile and exhibits higher elongation at break. 
Properties of the composite are maximized or reduced 
by varying fiber length and weight ratio for a particular 
matrix system. Low length fiber reinforced composites 
fracture easily because load transfer becomes difficult [58]. 
So, the optimization fiber length and fiber content in wt.% 
reinforcement is need. A larger fiber length consequence 
in curling and obtaining straightness in them becomes a 
challenging. The fiber length must be at least equal to the 
critical fiber length in order to reach the fiber’s fracture 

(1)

Water adsorption% =
Final weight − Initial weight

Initial weight
× 100

Fig. 6   a, b, c Flexural property tested 30 wt.% reinforcement of 
FBSF sample SEM fractography at various magnification



14274	 Biomass Conversion and Biorefinery (2023) 13:14267–14280

1 3

stress [25]. The optimal fiber weight % also influences the 
composite. When the optimal fiber weight percentage was 
used, the composites showed strong mechanical characteris-
tics. The fiber aspect ratio, matrix, fiber type, and interfacial 
bonding between the fiber and matrix all affect the optimal 
fiber weight percentage [59].

3.3 � Tensile behavior

Tensile strength and Young’s modulus of the composite rise 
for FBSF length 40 mm and weight percent up to 30%, then 
decrease for any given strain level (Fig. 2a, b). The inclu-
sion of fiber decreased the brittleness of polyester resin and 
increased the elongation value. Longer-length fiber entan-
glements lessen stress levels [25]. In comparison to other 
combinations, the tensile strength and Young’s modulus 
of the composite were greater for FBSF 30 weight percent 
(optimum weight) and 40 mm fiber length (critical length) 
[11]. At this combination, the load transmittance from the 
fiber to matrix was higher. The maximum tensile strength 
and modulus were determined to be 77.71 MPa and 1.26 
GPa at 30 mm and 40% FBSF.

The results of the fractography examination of the pure 
sample as well as the sample that represented 30 weight 
percent were given in Figs. 3 and 4, respectively. The pure 
polyester matrix fracture can be seen with more fracture 
debris (Fig. 3a, b), as well as a failure in the river flow pat-
tern (Fig. 3c). Figure 4 depicts the tensile property tested 
using 30 weight percent reinforcement of FBSF sample SEM 
fractography at various magnifications. In the ideal rein-
forcement of FBSF, the fiber pull out and a reduced amount 
of matrix failure are seen. The fiber matrix bonding was 
observed through this analysis.

3.4 � Flexural behavior

The polyester matrix is plasticized by fibers [60]. Due to their 
excellent extensibility, they can withstand stress and prevent 

catastrophic composite failure. The results for flexural strength 
and modulus of FBSF composites with various fiber lengths 
and weight percentages are shown in Fig. 5a and b. In compari-
son to plain resin, increasing FBSF (40 mm long with a weight 
percentage of 30%) enhanced flexural strength from 44.67 to 
87.40 MPa and modulus from 1.63 to 1.85 GPa, respectively. 
The modulus is increased when a transcrystalline layer devel-
ops at the fiber/matrix contact. Maximum flexural performance 
was seen in composites with 30 mm (critical fiber length) fiber 
and 40% (optimum fiber weight percent) fiber weight. Flexural 
strength and modulus were reduced when FBSF length and 
weight were increased above 50 mm and 40%. At this point, 
the uniform distribution of fiber in composites becomes chal-
lenging, which decreases the interaction of the fiber matrix 
under compressive bending stress. Flexural testing revealed a 
1.85-GPa flexural modulus and an 87.40-MPa flexural strength 
for this FBSF 40 mm with 30 wt.% reinforcement.

The results of a fractography test on the flexural property 
of an FBSF sample with 30 weight percent reinforcement 
were taken using a scanning electron microscope (SEM) and 
displayed in Fig. 6a–c. The flexural property was investi-
gated using 30 weight percent reinforcement of FBSF sam-
ple SEM fractography at various magnifications, and the 
results showed clearly that fiber pull and more fiber cracks 
were detected in the ideal reinforcement of FBSF. After con-
ducting the tests, an observable fiber/matrix interfacial gap 
was found. It is recommended that the surface be treated in 
order to get the best possible flexural result from the FBSF 
reinforced polyester composites.

3.5 � Hardness

The composite’s resistance to abrasion and scratching was 
evaluated using hardness testing [61]. Figure 7a illustrates 
how hardness value varies with respect to FBSF fiber 
weight and length. The results show a maximum hardness 
of 88 HRRW at 30% and 40 mm length. The dispersion 
of fibers in the matrix evenly prevents matrix deformation 

Fig. 7   a, b The effect of varying 
fiber length and weight percent-
age with respect to hardness and 
impact strength
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during indentation and raises the hardness. Sharp decrease 
in hardness on increase of length and weight percentage 
above critical length and weight percentage is due to the 
local phase inversion brought on by fiber aggregation.

3.6 � Impact behavior

The impact characteristics of the composites are shown in 
Fig. 7b. The strongest impact resistance was found in FBSF 
composites with a 30% fiber weight at a 40 mm length found 
to be around 9.31 J/cm2. Longer fibers disperse impact energy 
more rapidly and absorb more energy [62, 63]. The number of 
fiber ends diminishes as fiber length grows, and the number 
of defects caused by fiber ends in the composite similarly goes 
down. As a result, as the fiber length in the composite grows, 
the quantity of pull-out during failure reduces [21]. As a result, 
the impact strength of composites grows with fiber length. 
However, compared to shorter lengths where fiber pull-out is 
the active fracture process, a high percentage of fiber will be 
pulled out of the matrix owing to fiber entanglements after an 
optimal length of fiber, which will cause a little loss in impact 
strength as a result. When compared to other fiber loading and 
length combinations, fiber loading of 30 weight percent with 
a fiber length of 50 mm has the highest impact strength. But 
since it is extremely close to 30 weight percent of fiber loading 
with 40 mm of fiber length, the impact strength of 30 weight 
percent of fiber loading with 40 mm of fiber length is selected 
as the ideal level. The impact strength of the FBSF composite 
with 30%, 40-mm long fiber is 16 times greater than that of 
hardened polyester resin. Frictional losses have a role in the 
impact strength of FBSF composites when fiber is pulled out. 
A slight fall of impact strength fell seen when the percentage 
of fiber weight in FBSF composites was raised beyond 40%. 
This is because the matrix’s fibers provide a site for fractures 
to begin and grow. Additionally, linked composites stiffen the 
polymer chains due to the tight connection between the fiber 
and the polymer, which results in a rapid rupture and a reduc-
tion in impact strength.

Figure 8a–c depicts the fractography analysis of impact 
strength analysis with 30% reinforcement of FBSF sample 
SEM fractography at different magnifications. The 30 percent 
reinforcement of FBSF sample SEM fractography at various 
magnifications revealed fiber pull out, fracture debris, and 
higher matrix failure when impact characteristics were evalu-
ated. The composite’s porous matrix was observed follow-
ing testing. For FBSF-reinforced polymer matrix compos-
ites to achieve maximum impact strength, surface treatment 
is recommended. The explanation for the improvement in 
mechanical characteristics was identified by the fractography 
of an impact-tested sample. Matrix was packed into the fiber 
lumens. These events may boost the correct adhesion between 
fiber and matrix, as well as the overall property improvement.

3.7 � Thermogravimetric analysis

The thermogravimetric analysis (TGA) observations of 
FBSF composites with different weight percentages are 
shown in Fig. 9a. Three phases of heat degradation were 
visible in the TG curves of all composite samples. At 
temperatures between 50 and 245 °C, moisture loss from 

Fig. 8   a, b, c Impact strength property tested 30 wt.% reinforcement 
of FBSF sample SEM fractography at various magnification
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the composite caused the first stage of degradation [32]. 
The breakdown of cellulose and hemicellulose was linked 
to the second stage of degradation, which was observed to 
occur between 245 and 470 °C [33]. The third stage (470 
to 660 °C) saw the degradation of the composites' soft 
segments and volatilization [34]. The increase in fiber 
weight % as shown by the TGA curves had improved 
the degradation temperatures. The maximum degrada-
tion temperature of FBSF 40wt.% reinforced composite 
is around 483 °C. Additionally, compared to a 10% fiber 
composite, a 30% fiber composite has less residual mass 
(11.3%). These findings proved that FBSF composites 
are a suitable material for applications requiring high-
temperature composites.

3.8 � Water absorption analysis

For outdoor water resistance applications, it is essential to 
characterize the water absorption of the composite [64]. 
Composite water absorption leads to dimensional instabil-
ity as a result of fiber swelling. The 48-h water absorption 
behavior of the composite in distilled water and saltwater 
was tested and shown in Fig. 9b. The hydrophilic charac-
teristic of FBSF enhances the composite’s water absorp-
tion behavior. Fiber content enhances the behavior of water 
absorption. Thirty weight percentages of the FBSF rein-
forced composite exhibit less aggressive uptake behavior 
as compared to the 40 weight %. Due to greater adhesion 
between the polymer matrix and lignocellulosic, there are 
less microvoids in the composite at this specific weight per-
centage. The water absorption percentages in seawater and 
distilled water were 5.827 and 6.403, respectively. The 30 
weight % FBSF composite roughly fits the unfilled polyester 
matrix water uptake graph. The permissible limit for the 
total weight percentage of FBSF reinforced composite water 
absorption is 5%-6% in two solutions.

3.9 � Fractography of 50 wt.% FBSF reinforced 
composite

The tensile fractography of FBSF composites with maximal 
weight percent (50 percent) and fiber lengths of 30 millim-
eters is depicted in Fig. 10a–c. The fractography reveals that, 
when subjected to tensile stress, composites had a greater 
degree of fiber pull-out and debonding. Matrix wetting is 
caused by the presence of wax, hemicellulose, and pec-
tin on the surfaces of FBSF. Hence FBSF deboned from 
matrix under tensile strain. Both the fibers and the matrix 
are broken as a result of the tensile force that was applied. 
Fragmentation of the fibers and fiber pull-out were the pri-
mary mechanisms of failure in this composite material. Fiber 
pull-out generated cavities on composite failure surfaces. 
There is seen to be less gap in the composite fiber to fiber 
surface, which results in poor bonding with the matrix. In 
addition to this, they demonstrated the maximal void, which 
results in a fiber-to-matrix stress transmission that is less 
effective. Entanglements of the composite fibers occurred 
if their length was greater than 30 mm, which led to flaws. 
Therefore, composites with a fiber length of 40 mm or 50 
mm have a greater number of voids with maximum fiber 
pull-out. It was found that a fiber length of 30 mm was the 
key fiber length for FBSF composites, and it is suitable for 
both structural and semi-structural applications. Proper-
ties comparison of Ficus benjamina L. stem fiber/polyester 
composite in comparison with other natural fiber reinforced 
composite is listed in Table 4.

3.10 � Composite EDS spectroscopy analysis

The use of EDX allowed for the determination of the 
elemental composition of the FBSF-reinforced composite. 
The confirmation that carbon and oxygen are present in the 
composite binding energies can be shown in Fig. 11(b). 

Fig. 9   a TGA of varying fiber 
weight percentage and (b) water 
absorption behavior
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Oxygen accounts for 29.24 weight percent of the total 
composite material that is FBSF reinforced, while carbon is 
the other major component (70.76 wt.%). In the EDX spectra 
of cellulose isolated from plants that are not trees, traces of 
potassium, salt, sulfur, and chlorine have been found in a 
number of different investigations. This suggests that the 

Fig. 10   a, b, c 50 wt.% reinforcement of FBSF sample SEM fractog-
raphy at various magnification
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elements that led to the production of an exceptionally pure 
biofiber reinforced composite did not change when natural 
cellulosic fiber was used as reinforcement for the composite.

4 � Conclusion

Ficus benjamina L. are typically found along roadsides and in 
forests. Planned production, extraction, processing, and use 
of these fibers create opportunities for farmers and enterprises 
to generate income. A unique natural lignocellulosic stem 
fiber of Ficus benjamina L. is extracted by water retting. 
Comparable cellulose contents of this fiber (68.71%) enhance 
its mechanical strength. The critical length and optimum 
weight percentage of the fibers were discovered to be 30 mm 
and 40%, respectively. The maximum tensile strength and 
modulus were determined to be 77.71 MPa and 1.26 GPa 
at 30 mm and 40% FBSF. Flexural testing revealed a 1.85 
GPa flexural modulus and an 87.40 MPa flexural strength. 
At this specific proportion, the impact strength was found 
to be around 9.31 J/cm2. Even after 48 h of immersion in 
water, the maximum water absorbency of Ficus benjamina 
L. stem fiber reinforced composites was determined to be 
5.54 percent. TGA reveals the degradation temperature (430 
°C) and char production (13.8%) are highest for 40 wt.% 
Ficus benjamina L. composite. Ficus benjamina L. enhances 
the heat resistance of the composite. These characteristics 
demonstrated that the fibers had a high potential for usage 
as reinforcement in external structural composites. Due 
to the fiber’s high tensile strength and low extensibility, it 
has the potential to be a unique option for the creation of 
high-performance lightweight composite applications and 
other technical textile goods such as ropes, sacks, packaging 
materials, cords, yarns, and industrial textiles.
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