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Abstract
Biological conversion of methane into poly-β-hydroxybutyrate (PHB) presents a promising strategy for addressing green-
house gas emissions and plastic pollution. This study presents a novel approach for the production of PHB from methane 
using Methylosinus trichosporium 11131. The integrated two-phase process involves the generation of high-density metha-
notrophic biomass in phase I, followed by the enrichment of PHB in phase II using nutritional modulation. Under optimal 
growth conditions, a biomass titer of 3.82 ± 0.01 g/L was achieved, and subsequent nitrate starvation led to the accumulation 
of PHB (41.24 ± 0.83 % w/w). Further optimization by exposing the cells to excess methane concentration (5% v/v) and 
nitrate starvation increased the PHB content to 52.42 ±1.03% w/w. The scalability of the process was demonstrated in a 5-L 
stirred tank bioreactor, yielding a PHB concentration of 2.02 ± 0.04 g/L. The suitability of the extracted PHB as a degra-
dable food packaging material was evaluated by a comprehensive analysis of its thermal, structural, mechanical, physical, 
and molecular properties. Our results suggest that the PHB obtained from Methylosinus trichosporium 11131 can serve as 
a promising alternative to petroleum-based plastics due to its superior properties and biodegradability. Overall, this study 
presents an innovative biotechnological approach for the conversion of methane into a valuable biopolymer and highlights 
its potential as a sustainable alternative to conventional plastics.
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1  Introduction

Amongst all the greenhouse gases (GHG), methane (CH4) 
is the second most detrimental, with the major sources being 
fossil fuels, power generation, agricultural waste, transporta-
tion, construction, land use and forestry, and anthropogenic 
activities [1]. Global methane emissions have increased by 
162% to 570 million tons per year (Mt), with concentration 
rising to 1892.2 parts per billion (ppb). Plastic pollution, on 
the other hand, has become a critical environmental concern 
in the twenty-first century, currently with a global annual 
production of around 450 million tons [2]. Approximately, 
40% of all consumer-used plastic is single-use and dumped 
each year whereas only 9–10% can be recycled. Globally, 
22–43% of all plastic waste is disposed in landfills, while 
50–80% of all litter into the ocean, posing a threat to the ter-
restrial and aqua-systems and, as a result, impacting human 
health [3].

To that end, the biological transformation of methane 
into value-added products can be a potential alternative over 
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conventional chemical conversion which requires extreme 
operating conditions [4]. Methanotrophs, a diverse group of 
Gram-negative bacteria, not only utilize methane for growth, 
but also produce poly-β-hydroxybutyrate, methanol, ectoine, 
single-cell protein, lipids, and extracellular polysaccharides 
[5]. Ray et al. (2023) highlighted the potential of metha-
notrophs to produce PHB and simultaneously address two 
critical global issues (i) mitigation of methane and (ii) syn-
thesis of biodegradable biopolymer which can be a potential 
substitute to traditional plastics. PHB is an isotactic semi-
crystalline biopolymer with water-resistant, high optical 
purity, piezoelectric capabilities, high tensile strength, high 
elasticity, heat tolerance, ease to mold, and can be blended 
with various co-polymers [6, 7]. Synthesis of PHB using 
methanotrophs occurs in two sequential steps: step 1, gen-
eration of high-density methanotrophic biomass using meth-
ane as carbon source, and step 2, enrichment of intracellular 
PHB. Type II methanotrophs are reported to accumulate a 
higher amount of intracellular PHB (up to 67%, w/w theo-
retically) on nutrient imbalance by effective utilization of 
the serine cycle [8, 9].

However, current technology to produce PHB from 
methane, using methanotrophs as a cell factory suffers dis-
advantages such as low mass transfer and low conversion 
efficiency, which ultimately result in lower biomass titer, 
PHB content, and PHB yield [10]. Recent studies reported 
improved PHB accumulation under modulation of macro-
nutrients, e.g., nitrate and phosphate [8, 11–13] and micro-
nutrients, e.g., copper (Cu), iron (Fe), magnesium (Mg), and 
potassium (K) [11, 13–18] present in the culture medium. 
Additionally, few simulation studies reported enhanced 
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production 
from methane using bubble column bioreactors [19, 20]. 
These studies provide important insights into the sustain-
able production of PHAs and offer simultaneous solution to 
address the problem of plastic pollution.

Methyosinus trichosporium 11131, a methanotroph, was 
used in the current study to develop a two-phase integrated 
process for the synthesis of PHB using methane as the only 
carbon source. In the first step, the production of high metha-
notrophic cell biomass (3.82 ± 0.01 g/L) was achieved under 
optimal media nutritional and process conditions. In the sec-
ond stage, overproduction of PHB was attempted through the 
nutritional starvation of various macro- and microelements 
either individually or in combination, where maximum PHB 
content of 41.24 ±0.83% (w/w) was achieved under nitrate 
starvation. An overproduction of PHB at 52.42 ± 1.03% 
(w/w) was achieved by using this nutrient-depleted condition 
(nitrate starvation) in a combinatorial strategy with exces-
sive carbon feeding (5% methane in air). Scale-up of the 
optimized process was performed in a 5-L continuous stirred 
tank bioreactor (CSTR), where a biomass titer of 3.94 ± 0.07 
g/L and PHB content of 52.11 ± 0.31% (w/w) was observed. 

Further, a detailed characterization of extracted PHB was 
carried out and compared with low density polyethylene film 
(LDPE) properties to assess its potential application as an 
alternative packaging material for food, agriculture, phar-
maceutical, and medical applications.

2 � Materials and methods

2.1 � Strain, culture conditions, and seed culture 
preparation

Type II methanotroph, Methylosinus trichosporium 11131 
was procured from the National Collection of Industrial 
Food and Marine Bacteria (NCIMB, UK). It was cultured in 
nitrate mineral salt (NMS) media [21] containing macro-ele-
ments (g/L): KNO3 (1.0), CaCl2 (0.2), MgSO4.6H2O (1.0), 
Fe-EDTA (0.0038), Na2MoO4.2H2O (0.00026), KH2PO4 
(0.26), and Na2HPO4.12H2O (0.716). A trace metal solu-
tion (1 mL) containing microelements (g/L): CuSO4.5H2O 
(0.2), FeSO4.7H2O (0.5), ZnSO4.7H2O (0.4), H3BO3 
(0.015), CoCl2.6H2O (0.05), EDTA disodium salt (0.25), 
MnCl2.4H2O (0.02), and NiCl2.6H2O (0.01) was added. All 
the media components were of analytical grade (HiMedia), 
and distilled water (18 MΩ) was used for media preparation. 
Seed culture was prepared in 500-mL air-tight customized 
bottles in NMS media with intermittent feeding of methane 
and air. Before autoclaving, the initial pH of the medium 
was adjusted to 6.8 using 1 M NaOH and 1 M H2SO4. The 
culture was kept under agitation at 150 rpm at 30 °C in an 
orbital shaking incubator (ORBITEK, Scigenics Biotech).

2.2 � Characterization of M. trichosporium 11131 
for PHB production

2.2.1 � Evaluation of PHB accumulation under the influence 
of nutritional starvation

The culture of M. trichosporium 11131 for PHB production 
was performed under two phases: phase I (160 h duration) 
generation of high cell density methanotrophic biomass and 
phase II (32 h duration) enrichment of intracellular PHB 
in methanotrophic biomass produced in phase I. In phase 
I, high-density biomass was produced by CH4 utilization 
using optimal process growth parameters maintaining meth-
ane concentration in the inlet gas stream at 2.5% v/v with 
air and a gas flow rate of 0.5 vvm [22]. Further, the initial 
concentration of nitrate, phosphate, and trace elements in 
the NMS media was kept at 610.16 part per million (ppm), 
242.06 ppm, and, 0.75×, respectively [22]. Mid-log phase 
seed culture at an optical density (OD) of 5 at absorbance 
600 nm was used as an inoculum for this phase (10% v/v).



21965Biomass Conversion and Biorefinery (2024) 14:21963–21978	

1 3

In phase II, the methanotrophic biomass was subjected 
to complete nutritional starvation of individual macro and 
micro media components in NMS media such as (i) nitrate 
(KNO3), (ii) phosphate (Na2HPO4.12H2O & KH2PO4), (iii) 
copper (CuSO4.5H2O), and (iv) iron (FeSO4.7H2O), and 
their combinations (i) nitrate and phosphate (N+P) and (ii) 
nitrate + copper (N + Cu) to assess its potential for PHB 
accumulation. The rest of the media components and opera-
tional conditions (2.5% methane with air) were kept similar 
in both phases. Methanotrophic biomass generated in phase 
I was harvested by centrifugation at 7000 rpm for 10 min. 
In phase II, an OD of 4 (1.68 g/L DCW) was set as the ini-
tial biomass concentration using phase I produced biomass. 
Both phases of operation were performed in a stirred-tank 
reactor of 1-L volume (800-mL working volume) containing 
a ring sparger of uniform pore size. The reactor was main-
tained at 30 °C under agitation using a water bath placed on 
a hot-plate magnetic stirrer (IKA C-MAG HS7).

2.2.2 � Assessment of PHB production under the cumulative 
effect of nutritional starvation and carbon‑excess 
condition

A process engineering strategy was designed to evaluate 
the combinatorial effect of nitrate starvation in NMS media 
(optimal parameters obtained from a nutritional starvation 
experiment), coupled with elevated methane concentration 
in the inlet gas stream on intracellular PHB accumulation. 
Here, no other nitrate source was taken except N2 gas along 
with air. Three different concentrations of methane 2.5, 5.0, 
and 7.5% (v/v) with air in the gas inlet with 0.5 vvm flow 
rate were applied in combination with nitrate starvation con-
ditions and intracellular PHB levels were estimated. Experi-
ments were carried out in duplicate.

2.2.3 � In situ esterification of methanotrophic biomass 
for quantitative estimation of PHB

Ten milligrams of vacuum-dried methanotrophic biomass 
was taken in a tightly sealed tube and 2 mL of dichloroethane 
was added followed by 2-mL propanol-containing HCl (4:1 
v/v). The mixture was vortexed for 30 s and heated at 100 °C 
for 2 h in a shaking water bath. The sample was cooled down 
to room temperature and Milli-Q water (4 mL) was added and 
vortexed for 30 s. The lower organic phase containing PHB 
esters was quantified by gas chromatography [23].

2.2.4 � Optimization of PHB extraction process 
from methanotrophic biomass

To enhance PHB extraction, three alternative solvent-based 
extraction methods—chloroform, chloroform: hypochlorite, 
and ethyl acetate (non-halogenated)—were chosen based  

on the solubility and toxicity of halogenated solvents [24]. 
Two hundred milligrams of methanotrophic biomass was 
vacuum dried using a Speedvac concentrator (Thermo 
Fisher Scientific), and the same was used for all the extrac-
tion methods. In the chloroform extraction method, 20 mL 
of chloroform was added to the biomass and incubated at 37 
°C for 48 h under constant agitation at 100 rpm. The PHB 
was extracted by precipitation with 10 volumes of ice-cold 
methanol [25]. In the chloroform: hypochlorite method of 
extraction, 10 mL of chloroform and 10 mL of hypochlo-
rite (10% v/v) were added to the biomass. The mixture was 
incubated for 1 h at 37 °C in a water bath and centrifuged 
at 5000 rpm for 5 min. PHB accumulated in the chloroform 
was separated. Following filtration, PHB was extracted by 
precipitation with ice-cold acetone and then dried at room 
temperature [24]. In the non-halogenated method of extrac-
tion, 20 mL of ethyl acetate was added to the biomass and 
was incubated at 25 °C for 1 h under 100 rpm agitation. 
After centrifugation at 5000 rpm for 10 min, the supernatant 
was separated and precipitated using ice-cold acetone and 
dried [24].

2.2.5 � Batch cultivation in large‑scale stirred tank 
bioreactor for growth and PHB production

M. trichosporium biomass was cultivated in both phases as 
phase I and phase II for scale-up production in a stirred tank 
bioreactor (New Brunswick TM Bioflo® 115, Eppendorf, 
Germany) with 5-L working volume for methanotrophic bio-
mass and PHB production. In scale-up cultivation as phase I, 
optimized parameters: 2.5% CH4 with air (20.48% oxygen) 
with flow rate of 0.5 vvm, nitrate (610.16 ppm), phosphate 
(242.06 ppm), and trace elements (0.75×) as obtained from 
earlier experiments (Section 2.1), with agitation 150 rpm 
at room temperature were used for high biomass density 
production, further to see the effect on PHB production on 
a scale-up. After 160 h, methanotrophic biomass was har-
vested with a centrifuge (ThermoFisher, Scientific, Heraeus 
Multifuge X3R) and re-suspended in phase II for PHB pro-
duction under nitrate source starvation in NMS medium with 
5 % (v/v) methane with air (19.95% oxygen) as same physi-
cal condition as for growth. Dynamic profiles for growth, 
pH, dissolved oxygen, and PHB production were obtained 
through regular sampling and analysis.

2.3 � Casting of degradable thin film from PHB 
biopolymer

Two grams of PHB was dissolved in 50-mL chloroform and 
mixed using a magnetic stirrer (IKA C-MAG HS7). The 
mixture was sonicated at 40% amplitude with a pulse inter-
val (5s ON/10s OFF) to remove the air bubbles from the 
solution. The solution was poured carefully onto a Teflon 
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plate and placed on a horizontal surface, and allowed to dry 
at room temperature for 24 h.

2.4 � Characterization of PHB thin film produced 
from M. trichosporium 11131

Detailed characterization of methanotroph-produced PHB 
thin film was carried out to study the mechanical, structural, 
molecular, and thermal properties to determine its suitability 
as biodegradable food packaging material.

2.4.1 � Thickness of the PHB thin film

The thickness of the PHB thin film was measured using a 
screw gauge (Mitutoyo 293-240-30) at various locations 
(center to periphery), and average values were reported.

2.4.2 � Tensile strength and elongation break

Tensile strength and elongation break (ЄB %) were deter-
mined to study the mechanical properties of the PHB thin 
film. Rectangular thin film with dimensions (L × W × T: 10 
cm × 7 mm × 0.1 mm) was analyzed using 5k N Universal 
Testing Machine (Zwick Roell, Model: Z005TN) with a load 
speed 1 mm min−1 procedure at room temperature.

2.4.3 � Wettability assay

The hydrophobicity of the PHB thin film was determined by 
measuring the water contact angle on the surface of the film. 
A small drop (2 μL) of distilled water drop placed on PHB 
thin film, and static water contact angles were measured with 
standard goniometer FM140 (Krüss GmbH, Hamburg, Ger-
many) equipped with a camera and analysis software (Drop 
Shape Analysis SW21; DSA1) at room temperature [26].

2.4.4 � X‑ray diffraction

PHB thin film was crushed using mortar-pestle, and powder 
form was analyzed on X-ray diffractometer (Rigaku Tech-
nologies, JAPAN, Model: Smart lab) with Ni filtered Cu Kα 
radiation (λ = 0.1541 nm) as X-ray source (40 kV, 40 mA) 
to produce the spectra at a scan rate of 3° min−1 in the 2θ 
ranges of 5–50° (Gupta et al., 2017).

2.4.5 � Oxygen transfer rate

To estimate the oxygen transfer rate, a dry PHB thin film 
of 0.1 mm thickness was analyzed using the labthink gas 
permeability test system by differential-pressure method 
according to ISO 15105-1 standard (International standards) 
procedure. In the presence of pure oxygen (purity nearly 
99.9%), the oxygen transmission rate was measured as the 

volumetric flow rate of O2, unit area−1, and time−1 at 0.1 
MPa pressure.

2.4.6 � Water vapor transmission rate

Estimation of water vapor transmission rate (WVTR) was 
performed using Labthink Water vapor transmission rate 
test machine based on the standard test method for water 
vapor transmission of materials (ASTM E96, International 
standards). A dry PHB thin film of 0.1-mm thickness was 
analyzed at 90% relative humidity and 23±2 °C under 
atmospheric pressure. The steady water vapor flow in unit 
time, passing through the unit area was determined in terms 
of g/m2/h.

2.4.7 � Fourier transform infrared spectroscopy

PHB thin film was analyzed using an FTIR spectrometer 
(Model No.: IRAffinity-1; Make: M/s Shimadzu, Japan) 
under attenuated total reflection (ATR) mode at an ambient 
temperature according to Gupta et al. [27]. After 16 scans 
at wavenumbers ranging from 650 to 4000 cm−1, the spectra 
were generated and analyzed.

2.4.8 � Field emission scanning electron microscope

A field emission scanning electron microscope (Zeiss, Gem-
ini 300) was used to analyze the surface topography of the 
thin PHB film at different magnifications (2Kx, 5Kx, 10Kx, 
20Kx). Thin film samples were mounted onto black carbon 
tape. After 30 s of gold sputtering, images were captured 
(2–4 kV accelerating voltage) [27].

2.4.9 � Gel permeation chromatography

Molecular weight and the polydispersity index of PHB thin 
film were determined with a gel permeation chromatogra-
phy (GPC) instrument (Waters Corporation, USA; software: 
Empower-2) attached to a refractive index detector (Varian 
RI-2414). PHB sample was dissolved in tetrahydrofuran 
(THF) (5 mg/mL concentration), and 50 μL of the sample 
was injected and run at a flow rate of 0.75 mL/min with a 
run time of 15 min. Molecular weight was determined using 
polystyrene as a standard [28, 29].

2.4.10 � Differential scanning calorimetry and thermal 
gravimetric analysis

The thermal stability of the biopolymer was measured using 
differential scanning calorimetry (DSC)/thermal gravimet-
ric analysis (TGA) instrument (NETZSCH DSC 3500). The 
thermograph was recorded by heating 5 mg of the sample 
from 30 to 600 °C with a temperature ramping of 10 °C/min 



21967Biomass Conversion and Biorefinery (2024) 14:21963–21978	

1 3

[27]. Based on the analysis, melting temperature, crystalliza-
tion temperature, rate of mass loss (%/min), and maximum 
degradation temperature were determined.

2.4.11 � Degradability assay

A degradability assay was performed in 1 M NaOH buffer 
solution (500 mL) with an initial pH set of 7.8. Small pieces 
(5cm ×5cm) of PHB thin film were dipped into the buffer 
solution at 58±2 °C for a duration of 30 days. Variations of 
pH in buffer solution and weight loss were analyzed [30].

2.5 � Analytical methods

To monitor cell growth, the absorbance of the culture was 
measured at 600 nm (A600) using a UV-Vis spectrophotome-
ter (Cary Series 100, Agilent Technologies). The absorbance 
values were converted into dry cell weight (DCW) using the 
correlation, one optical density = 0.42 g dry cells/L (R2 = 
0.99). pH was measured using a pH meter (Mettler Toledo, 
Switzerland). Analysis of PHB was performed by gas chro-
matography (GC7890B, Agilent), equipped with an HP-5 
column and flame ionization detector (FID) after in situ 
esterification of methanotrophic biomass. One-microliter 
sample was injected through an auto-sampler with a split 
ratio of 1:50 with helium (He) as carrier gas at a flow rate of 
0.7 mL/min. The initial temperature of the oven was set at 
80 °C (holding time: 2 min), with ramping of 10 °C/min for 
a duration of 6 min. The FID temperature was set at 275°C 
for PHB detection [31]. Nitrate concentration in the media 
was estimated by the salicylic acid method [32], and phos-
phate concentration in the media was estimated based on the 
ascorbic acid method [33]. All the experiments were per-
formed in duplicates. Statistical significance was calculated 
with one way ANNOVA using Minitab21 software at 95% 
(α = 0.05) confidence level, and the yield of PHB extracted 
from methanotrophic biomass was estimated by the formula:

3 � Results and discussion

3.1 � PHB induction in high‑density methanotrophic 
biomass under naturally induced nutritional 
starvation

In phase I, to achieve high-density biomass of M. trichos-
porium 11131, the culture was grown under optimized media 
composition according to Sahoo et al. [22]. A maximum 
biomass concentration of 3.82 ± 0.01 g/L was achieved 

(1)PHB yield (%) =

(

Weight of PHB

Weight of biomass

)

× 100

after 160 h of batch cultivation with a biomass productiv-
ity of 0.64 ± 0.01 g/L/days and a methane fixation rate of 
0.39 ± 0.01 g/L/days. An increase in pH from 6.8 to 8 was 
observed during the growth phase. The results obtained were 
similar to those attained in the study by Sahoo et al. [22]. 
The nitrate and phosphate were almost consumed by the 
organism within 160 h as shown in Fig. 1a. A dynamic pro-
file of intracellular PHB storage during the growth shows a 
4–8% w/w PHB accumulation in lag and exponential phase 
as observed in Fig. 1a. Further, to study the natural abil-
ity of M. trichosporium to accumulate PHB after complete 
utilization of nitrates and phosphates in the media, phase I 
cultivation was allowed to continue for an extended period 
of 208 h. In situ estimation of PHB content in the biomass 
shows upregulation in the intracellular PHB content with a 
maximum value of 23.03 ± 0.89 % w/w on the 9th day (216 
h) of cultivation, which was comparable to other reports [11, 
34–37]. Various literature reported induction of the intracel-
lular PHB accumulation as a result of nutrient depletion [12, 
17, 38]. Further, a decrease in PHB level was observed till 
the end of the batch at 240 h. This study provided informa-
tion on M. trichosporium 11131’s potential to produce PHB 
under naturally induced starvation. This could be further 
enhanced by a combined strategy of high cell-density bio-
mass production in phase I coupled with nutrient starva-
tion in phase II [39]. So, based on the time at which com-
plete nitrate was utilized, and maximum biomass titer was 
achieved, phase I was ended, and phase II was initiated in 
the subsequent experiments to assess PHB production under 
nutritional starvation.

3.1.1 � Evaluation of PHB levels in phase I generated 
methanotrophic biomass under induced nutritional 
starvation in phase II

Under nutritional starvation, methanotrophs undergo stress 
conditions and accumulate PHB inside the cell [40]. The 
high-density methanotrophic biomass produced in phase 
was subjected to nutritional starvation in phase II to evalu-
ate its effect on PHB accumulation. Since, PHB accumula-
tion is not growth associated; this strategic combination of 
two phases serves as a feast and famine strategy to accel-
erate biomass growth with sufficient nutrition in phase I 
and induce carbon storage in the form of PHB in phase 
II [13, 29, 41, 42]. Also, this strategy could prevent the 
decrease in PHB production in subsequent batches, caused 
due to repeated starvation conditions [36]. In comparison 
with the single-stage cultivation in the control experi-
ment (Fig. 1a), two phase cultivation (Fig 1b–d) resulted 
in a reduction of time required for PHB accumulation. 
In single-stage cultivation, maximum PHB content was 
observed at 216 h of operation, while in two-stage cultiva-
tion maximum PHB was observed at 192 h (160 h of phase 
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I + 32 h of phase II). In the case of macro-element starva-
tion (N, P, N+P), maximum carbon flux from methane is 
redirected towards intracellular PHB storage instead of 
growth. Under nitrate (N) source starvation, a PHB content 
of (41.24 ± 0.83% w/w) was observed after 32 h of phase 
II cultivation (Fig. 1b). This was attributed to the fact that 
under nitrogen-deficient conditions, the methanotrophic 
biomass shifted its metabolism towards PHB accumulation 
from the TCA cycle, thus resulting in high PHB accumula-
tion [43].

This was in corroboration with other reports where a 
similar trend was observed concerning PHB accumulation 
under nutrient-deficient conditions [44–46]. The phosphate 
(P) starvation resulted in 10.97 ± 0.87 % w/w PHB con-
tent (Fig. 1c); while under combined nitrate and phosphate 
(N+P) source starvation, a PHB content of 28.66 ± 0.18% 
w/w was observed (Fig. 1d). This corroborated with other 
reported data where nitrate starvation resulted in PHB induc-
tion in the range of 29–50% [9, 13, 36, 47–51]. From the 
comparison of these three starvation conditions, it could be 

understood that nitrate starvation is most influential towards 
the accumulation of intracellular PHB.

Furthermore, the starvation of microelements such as 
Copper (Cu) and Iron (Fe) on PHB production was evalu-
ated. As shown in (Fig. 2a and b), it was observed that on 
starvation of Cu and Fe, a PHB content of 13.04 ± 0.01% 
w/w and 6.49 ± 0.76% w/w was achieved, respectively. 
While Fe starvation did not induce much PHB accumulation, 
Cu starvation could only result in a comparably higher level. 
This could be attributed to their crucial role in methane 
monooxygenase enzyme activity (MMO) which is directly 
linked to methane assimilation [16, 34, 40, 52–54].

As Fe and Cu are required for normal activity of 
particulate MMO, their starvation might have caused a 
decrease in MMO activity and therefore resulted in lower 
levels of carbon transfer into PHB synthesis pathway [16, 
55–57]. Further, under combined nutritional starvation 
of nitrates and Cu (N+Cu), a PHB content of 21.12 ± 
0.42 % (w/w) was observed (Fig. 2c). This decrease in 
PHB content even under nitrate starvation might also 

Fig. 1   Dynamic profile for growth, pH, nitrate, phosphate, and intra-
cellular PHB content when M. trichosporium was cultivated under 
naturally induced nutritional starvation a single stage; and induced 
nutritional starvation in phase-I generated methanotrophic biomass 

under b nitrate, c phosphate, d combined nitrate and phosphate 
starvation in phase II for PHB induction. The significance level (p 
≤ 0.05) were obtained through statistical analysis using one way 
ANNOVA
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Fig. 2   Dynamic profile for 
growth, pH, nitrate, phosphate, 
and intracellular PHB content 
when phase-I generated M. 
trichosporium biomass was 
cultivated for phase II under 
induce nutritional starvation 
of a Cu, b Fe, and c combined 
nitrate + Cu. The significance 
level (p ≤ 0.05) were obtained 
through statistical analysis using 
one way ANNOVA



21970	 Biomass Conversion and Biorefinery (2024) 14:21963–21978

1 3

be attributed to the absence of Cu required for normal 
activity of MMO. Therefore, it can be understood that the 
presence of Cu is very critical for PHB accumulation even 
under nitrate starvation conditions. Based on this, new 
strategies combining nitrate starvation with an excess of 
microelements (Cu or Fe) may be employed to enhance PHB 
content in methanotrophs.

3.2 � Overproduction of PHB under the combinatorial 
influence of excess methane coupled 
with nutritional starvation

Removal of only nitrate resulted in the highest PHB content 
among all other nutritional starvation conditions. This 
nutrient-deficient condition was selected and further applied 
in a combinatorial strategy with excessive carbon feeding. The 

methane content in the gaseous mixture was elevated to 5.0 and 
7.5% from 2.5%. Under the combination of 5% CH4 (Fig. 3a) 
and nitrate starvation condition, excess carbon intake under 
nitrate starvation resulted in improved PHB accumulation. 
Maximum PHB content of 52.42 ± 1.03% (w/w) was observed 
under this condition after 32 h. While nitrate starvation 
conditions have resulted in shifting the metabolism to PHB 
storage, the simultaneous availability of excess methane 
resulted in greater availability of carbon source redirected into 
PHB synthesis. However, on further enhancement of methane 
percentage, a decrement in PHB storage was observed (46.64 ± 
0.26% w/w) (Fig. 3b). This could be attributed to the inability 
of the microorganism to further utilize excess carbon. This 
result was in corroboration with reported literature where an 
intracellular PHB content of 17–48.7% (w/w) was achieved 
under induced nutritional starvation [9, 28, 37, 47, 50].

Fig. 3   Dynamic profile for growth, pH, nitrate, phosphate, and intra-
cellular PHB content when M. trichosporium was cultivated under a 
combined nitrate starvation and 5% methane in the air; b combined 
nitrate starvation and 7.5% v/v methane in the air; c intracellular 
PHB content under different nutritional starvation conditions in phase 

II compared with naturally induced starvation in the single stage; d 
PHB yield in under different extraction methods. The significance 
level (p ≤ 0.05) were obtained through statistical analysis using one 
way ANNOVA
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3.3 � Optimization of PHB extraction from M. 
trichosporium biomass

To extract maximum PHB from methanotrophic bio-
mass, optimization of extraction methods viz. chloro-
form–hypochlorite dispersion extraction, chloroform 
extraction, and non-halogenated solvent (ethyl acetate) 
was performed. Maximum PHB yield was observed using 
chloroform–hypochlorite dispersion extraction at 45.87 ± 
0.67% (w/w), followed by conventional chloroform extrac-
tion with a yield of 43.33 ± 0.33% and ethyl acetate extrac-
tion at 41.38 ± 0.33%. Considering the high yield level of 
the chloroform-hypochlorite method, this extraction method 
was used in all the experiments (Fig. 3d).

3.4 � Scale‑up of optimized process in a 5 L 
in continuous stirred tank bioreactor

Scale-up of the optimized bioprocess was demonstrated in 
a stir tank bioreactor (Fig. 4b) with continuous feeding of 
methane to achieve high biomass density and PHB yield. A 
maximum biomass titer of 3.94 ± 0.07 g/L was observed 
after 160 h of growth with a change in pH from 6.8 to 7.95 
in phase-I as shown in (Fig. 4a).

During the growth of methanotrophs, a sharp decline in 
dissolved oxygen levels (87–4%) was observed during 16–24 
h. Phase II cultivation with optimized parameters (nitrate 
source starvation + 5% v/v methane in the air) for overpro-
duction of PHB resulted in maximum PHB content of 51.11 
± 1.03% (w/w) with a PHB titer of 2.02 ± 0.04 g/L after 
32 h. It could be observed that dissolved oxygen sharply 
decreased with an increase in PHB content. A similar pattern 
of oxygen demand in methanotrophic cells has been reported 
during PHB production in other studies as well. In com-
parison with other studies under the batch mode, this work 
demonstrated an improved biomass titer and PHB content 
[11–13, 18, 35, 49], demonstrating the effectiveness of the 
optimized bioprocess and its potential for large-scale PHB 
production from methane.

3.5 � Formation of degradable thin film from PHB 
biopolymer extracted from M. trichosporium 
and characterization of thin film

Figure 4c and d show PHB extracted from M. trichosporium 
11131 chloroform-hypochlorite extraction method. Fig-
ure 4e shows the mixture of PHB dissolved in chloroform 
poured on the Teflon plate for casting. After 24 h of drying, 
a smooth film was formed as shown in (Fig. 4f). The thin 
film was further characterized to evaluate its potential as 
degradable packaging material.

3.5.1 � Thickness

The average thickness measured by screw gauge of the PHB 
thin film, 0.1 ± 0.01 mm, makes it a suitable candidate for food 
packaging applications; in addition, the film’s thickness can be 
adjusted to meet specific packaging requirements for different 
types of food product. Another study also has reported the appli-
cation of 0.1-mm-thick film for edible food packaging [58].

3.5.2 � Fourier transform infrared spectroscopy

The FTIR analysis provides important information on the 
molecular structure and bonding of PHB, which is useful for 
designing and optimizing its properties for degradable food 
packaging applications. FTIR spectrum of polyhydroxy-3-bu-
tyrate extracted from M. trichosporium is shown in (Fig. 5a). 
The peaks at 826 and 976 cm−1 represent C-C bond stretch-
ing of PHB in amorphous and crystalline phases respectively 
[59], while peaks at 1051 and 1098 cm−1 represent asymmet-
ric stretching of first and second C-O (right-most) saturated 
aliphatic ester O-C-C bond respectively. Peak bands 1129 
and 1181 cm−1 represent symmetric and asymmetric C-O-C 
bond stretching of aliphatic ester in the amorphous form of 
PHB. Peaks at 1224 and 1273 cm−1 represent symmetric C-O 
stretching of aliphatic ester in crystalline PHB. The band at 
1379 represents the C-H symmetric stretching of methyl and 
1453 cm−1 represents the asymmetric bending of methyl or 
methylene group in PHB polymer. The prominent and char-
acteristic peak at 1722 represents the symmetric stretching 
carbonyl group (C=O) of the ester bond in crystalline PHB. 
While absorption bands obtained at 2934 and 2976 cm−1 rep-
resent alkane (–CH) bonding asymmetric and symmetric in 
the methyl group and minor divergence at 3,442 cm−1 cor-
responds to a terminal –OH group [60, 61]. In addition, PHB 
extracted from M. trichosporium was observed to be similar 
in chemical structure to PHB extracted from other microbes 
B. megaterium and C. necator [62].

3.5.3 � Gel permeation chromatography

GPC analysis of PHB film indicates 2 peaks and a major peak 
at 5.925 min with an Mn value of 1.42× 105, Mw value of 
2.1× 105 Da, and polydispersity index of 1.47. In general, the 
molecular weight of PHB lies in the range of 1.7–2.4 × 105 Da 
literature as reported by Karthikeyan et al., 2015. Other stud-
ies also suggest that extracted PHB from M. trichosporium 
has a high molecular weight of 2.1× 105 Da due to potas-
sium (K) limitation along with nitrate source (KNO3) starva-
tion medium [16]. Furthermore, the high molecular weight 
and low PDI of PHB will result in an improved mechanical 
strength and stiffness of the film, making it more durable and 
resistant to tearing. These properties make this PHB a promis-
ing candidate for food packaging applications.
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3.5.4 � Surface analysis

FESEM images at different magnifications 2K, 5K, 10K, and 
20K were taken to analyze the surface morphology of thin PHB 
film as shown in (Fig. 5b-e). On higher magnification 2 μm pores 
were observed in conventional casting and molding of thin PHB 
film that could allow for the diffusion of gases and moisture, 
making it a potential degradable material for breathable food 
packaging, which can have significant environmental impacts.

3.5.5 � X‑ray diffraction analysis for the structural feature 
of PHB thin film

X-ray diffraction spectra of PHB thin film were analyzed as 
shown in (Fig. 6a). Peaks with miller indices were observed at 
2θ = 13.4° (020), 16.8° (110), 21.4° (101), 22.5° (111), 25.4° 
(121), and 27.1° (040) representing the high degree of crystal-
line structure. The most intensive and scattered peaks at 2θ = 
13.4° and 2θ at 16.8° confirm an orthorhombic unit cell which 

Fig. 4   a scale-up in 5-L stir 
tank reactor; b Dynamic profile 
for growth, pH, dissolved 
oxygen, and intracellular PHB 
content at the scale-up level 
under optimized process condi-
tions (nitrate source starvation 
+ 5% v/v methane in the air); 
c extraction of PHB from M. 
trichosporium biomass by chlo-
roform–hypochlorite method; 
d extracted PHB; e casting of 
PHB thin film in Teflon-plate 
and; f PHB thin film (0.1 ± 0.01 
mm). The significance level (p 
≤ 0.05) were obtained through 
statistical analysis using one 
way ANNOVA
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was observed in other reports as well [62, 63]. Minor peaks at 
2θ at 21.4° (101) and (111) and 2θ at 22.5°, represents α-form, 
while 2θ at 25.4° and 2θ at 27.1° indicate semi-crystalline 
nature. Further, the size of the PHB crystal was calculated to 
be 26.19 nm, with repeating unit cell lengths a = 18.12 Å, b 
= 7.04 Å, and c = 10.23 Å. M. trichosporium-produced PHB 
thin film possesses a high degree of crystallinity (76.6±2.6%) 
indicative of the mechanical and thermal strength of the poly-
mer concerning as a packaging material.

3.5.6 � Wettability assay

To qualify PHB material as food packaging material, it needs 
to be water resistant as it could come into contact with food 
materials. It is also required to ensure that the products are dry 

throughout handling, storage, and transportation. Therefore, the 
surface hydrophobicity was estimated based on water contact 
angle measurement. A surface having a water contact angle of 
water droplet θ > 68° is considered completely hydrophobic 
[35]. The average water contact angle on a thin film of PHB 
extracted from M. trichosporium 11131, was found to be 73.68° 
(Fig. 6b). These results from the contact angle measurement 
confirmed the hydrophobic nature of PHB film and supported 
its potential in degradable food packaging applications.

3.5.7 � Mechanical strength analysis of PHB thin film

Mechanical characteristics mainly related to elasticity and 
tensile strength are to be assessed to determine the PHB 
material’s strength under the application of physical forces 

Fig. 5   Characterization of M. trichosporium 11131 extracted PHB thin film. a Fourier transform infrared spectroscopy (FTIR) spectrum; and 
FESEM images of PHB thin film under different magnifications. b 2Kx; c 5Kx; d 10Kx; and e 20Kx
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is intended to be applied as packaging material. Analy-
sis revealed a maximum tensile strength of 15.41 ± 0.34 
MPa along with an elongation break (ЄB %) of 2.46 ± 0.19 
and Young’s modulus of 0.87 MPa. The results obtained 
proved its suitability as a packaging material with preferable 
mechanical properties.

3.5.8 � Thermal analysis by DSC, TGA, and DTG

Thermal stability of green PHB polymer extracted from M. 
trichosporium by DSC (Fig. 6c) revealed a glass transition 
temperature of 33.25 °C, along with a crystallization tem-
perature of 153.25 °C, melting temperature of 181.75 °C, 

and degradation temperature of 266.75°C. Thermal gravi-
metric (DTG) analysis (Fig. 6d) revealed maximum degra-
dation of 60.23% with a weight loss rate of −28.19 % per 
minute observed at a maximum degradation temperature of 
259.75°C [62, 64] confirming its thermal resistance.

3.5.9 � Water vapor transmission rate

WVTR is critical to determine the weight gain of the PHB 
film caused due to moisture retention under constant pressure 
and temperature in 24 h of time (g.m2/day). It was calculated 
using combined Henry-Fick’s Law using equation WVTR 
( 
(

g∕m2
)

× 24 h =
w

A
)), where w represents the weight (g) gain 

Fig. 6   Characterization of M. trichosporium 11131 extracted PHB 
thin film. a X-ray diffraction; b water contact angle; c DSC curve; d 
differential thermo-gravimetric analysis (DTG) and rate of mass (%) 

loss of PHB thin film; e and f variation in weight loss and pH during 
degradation. The significance level (p ≤ 0.05) were obtained through 
statistical analysis using one way ANNOVA
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of the film due to moisture-retention, in a duration of 24 h and 
A is the surface area (m2) of the PHB thin film. WVTR of thin 
PHB film was measured in accordance with the ASTM E-96 
method, and it was estimated to be 34.22 g/m2/day. Based on 
the WVTR calculated, the methanotroph extracted PHB thin 
film qualifies to be applied for food packaging applications as 
well as degradable food packaging material [65].

3.5.10 � Oxygen transmission rate

To determine the quality of PHB film under the influence of 
reactive oxygen gas in the atmosphere, oxygen transmission 
rate (OTR) testing was performed according to ISO: 15105-1 
method. OTR estimation is important in determining the shelf 
life of packaging material and for the methanotrophic PHB thin 
film, it was estimated to be 2198.92 cm3/m2/day at 0.1 MPa 
pressure. This higher value might be attributed to increased 
porosity in PHB thin film (as shown in FESEM images in 
(Fig. 5c–f) making it more permeable towards oxygen [26, 66].

3.5.11 � Degradability assay

Degradability being the primary prerequisite quality 
for packaging material, PHB thin film from M. trichos-
porium was subjected to degradability testing as shown in 
(Fig. 6e–f). After every 5 days, the weight and pH were 
measured. A decrease in weight (55.54 %) was observed 
along with a reduction in pH from 7.8 to 2.3 indicative of 
the film getting degraded under the influence of the buffer.

3.6 � Comparison of methanotrophic PHB film 
properties with low‑density polyethylene

Post-characterization of methanotroph-produced PHB thin 
film, was compared to that of low-density poly ethylene 
(LDPE) properties to showcase its potential as an alternative 

degradable food packaging material (Table 1). The metha-
notrophic PHB film has shown comparable tensile strength 
with that of standard LDPE film. With respect to thermal 
properties, the PHB film showed superior glass transition 
and melting temperature values compared to that of LDPE 
film. This will be advantageous, as food packaging requires 
higher thermal stability values.

Also, in the case of the water contact angle, a higher 
degree of hydrophobicity was observed as compared to 
LDPE film. However, WVTR values obtained in this study 
are on the higher side, which indicates high moisture reten-
tion compared to LDPE. This could be due to the traditional 
way of classical molding and casting of the PHB thin film 
rather than fabrication using an extruder machine. In the 
case of the classical method, the film produced has a higher 
degree of pores, as a result causing increased moisture reten-
tion. In comparison with LDPE film, the low OTR value of 
PHB film is advantageous as it is indicative of the longer 
shelf life of the packaging material. While the methano-
trophic biomass extracted PHB thin film showed its potential 
as a degradable food packing material, further improvements 
such as co-polymerization would make it a suitable degra-
dable food packaging material and a sustainable alternative 
to conventional polymers.

4 � Conclusion

The work demonstrated the critical role of nutrient elements 
(macro and micro) on PHB accumulation in methanotrophic 
cells of M. trichosporium 11131. Nitrate starvation resulted in 
significantly high levels of PHB accumulation, while micro-
element starvation (Fe and Cu) resulted in low levels. The 
combinatorial influence of excess C-source (5% methane 
in the air) and nitrate starvation, methanotrophic biomass 
showed high PHB accumulation, confirming this as a prom-
ising strategy for improved PHB production. Further, based 

Table 1   Comparison of M. 
trichosporium 11131 extracted 
PHB film properties with LDPE 
film

Properties LDPE film PHB film from the current 
study (0.1 ± 0.01 mm  
thickness)

References*

Tensile strength (MPa) 8.27–31.7* 15.41 [67]
Glass transition temperature (°C) −25–10* 33.25 [67]
Crystallization temperature (°C) 95.44* 153.25 [68]
Melting temperature (°C) 98–115* 181.75 [67]
Degradation temperature 260–325* 266.75 [69]
Water contact angle (°) ≥ 65* 73.7 [26]
Oxygen transmission rate (cm3mm/m2/day) 7000–8000* 2198.92 [70]
WVTR (g/m2/day) 15–25* 34.2 [70]
Degree of crystallinity (%) 50–65%* 76.6 [70]
Mol. weight (× 105 Da) 1.5–1.65* 2.1 [71, 72]
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on its thermal, mechanical, physical, and molecular proper-
ties, it can be confirmed that methanotrophic PHB thin film 
can serve as a potential degradable food packaging material.
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