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Abstract
Volatile fatty acids (VFAs) such as acetic acid have a wide range of applications with high demand. Since acetic acid is well 
soluble in water, treating its wastewater presents a technical challenge. In this work, new hydrophobic deep eutectic solvents 
(DESs) were synthesized by using methyltrioctylammonium chloride (TOMAC) as hydrogen bond acceptor (HBA) and 
acetic acid as hydrogen bond donor (HBD). The properties of DESs were characterized by DSC, TG, and FT-IR. As HBA, 
TOMAC was used for in situ generation of DES to extract acetic acid from aqueous solution. The extraction efficiency reached 
65.28% when TOMAC/acetic acid was 7:3 (molar ratio), which is better than that of the traditional acetic acid extractants, 
such as tributyl phosphate (60.46%). When metal ions such as  Ca2+,  Mg2+, and  Fe3+ coexist in solution, the salt precipita-
tion effect not only prevents the emulsification phenomenon but also improves the acetic acid extraction effect. For volatile 
fatty acids such as propionic acid, butyric acid, and valeric acid, the extraction efficiency of TOMAC was good, reaching 
84.96%, 92.04%, and 95.81%, respectively. The method of using TOMAC to extract acetic acid from aqueous solutions by 
forming DES in situ provides a new way for the treatment of VFAs wastewater.
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1 Introduction

Volatile fatty acids (VFAs) are organic acids with carbon 
chains of 1 to 6 carbon atoms, including acetic acid, pro-
pionic acid, n-butyric acid, isobutyric acid, pentanoic acid, 
and isovaleric acid, which common feature is that they are 
highly volatile. As a type of volatile fatty acid, acetic acid 
has a wide range of applications with high demand [1]. Since 
acetic acid is well soluble in water, treating its wastewater 
presents a technical challenge.

Deep eutectic solvents (DESs) are a new class of sol-
vent formed by the interaction of two (or more) substances 
through hydrogen bonding [2, 3]. It is low toxic, environ-
mentally friendly, and has a lower melting point than any 
single component [4]. Van Osch synthesized new deep 
eutectic solvents by using decanoic acid and various qua-
ternary ammonium salts, which introduced the concept 
of hydrophobic deep eutectic solvents and opened a new 
technological platform for DES in the field of extraction 
[5]. Currently, the majority of studies on the use of DES 
for extraction and separation generally state that DES was 
synthesized before being used for extraction, which includes 
applications for the extraction of small molecules such as 
phenols [6, 7], organic acids [8, 9], and also metal ions [10, 
11].

According to the extraction target in the mixture, the 
HBA or HBD is selected as the extractant and added to 
the mixture to generate DES in situ with the extraction 
target material [12]. The generated DES has a low mutual 
solubility with the original solvent and will not decom-
pose in it, which is easy to be separated. Lei proposed a 
method for in situ generation of DES using tetrabutylam-
monium chloride as HBA with α-tocopherol in vegetable 
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oil deodorized fractions, which obtained the product with 
99.6% α-tocopherol [13]. Pang used in situ generation of 
DES to extract phenol from the oil phase, using choline chlo-
ride and phenol to form DES that was oleophobic and could 
be separated from the oil phase [14]. Zhang proposed that 
the choline derivative salt [N1, 1, nC2OH] Cl (n = 1, 4, 6, 8) 
was added to extract the phenolic compounds from the oil 
by forming DESs with various phenolic compounds such 
as 2-chlorophenol and 2-bromophenol [15]. Shishov mixed 
menthol with milk and DESs was formed with menthol 
and non-steroidal anti-inflammatory drugs (NSAIDs) such 
as flurbiprofen, diclofenac, and ketoprofen in milk, which 
resulted in the removal of antibiotics from milk [16]. Shi 
proposed a method to extract fluorescent whitening agent 
52 (FWA 52) from aqueous solution by in situ generation of 
DES with hydroxybenzoate [17]. Li used tetrabutylammo-
nium chloride to form DES with linalool in citrus essential 
oil to complete the extraction, and 98.7% purity of linalool 
could be obtained by a two-step inverse extraction method 
[18]. Liu added N, N-dibutylbutyramide to the aqueous 
solution to form a hydrophobic DES with lactic acid, which 
achieved the separation of lactic acid from water [19]. The 
above study provides guidance for in situ generation of DES 
to achieve extractive separation. The in situ generation of 
DES is a straightforward extraction technique with a high 
utilization rate. However, compared with synthesizing DES 
first and then using it for extraction, the requirements for 
hydrogen bond donors or acceptors that make up the DES 
are higher; i.e., they must meet the requirements of forming 
DES with the target while maintaining low mutual solubility 
with the original solvent for easy separation, which limits 
the choice of extractant [12].

The extractants traditionally used to extract VFAs include 
tributyl phosphate and trioctylamine, which are serious 
threats to human health and the environment. In this study, 
we used methyltrioctylammonium chloride (TOMAC) as 
the HBA to extract acetic acid from aqueous solutions by 
forming DES in situ. In order to verify that TOMAC and 
acetic acid can form deep eutectic solvents and to understand 
their related physicochemical properties, we synthesized a 
variety of DESs with TOMAC and acetic acid in different 
molar ratios and characterized their properties, such as melt-
ing point, viscosity, and thermogravimetry. Then, we used 
this method to examine the effect of TOMAC on the extrac-
tion of other volatile fatty acids, such as propionic acid, 
butyric acid, and valeric acid. In addition, the experiments 
also investigated the effects of the type and concentration 
of metal ions in the solution on the extraction of acetic acid 
by TOMAC.

2  Materials and methods

2.1  Materials

Acetic acid (> 99.5%) and valeric acid (> 99%) were pur-
chased from Shanghai Titan Technology Co., Ltd. Methyl-
trioctylammonium chloride (> 97%, CAS NO.5137–55-3), 
geraniol (> 97%), and 2-heptanol (> 98%) were purchased 
from Shanghai Dibo Chemical Technology Co., Ltd. Cal-
cium acetate (> 99%) was purchased from Shanghai Maclean 
Biochemical Technology Co., Ltd. Propionic acid (> 99.5%) 
purchased from Shanghai Lingfeng Chemical Reagent Co., 
Ltd. Butyric acid (> 99%) was purchased from Shanghai 
Adamas Reagent Co., Ltd. Tributyl phosphate (> 99%) was 
purchased from Shanghai Boer Chemical Reagent Co., Ltd. 
Sodium hydroxide (> 96%) was purchased from Shanghai 
Aladdin Biochemical Technology Co., Ltd.

2.2  Synthesis of DES

Deep eutectic solvents were synthesized by using TOMAC 
as HBA and acetic acid as HBD, and the two substances 
were used in different molar ratios. Preparation of DES was 
carried out in an oil bath at 80 °C with magnetic stirring for 
30 min to obtain a homogeneous clarified liquid. The DESs 
were left to stand at room temperature for 48 h to observe 
its stability.

2.3  Characterization methods

The melting point of DES was determined by differential 
scanning calorimeter (DSC214, NETZSCH, Germany) 
under nitrogen atmosphere (gas flow rate 40 mL/min) with a 
temperature range of − 40 ~ 60 ℃ and a temperature increase 
rate of 5 ℃/min. The viscosity-temperature relationship of 
DES was analyzed by rotational rheometer (Kinexus Lab + , 
ETZSCH, Germany) at room temperature to 90 ℃ and a 
shear rate of 2  s−1. The pyrolysis temperature range of DES 
was determined by thermogravimetric analyzer (TGDSC 3, 
METTLER, Switzerland), and the sample was warmed up 
to 350 °C under nitrogen atmosphere (gas flow rate 30 mL/
min) at a rate of 6 °C/min. The water content of the extracted 
phase was determined by Karl Fischer moisture meter 
(AKF-1 plus, Hegong, China) with methanol as the solvent. 
Infrared spectra of DES were analyzed by Fourier trans-
form infrared spectra (FT-IR) (Nicolet iS5, Thermo Scien-
tific, USA) with the test selected in ATR mode and the KBr 
press method in the wavelength range of 600–4000  cm−1. 
The concentration of metal ions in the extracted solution 
was measured by inductively coupled plasma-atomic emis-
sion spectrometer (725 ICP-OES, Agilent, USA). A gas 
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chromatograph (7890A GC-5975C MS, Agilent, USA) was 
used to analyze the purity of acetic acid obtained by distil-
lation recovery.

2.4  Extraction experiment

An amount of methyltrioctylammonium chloride was mixed 
with 1 mol/L of acetic acid solution in the mol ratio of 
(8:2, 7:3, 6:4, 5:5, 4:6, 3:7, and 2:8.) at 25 ℃ and stirred 
for 15 min. After the extractant was fully mixed with the 
extracted solution, the mixture was left to stratify in a part-
ing funnel for 2 h. The acetic acid concentrations of the 
obtained organic and aqueous phases were determined by 
titration with sodium hydroxide solution. The extraction 
rates were calculated according to Eq. (1).

where CVFA,0 and CVFA,1 represent the initial acetic acid con-
centration and the post-extraction acetic acid concentration, 
respectively, mol/L.

We also evaluated the extraction ability of TOMAC for 
other VFAs in water, including propionic acid, butyric acid, 
and valeric acid. In the experiments, volatile fatty acids were 
configured as 1 mol/L. The molar ratio of extractant to vola-
tile fatty acids was added as 3:7. And the experiments were 
carried out at ambient temperature and pressure.

3  Results and discussion

3.1  DES characterization

3.1.1  Melting point

The synthetic DES is a clear, transparent and light, yellow 
liquid at room temperature. The melting point of DESs is 
shown in Table 1. The low melting point is the main charac-
teristic embodiment of DES. For deep eutectic solvents syn-
thesized in the experiment, the DSC temperature rise curves 
of deep eutectic solvents formed with different molar ratios 

(1)E =
C
VFA,0−CVFA,1

C
VFA,0

× 100

of TOMAC and acetic acid are obtained by using differential 
scanning calorimetry, as shown in Fig. 1a. It can be seen 
that among the experimentally synthesized DESs, the lowest 
melting point is at the molar ratio of TOMAC to acetic acid 
of 1:1, when the melting point is − 7.4 °C. The formation of 
a good hydrogen bonding network between the hydrogen 
bond donor and the hydrogen bond acceptor is responsible 
for the decrease in the melting point of DES [20, 21].

3.1.2  Viscosity

The viscosity-temperature curves of DES-2, DES-3, and 
DES-4 are measured, and the results are shown in Fig. 1b. 
It can be seen that the viscosity of the three DESs is very 
high. The viscosity becomes significantly lower from DES-2 
to DES-3 to DES-4. The higher the content of TOMAC, the 
higher the viscosity of the DES, which is also in accord-
ance with the fluidity law observed after DES synthesis. 
The viscosity of three DESs could be reduced to below 
100 mPa.s by increasing the temperature appropriately. The 
viscosity-temperature equation of the three DESs is shown 
in Table 2. The temperature range for which the equation 
applies is 30 ~ 90°.

3.1.3  Infrared spectral analysis

The infrared spectra of acetic acid, TOMAC, and DES-3 
are shown in Fig. 1c. In the infrared spectrogram of acetic 
acid, the broad and scattered absorption peak at 3060  cm−1 
is the stretching vibration peak of -OH [22, 23]. The strong 
characteristic absorption peak at 1730  cm−1 is the stretching 
vibration of C = O. The absorption peak at 1295  cm−1 cor-
responds to the stretching vibration of -CH3. The results of 
the infrared spectrum of TOMAC are also consistent with 
previous reports in the literature [24]. The broad peak at 
3385  cm−1 is most likely the telescopic vibration of the trace 
adsorption water O–H in TOMAC [25]. The signal peaks at 
2930  cm−1 as well as 1465  cm−1 are C-H telescopic vibra-
tions. Compared to TOMAC, the DES-3 has an absorption 
peak at 3340  cm−1, which is the -OH stretching vibration 
peak. It is a broad and scattered peak. The -OH stretching 
vibration peak of DES-3 has shifted from 3060 (acetic acid) 
to 3340  cm−1, i.e., a blue shift, which is caused by the hydro-
gen bonding between TOMAC and acetic acid [21, 26].

3.1.4  Thermogravimetric analysis

The thermogravimetric curve of DES-3 is shown in Fig. 1d. 
As shown by the results of DES-3 thermogravimetric analy-
sis, there were two significant weight losses in the warming 
process. The weight loss of the first segment sample was 
12.8%, and the weight loss of the second segment sample 
was 87.2%. We calculated the molar amount of material lost 

Table 1  Composition and melting point of DESs

HBA HBD NO Molar ratio 
(HBA/HBD)

Melting 
point (℃)

TOMAC Acetic acid DES-1 4:1 0.6
DES-2 3:2 7.9
DES-3 1:1  − 7.4
DES-4 2:3 6.1
DES-5 1:4 12.3
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in the first segment using the relative molecular mass of 
acetic acid and the molar amount of material lost in the sec-
ond segment using the relative molecular mass of TOMAC. 
It turned out that the molar ratio of the two substances 
was close to 1:1. According to the ratio of DES-3 ratio of 
TOMAC and acetic acid, combined with the theoretical boil-
ing points of the two substances, it can be determined that 
the first segment is the mass loss of acetic acid and the sec-
ond segment is the mass loss of TOMAC.

The variation pattern of the thermogravimetric curve of DES 
in this experiment is consistent with the thermal stability pat-
tern of DES reported in related studies [27, 28]. At the begin-
ning of heating, the hydrogen bonds in DES would prevent 
the molecules from escaping. As the temperature increases, the 
hydrogen bonds in DES are gradually broken. Then, the acetic 
acid in DES began to decompose and volatilize. However, due 
to the presence of hydrogen bonds, the thermal decomposition 
of acetic acid in DES is completed at 127 ℃, which is higher 
than its boiling point 118.2 ℃ [29]. As the warming continues, 
the TOMAC, which has a higher boiling point, also began to 
decompose. It can be seen that the strength of hydrogen bond-
ing plays a decisive role in the thermal stability of DES.

The above characterization results showed that DES, a 
hydrophobic liquid, can be formed between TOMAC and ace-
tic acid. Therefore, TOMAC can be applied to extracting acetic 
acid from aqueous solution by generating DES in situ [30].
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Fig. 1  A DSC curve of DESs. b Viscosity-temperature curves of DES-2, DES-3, and DES-4. c FT-IR spectra of acetic acid, TOMAC, and DES-
3. d Thermogravimetric curve of DES-3

Table 2  Viscosity-temperature equation of DES-2 and DES-3-DES-4

DES No Viscosity-temperature equation R2

DES-2 lnμ = −0.0574T + 1.6238 0.99
DES-3 lnμ = −0.0513T + 0.7286 0.99
DES-4 lnμ = −0.0494T − 0.0130 0.99
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3.2  Extraction effect of TOMAC on acetic acid

3.2.1  Effect of TOMAC dosage

The DES was generated from TOMAC and acetic acid in the 
solution, which forms oil phase and water phase to achieve 
in situ extraction. Figure 2a shows the extraction efficiency 
of TOMAC for acetic acid at different molar ratios. From 
the extraction experimental results, it can be seen that the 
amount of TOMAC addition is positively correlated with 
acetic acid extraction. The extraction efficiency reached 
76.81% in the 2:8 experimental group, which organic phase 
to aqueous phase ratio is about 1.5:1. In addition, the 3:7 
experimental group, which organic phase to aqueous phase 
ratio is about 1:1, was conducted to determine the water con-
tent of the extracted organic phase by Karl Fischer method. 
The result showed that the water content of the extracted 
organic phase was 17.7%.

In order to evaluate the in  situ generation of DES to 
extract acetic acid capacity, especially compared with tra-
ditional extractants, we extracted acetic acid with geraniol 
[31], 2-heptanol [32], and tributyl phosphate [33], respec-
tively. The experimental results are shown in Fig. 2b. The 
experiments were performed at 25 ℃, and the volume ratio 
of extractant to aqueous is 1. According to the comparison 
results, the extraction efficiency of acetic acid by the acetic 
acid extractants geraniol, 2-heptanol, and tributyl phosphate 
reported in the literature was inferior to that of TOMAC. 
Using the principle of DES formation, the hydrogen bond-
ing ability combined with the ionic properties of the salt [6] 
resulted in a more efficient for the extraction of acetic acid by 
using TOMAC to extract acetic acid from aqueous solutions.

3.2.2  Effect of metal ion concentration

The effect of the presence of metal ions in solution on 
the ability of TOMAC to extract acetic acid was investi-
gated. 1 mol/L acetic acid solution containing 0.05 mol/L, 
0.10 mol/L, and 0.15 mol/L calcium acetate was extracted 
with TOMAC, respectively. The experimental results are 
shown in Fig. 3a. It can be seen that the concentration of 
metal ions in the solution becomes larger, which improves 
the extraction ability of TOMAC for acetic acid to some 
extent. In addition, we observed in the experiments of 
extracting acetic acid aqueous solution that there would 
be different degrees of emulsification in the aqueous phase 
as well as an emulsified layer between water and oil in the 
experimental group of TOMAC at the early stage after the 
extraction mixing (Fig. 4a). In the extraction experiments 
after the addition of metal ions, we also observed that the 
emulsification phenomenon completely disappeared and the 
oil–water stratification was clear (Fig. 4b).

TOMAC is a highly hydrophobic quaternary ammonium 
cationic surfactant which forms an emulsion when mixed 
with an aqueous solution of acetic acid. The ionization of 
calcium acetate produces  Ca2+ and  AC−, which produce 
hydration due to the electrostatic effect. The water molecules 
in the hydration layer outside the emulsion are preferentially 
hydrated with the metal ions. The original emulsion surface 
hydration layer becomes weak or even disappears. The emul-
sification phenomenon disappears consequently. At the same 
time, the free water molecules in the solution are reduced. 
Acetic acid, which is a weak electrolyte, is released from the 
hydrated shell layer and facilitates its entry into the organic 
phase. That is the salt effect [34]. As such, the extraction 
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efficiency of acetic acid by TOMAC gradually increases 
when the ionic strength in the solution is increasing.

TOMAC has been confirmed to have the ability to 
extract some metal ions [35, 36]. In order to investi-
gate the extraction effect of TOMAC on the co-exist-
ence of acetic acid and metal ions, TOMAC was used 
to extract an actual steel slag acid leaching solution. 
The composition of the acid leaching solution is a cal-
cium ion concentration of 3309.3 mg/L, a magnesium 
ion concentration of 202.9 mg/L, an iron ion concentra-
tion of 575.8 mg/L, and an acetic acid concentration of 
1.17 mol/L. The dosage of TOMAC to the acetic acid in 
solution is 7:3 (molar ratio). It can be seen in that the 
extraction effect of TOMAC on acetic acid is not affected 

by calcium, magnesium, and iron ions. TOMAC has a 
weak extraction effect on  Fe3+, but no extraction effect 
on  Ca2+ and  Mg2+ (Fig. 3b). The ability to extract  Fe3+ 
of TOMAC has also been reported in the literature [37, 
38].  Ca2+ and  Mg2+ belong to strong electrolytes, which 
are ionized in solution. The  R4N+ group of TOMAC is 
repulsive to  Ca2+ and  Mg2+, so it cannot be extracted by 
electrostatic attraction [39], while  Fe3+ is still not fully 
ionized in a weak acid environment. Therefore, TOMAC 
shows a selective extraction for  Fe3+.

3.2.3  Recovery of acetic acid

The upper organic phase obtained from the extraction was 
distilled at 170 ℃ atmospheric pressure. We characterized 
the distillation product by GC–MS, and its composition is 
shown in Table 3. It can be seen that the purity of acetic acid 
was 88.33%. By generating DES in situ, acetic acid can be 
recovered by distillation and can be recycled.

3.3  Effect of TOMAC on the extraction of VFAs

The concentration of acetic acid, propionic acid, butyric 
acid, and valeric acid to be extracted was 1 mol/L, and the 
dosage of TOMAC fixed to the amount of acid in water 
was 7:3 (molar ratio). The results of extraction of ace-
tic acid, propionic acid, butyric acid, and valeric acid are 
shown in Fig. 5. The ability of TOMAC to extract volatile 
fatty acids gradually increases as the hydrocarbon chain 
of volatile fatty acids grows. And it can be seen that the 
extraction efficiency for both butyric and valeric acids 
has exceeded 90%. This can be explained by introducing 
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solubility parameters [40]. The solubility parameters of 
TOMAC, water, and VFAs are shown in Table 4, which is 
calculated by the Van Krevelen group contribution method 
[41]. It can be seen that the difference of dispersion (δd) 
between VFAs and water is small and the biggest differ-
ences exist mainly in the hydrogen bonding (δh). As the 
alkane chain grows, the dispersion of VFAs gradually 
increases, and the polarity (δp) gradually decreases, which 
also gradually approaches the dispersion and polarity of 
TMOAC. The difference between dispersion and polarity 
with water increases, which means that the solubility of 
VFAs in water gradually becomes worse, and thus easy to 
be extracted.

4  Conclusion

In this study, a variety of new DESs were synthesized by 
TOMAC and acetic acid. In the extraction experiments, the 
extraction efficiency reached 76.81% when TOMAC/acetic 
acid = 8:2 (molar ratio). In the phase ratio of 1:1, TOMAC 
showed a better extraction effect on acetic acid. The pres-
ence of metal ions  Ca2+,  Mg2+, and  Fe3+ in the solution 
did not affect the extraction of acetic acid by TOMAC. 
TOMAC basically has no extraction effect on  Ca2+ and 
 Mg2+, while it has an extraction effect on  Fe3+. The extrac-
tion efficiency of  Fe3+ by TOMAC was about 33% when 
extracting acetic acid. For volatile fatty acids such as pro-
pionic acid, butyric acid, and valeric acid, the longer the 
alkane chain, the better the extraction effect of TOMAC 
on them. The extraction effect on valeric acid was up to 
95.81% for valeric acid. TOMAC shows excellent extrac-
tion performance for VFAs by in situ formation of DESs, 
which provides a new direction for the separation of VFAs 
from aqueous solutions. This method can be applicable for 
treating VFAs wastewater, even if the wastewater contains 
metal ions.
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Table 3  Composition of recovered acetic acid by GC–MS

Substance Content (%)

2,5-Furandione 0.23
Octanal 4.35
Cyclooctane 0.55
Methyl nonanoate 2.66
Acetic acid 88.33
1-Undecanethiol 0.12
Pentafluoropropionic acid 0.12
Cyclopropane 0.49
2-Methyldodecenoic acid 0.17
8-Pentadecanone 0.35
Caprylic acid 0.15
1-Methylcyclohexene 0.27
Bis(2-ethylhexyl) phthalate 0.1
Heptanal 0.11
Butane 0.38
n-Hexadecanoic acid 0.13
α-(4-Isobutylphenyl)propanal oxime 0.17
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Table 4  Solubility parameters of water, VFAs, and TOMAC

Dispersion (δd) 
 (MPa1/2)

Polarity (δp) 
 (MPa1/2)

Hydrogen 
bonding(δh) 
 (MPa1/2)

Water 15.5 16 42.3
Acetic acid 14.5 8 13.5
Propionic acid 16.3 5.6 11.6
Butyric acid 16.2 4.6 10.4
Valeric acid 16.2 3.9 9.6
TOMAC 17.1 2.1 3.4
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