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Abstract
Pretreatment is an important step in lignocellulosic bioethanol production which aims to reduce lignin content and break 
down lignocellulosic structure thereby increasing the accessibility of enzymes in hydrolysis. Therefore, this research explored 
the pretreatment process on oil palm empty fruit bunch (EFB) with  CO2 impregnation followed by alkali explosion. EFB 
was impregnated with  CO2 at 5 °C for 12 h. After impregnation, EFB was mixed with 2.5 M of NaOH solution (1:5 of S/L 
ratio) in an alkali explosion reactor. Alkali explosion was conducted at 150 °C, 4 kg/cm2 of pressure with the variation of 
reaction time for 15, 30, and 45 min. The parameters analyzed in this study include EFB recovery, EFB composition and 
characteristics, glucose yields, and ethanol yields. EFB composition was analyzed as cellulose, hemicellulose, and lignin 
while the characteristics of the EFB were examined in functional groups. The results indicated that combined pretreatment 
using  CO2 impregnation followed by 15 min of alkali explosion obtained higher delignification of EFB, glucose, and ethanol 
yield than only alkali explosion for 30 min. The highest glucose and ethanol yields were 99.33 and 83.80 w/w% of glucose 
mass in EFB, respectively. These results prove that  CO2 can be used as an impregnation agent in lignocellulosic pretreatment 
and could be combined with alkali explosion.
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1 Introduction

Fossil fuel combustion releases emissions that negatively 
impact the environment and humans [1]. Therefore, many 
researchers have carried out research to substitute fossil 
fuels with new and renewable energy (NRE). One of the 
alternative raw materials for renewable energy that is cur-
rently being developed is biomass. Biomass has been the 
most energy source in the world for heating application [2]. 
However, modernization of bioenergy production systems 
is needed so that biomass can be optimally applied as feed-
stock. Bioethanol is one of the bioenergies that can be pro-
duced from biomass, such as starch, sugar, lignocellulosic 
biomass, and algae [3–5]. An alternative non-food material 
that has the potential to be developed as a source of bioetha-
nol production is oil palm empty fruit bunches (EFB). EFB 
is the largest waste in the palm oil industry, reaching 22 
to 25% of the weight of fresh fruit [6]. EFB has cellulose 
(20–50%), hemicellulose (23–36%), lignin, and other deriva-
tives (22–51%) [7, 8]. The significant variations of the con-
stituents of EFB due to differences in the sample’s origin 

Statement of novelty Indonesia as one of the largest oil palm 
producers in the world not only produces oil palm but also 
generates huge amounts of lignocellulosic biomass such as 
empty fruit bunch (EFB). This biomass can be converted into 
energy, for example, bioethanol. Pretreatment is an important 
stage in lignocellulosic bioethanol production. This study 
inquires about the application of  CO2 as an impregnating 
agent in the alkali explosion of EFB for bioethanol production. 
This research reports for the first time that adding  CO2 as an 
impregnating agent before alkali explosion could enhance the 
percentage of delignification, hydrolysis, and fermentation yield 
in bioethanol production from EFB. This report was assessed in 
terms of the percentage of EFB solid recovery after pretreatment, 
the percentage of the chemical composition of EFB, the 
characteristics of EFB, the yield of glucose, and ethanol yield 
after separate hydrolysis and fermentation (SHF).
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such as size, age, growth phase, soil condition, geographic 
location, and climate leverage related to the oil palm tree, as 
well as different analytical methods and sample preparation 
before analysis of EFB [9, 10].

Lignocellulosic bioethanol production mainly has four 
primary processes: pretreatment, hydrolysis, fermentation, 
and purification [11]. In the process, the constraint faced is 
lignin content in lignocellulose, which inhibits the conver-
sion process, and causes a low hydrolysis rate resulting in 
a low ethanol concentration production [12]. In addition, 
the structure of lignin molecules is a physical barrier in 
hydrolysis due to preventing the accessibility of enzymes to 
cellulose and hemicellulose [13, 14]. Therefore, the pretreat-
ment of lignocellulose is an important step in bioethanol 
production.

Previous research has been done with various pretreat-
ment methods, such as biological, chemical, mechanical, 
and thermal processes, as well as a combination of each 
method to accelerate the hydrolysis of lignocellulose. Alkali 
explosion is one chemical pretreatment that can provide a 
high yield of delignification. However, this method requires 
high temperature and pressure as well as takes a long time 
to process [15].

To optimize the pretreatment process, several studies 
reported that the addition of impregnating agents such as 
 H2SO4,  SO2, or  CO2 could decrease inhibitor production 
and improve the enzymatic hydrolysis of biomass [16]. 
Therefore, this study applied  CO2 as an impregnating agent 
before alkali explosion for EFB in bioethanol production. 
Impregnation refers to the imbuing or saturating process 
with something [17]. Impregnation of biomass could change 
the morphology by enhancing cellulose’s permeability and 
increasing biomass’s surface area [18]. The use of  CO2 as 
impregnating agent is considered to provide benefits such 
as strong solubility, low toxicity, weak corrosivity, and low 
occupational risk [19, 20]. Moreover,  CO2 is also a by-prod-
uct of ethanol fermentation; thus, it is enormously available 
in bioethanol plants [21].

The variation of reaction time during alkali explosion was 
also explored in this study. According to previous studies, 
the reaction time for the alkaline explosion of EFB ranged 
between 15 and 45 min [22, 23], and the optimal delignifica-
tion process was 30 min [24, 25]. Therefore, optimization of 
reaction time in combined pretreatment with  CO2 impregna-
tion followed by alkali explosion be necessary to explore.

2  Materials and methods

2.1  Materials

This study obtained EFB from oil palm plantation in 
Sumatra Island, Indonesia. EFB was chopped and milled 

to obtain in fiber form with the size ± 3 mm. Furthermore, 
EFB was dried to attain 10% of moisture content.  CO2 
gas was provided by PT WAP Andalan Indonesia. The 
enzymes used were Cellic® Ctec2 and Cellic® Htec2 from 
Novozymes Korea Ltd. Commercial instant dry yeast Sac-
charomyces cerevisiae was applied in fermentation. All 
chemicals used were analytical grade.
2.2  Pretreatment process

The pretreatment was performed in a 5-L reactor that was 
manufactured by Changhae Ethanol Co., Ltd. In the experi-
ments with  CO2 as catalyst impregnation, the EFB fiber was 
placed in a plastic bag, and  CO2 was supplied from a gas cyl-
inder at atmospheric pressure.  CO2 gas was added as much 
as 3% w/w based on the moisture content of EFB where the 
water content in the EFB used in this study was 10% w/w. 
The weight of  CO2 was determined by weighing the bag 
before and after adding the gas. The sample in a plastic bag 
was stored at 5 °C for 12 h to complete impregnation [19]. 
Furthermore, the impregnated EFB was treated in the reac-
tor using 2.5 M NaOH solution with 1:5 of the solid–liquid 
(S/L) ratio. Alkali explosion was carried out at 150 °C of 
temperature and 4 kg/cm2 of pressure [15]. The variation of 
alkali explosion time was 15, 30, and 45 min. Subsequently, 
the pretreated-EFB are neutralized with water until pH of 
6–8 at room temperature and dried for 24 h at 50 °C in the 
oven. The alkali explosion without  CO2 impregnation was 
also conducted as a blank sample with the process at 150 °C, 
4 kg/cm2 for a 30-min process.

2.3  Separate hydrolysis and fermentation (SHF) 
process

The ethanol was produced by separate hydrolysis and fer-
mentation (SHF) method.

2.3.1  Enzymatic hydrolysis process

The substrate concentration used in the hydrolysis process 
was 10 w/v% of EFB-treated and, then, was mixed with a 
citrate buffer and enzymes until 100 mL of total volume. The 
enzymes used were 30 FPU/g substrate of Cellic®Ctec2. 
Next, Cellic®Htec2 is added with a volume ratio of 1:5 of 
Cellic®Ctec2. The hydrolysis process was carried out at a 
temperature of 50 °C with the agitation of 150 rpm in the 
shaking incubator for 72 h.

2.3.2  Fermentation Process

After 72 h of enzymatic hydrolysis, 1 w/v% of dried S. 
cerevisiae was added into hydrolysate for the fermentation 
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process. The process was carried out at 32 °C of tempera-
ture, 150 rpm for 72 h.

2.4  Analytical methods

The chemical component of EFB (cellulose, hemicellulose, 
lignin, and ash) was analyzed using standard biomass ana-
lytical procedures from National Renewable Energy Labo-
ratory (NREL) [26]. The structural changes of EFB were 
evaluated by a Shimadzu FTIR spectrometer. The glucose 
and ethanol concentration after SHF was determined using 
high-performance liquid chromatography (HPLC) equipped 
with HPX-87P (Bio-RAD, CA, USA) column and analyzed 
with a RID detector. The eluent used as a mobile phase was 
5 mM  H2SO4 solution at a flow rate of 0.6 mL/min [21].

2.5  Delignification and yield calculation

Percent of delignification, glucose, and ethanol yields were 
calculated using the equations below:

1) Percentage of delignification [27]

Table 1  Recovery weight of EFB solids left after pretreatment and 
washing

Sample code CO2 Alkali explosion 
time

Recovery 
weight of 
solids

(min) (w/w%)

Blank - 30 31.19
A  + 15 33.25
B  + 30 29.00
C  + 45 31.30

(1)
%delignif ication =

lignin content of EFBi − lignin content of EFBf (%w∕w)

lignin content of EFBi(%w∕w)
× 100%

where  EFBi = EFB before pretreatment and  EFBf = EFB after 
pretreatment.

2) Glucose yield calculation [21]

a) Glucose yield calculation based on theoretical glu-
cose from cellulose in the substrate

b) Glucose yield calculation based on the substrate

3) Ethanol yield calculation [21]

a) Ethanol yield calculation based on theoretical etha-
nol from cellulose in the substrate

b) Ethanol yield calculation based on the substrate

(2)

%Ygc =
glucose in hydrolysate(g)

theoretical glucose in substrate(g)
× 100%

(3)%Ygs =
glucose in hydrolysate (g)

weight of substrate (g)
× 100%

(4)

%Yec =
ethanol in broth fermentation (g)

theoretical ethanol in cellulose (g)
× 100%

3  Results and discussion

3.1  Application of  CO2 as an impregnating agent 
in alkali explosion for EFB

Table 1 shows the recovery percentage of solids gener-
ated after pretreatment and washing. The alkali explosion 
pretreatment with prior  CO2 impregnation was about one-
third of the initial substrate. The value was almost similar 
to the percent recovery of the blank sample. The weight 
losses are considered to be related to the lignin content 
lost due to the process. Moreover, the decomposition of 
the polysaccharide compound, silica content removal, 
and evaporation that occurs in several components (CO, 
 CO2,  CH4, and other hydrocarbons) have a major role in 
sample weight losses [28]. Evaporation could occur dur-
ing an alkali explosion, which uses high temperatures and 

(5)

%Yes =
ethanol in broth fermentation(g)

weight of substrate(g)
× 100%

pressures. Carbon cellulose chains, hemicellulose, and 
lignin are degraded due to the high temperature in the 
pretreatment process [29], such as in an alkali explosion.

The chemical component of EFB before pretreatment as 
an untreated sample, EFB after alkali explosion as a blank, 
and EFB after combined pretreatment of  CO2 impregnation 
followed by alkali explosion can be seen in Table 2. The 
results show that lignin and hemicellulose were degraded 
after pretreatment. The percent delignification of EFB after 
combined pretreatment of  CO2 impregnation followed by 
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alkali explosion was higher than the blank sample. From the 
results of combined pretreatment, delignification increased 
alongside the increasing explosion time. The percentage of 
delignification of samples A, B, and C was 73.65, 80.03, 
and 80.54%, respectively. These findings indicate that the 
percent delignification of sample B at 30 min of explosion 
time was higher than sample A at 15 min of reaction time but 
almost similar to sample C at 45 min. Several studies also 
showed that the optimum reaction time of alkaline pretreat-
ment for biomass was 30 min [25, 30, 31]. According to 
Monte et al., alkaline pretreatment using NaOH in rice husk 
could significantly remove silica and hemicellulose as well 
as partially removed lignin during 30 min of reaction time. 
After that, the non-cellulosic biomass extraction’s reaction 
rate weakened and almost stopped after 60 min of reaction 
time [30].

The percentage of hemicellulose compound in EFB-
treated decreased from hemicellulose in EFB-untreated. Pre-
treatment using an alkali solution such as NaOH, ammonia, 
or Ca(OH)2 can remove lignin and hemicelluloses [32, 33]. 
After pretreatment, these components will dissolve in an 
alkali solution known as black liquor. The ability of NaOH 
to dissolve lignin is due to the opening of aromatic rings 
of lignin caused by the use of high temperatures and high 
pressure and then, the resulting explosive effects can dis-
solve these components [34]. The explosive effect resulting 
from the reactor due to rapid temperature drop will help in 
the delignification process due to an increase in the surface 
area of the pretreatment sample [35]. Adding  CO2 before 
alkali pretreatment is also believed to increase the pores of 
lignocellulosic biomass surfaces; thus, the percent delignifi-
cation of EFB treated using alkali explosion with prior  CO2 
impregnation was higher than the blank sample. Therefore, 
decreasing the percent content of lignin and hemicellulose 
enhanced cellulose percentage in EFB-treated. Cellulose is 
the main compound that can be converted into glucose using 
enzymes and subsequently fermented by yeast to produce 
ethanol.

Figure 1 shows The FTIR spectra from EFB before and 
after pretreatment. The wavenumber of EFB-treated (blank, 
A, B, C samples) at around 3279 – 3552  cm−1 appeared 

clearer than EFB-untreated. The wavenumber indicated 
hydrogen-bonded (O–H) stretching absorption. O–H stretch-
ing region at a peak of 3000–3600  cm−1 of EFB spectra was 
more assigned to the O–H stretching region from cellulose 
[36]. From the results, the clear peak of O–H stretching from 
the cellulose of EFB treated indicated that the cellulose 
content in EFB treated was higher as compared to EFB-
untreated. The CH stretching mode at around 2923  cm−1 
was shifted to a lower wavenumber at around 2854  cm−1 
after pretreatment. Then, the wavenumbers between 1425 
and 1427  cm−1, 1155 and 1159  cm−1, and around 895  cm−1 
were found in the EFB after pretreatment. The wavenumber 
around 1429  cm−1 and 1157  cm−1 indicates  CH2 bending 
and C–O–C asymmetric stretching known as cellulose-
related bands [37]. Their appearance wavenumbers in EFB 
after pretreatment indicate an increase in cellulose amount. 
Moreover, the C–H–O stretching of the β-(1–4)-glycosidic 
linkage bands at around 895  cm−1 appear stable enough in 
EFB-treated [36]. The changes in intensity were also found 
in the band at wavenumber 1026–1038  cm−1. The band at 
wavenumber around 1032  cm−1 was indicated to the C–O 
stretch in cellulose and hemicellulose [36]. The intensity of 
this band was increased after pretreatment.

Table 2  Chemical composition 
of EFB before and after 
pretreatment

Sample code Pretreatment condition Chemical composition (w/w%) Delignifi-
cation (%)

CO2-added Time of alkali 
explosion (min)

Cellulose Hemicellulose Lignin Ash

Untreated - - 35.24 22.84 37.16 2.51
Blank - 30 63.12 9.88 11.72 0.69 68.46
A  + 15 76.19 5.96 9.79 0.57 73.65
B  + 30 77.88 6.45 7.42 0.34 80.03
C  + 45 79.92 5.40 7.23 0.59 80.54

Fig. 1  FTIR spectra of EFB before and after pretreatment



19135Biomass Conversion and Biorefinery (2024) 14:19131–19138 

1 3

3.2  Separate hydrolysis and fermentation (SHF) 
of EFB

Figure 2 shows the changes in glucose production during the 
hydrolysis of EFB. It was observed that glucose production 
of EFB after combined pretreatment using  CO2 impregna-
tion followed by alkali explosion was higher than EFB after 
alkali explosion (blank sample). The tendency of glucose 
production in the A, B, and C samples was similar. After 72 h 
of hydrolysis, 0.81–0.85 g glucose/g substrate was obtained 
from the A, B, and C samples, while a blank sample pro-
vided 0.68 g glucose/g substrate. Moreover, the glucose pro-
duction of sample A with 15 min of reaction alkali explo-
sion process was higher than glucose of blank sample with 
30 min of alkali explosion process. Therefore, the utilization 
of  CO2 as an impregnating agent could reduce the time of 
alkali explosion.  CO2 impregnation allows the biomass’s 
pores to expand, improving the result of alkali explosion and 
enhancing enzyme accessibility during the hydrolysis step 
[21, 38]. An accomplishment rate of the hydrolysis process 
is influenced by the reduction of lignin levels in biomass, the 
disruption of component structure of lignocellulose, and the 
breakdown of the crystallinity of cellulose [39].

According to Table 3, hydrolysis of EFB after combined 
pretreatment using  CO2 impregnation followed by alkali 
explosion achieved more than 98% of glucose yield (cellu-
lose basis) and 80% of glucose yield (substrate basis). These 

results were higher than the blank sample, obtaining 97.94% 
of glucose yield (cellulose basis) and 68.00% of glucose 
(substrate basis). Therefore, it indicated the significance of 
utilization of  CO2 as an impregnation agent before alkali 
explosion to enhance the hydrolysis result.

Table 4 shows ethanol production and ethanol yield from 
the fermentation of EFB. After 72 h of fermentation, the eth-
anol concentration of blank, A, B, and C samples was 27.29, 
32.80, 35.30, and 37.60 g/L broth fermentation, respec-
tively. The ethanol yield of EFB after combined pretreat-
ment using  CO2 impregnation followed by alkali explosion 
was higher than EFB after alkali explosion (blank sample). 
Ethanol yield (cellulose basis) of A, B, and C samples was 
between 76.84 and 83.80 w/w% and a range of 32.80 – 37.60 
w/w% (substrate basis), while ethanol yield of the blank 
sample was 76.22 w/w% (cellulose basis) and 27.29 w/w% 
(substrate basis). The results indicated that ethanol yield 
increased in line with increasing explosion time in com-
bined pretreatment. More interesting, after combined pre-
treatment (A) at 15-min reaction time, the sample obtained 
higher ethanol production than the sample after only alkali 
explosion (blank). Adding  CO2 impregnation before alkali 
pretreatment could reduce reaction time in alkali explosions 
that use high temperatures and pressure. Thus, energy and 
cost saving for the pretreatment process could be achieved.

As a comparison with other studies, Table 5 shows several 
studies that have been reported regarding EFB pretreatment 
and pretreatment technology using  CO2. Pretreatment of EFB 
using steam explosion and combined  CO2-added steam explo-
sion [21] obtained lower percent delignification and glucose 
yield as well as ethanol yield than results from this study. 
Alkali explosion [31] or superheated steam explosion followed 
by alkaline autoclaving pretreatment [40] of EFB also pro-
vided slightly lower percent delignification and glucose yield 

Fig. 2  Change in glucose production from the blank, A, B, and C 
samples

Table 3  Yield of glucose in hydrolysis process

Sample code Hydrolysis time 
(h)

Glucose yield 
(cellulose basis) 
(w/w%)

Glucose yield 
substrate basis) 
(w/w%)

Blank 72 97.94 68.00
A 98.87 80.82
B 99.08 83.56
C 99.33 85.40

Table 4  Ethanol concentration 
and yield in fermentation 
process

Sample code Fermentation 
time (h)

Ethanol (g/g cellulose 
in substrate)

Ethanol yields (cellu-
lose basis) (w/w%)

Ethanol yields (sub-
strate basis) (w/w%)

Blank 72 27.29 76.22 27.29
A 72 32.80 76.84 32.80
B 72 35.30 80.80 35.30
C 72 37.60 83.80 37.60
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as compared to results in this study. Moreover, the application 
of  CO2 in pretreatment was also used for other biomasses such 
as sugarcane bagasse and leaves, rice straw, corn cob, and corn 
stalk [19, 41–44]. From their studies,  CO2 was considered to 
apply in pretreatment as a catalyst or impregnation agent.

4   Conclusion

Pretreatment of EFB using  CO2 impregnation followed by 
alkali explosion could provide higher percent delignifica-
tion, glucose, and ethanol yield as compared to pretreat-
ment alkali explosion. EFB from combined pretreatment 
with  CO2 impregnation followed by 15 min of alkali explo-
sion obtained 73.65% of delignification. This result was 
higher than the delignification of EFB from 30 min of alkali 
explosion (blank sample) of 68.46%. Furthermore, in the 
combined pretreatment, a longer time in alkali explosion 
leads to an increase in the percent of delignification, yield 
of glucose, and ethanol. The highest result was 80.54 w/w% 
of delignification, 99.33 w/w% of glucose yield, and 83.80 
w/w% of ethanol yield from EFB after combined pretreat-
ment with 45 min of alkali explosion. Therefore, adding  CO2 
as an impregnation agent in alkali pretreatment is believed to 
enhance the delignification, glucose, and ethanol yield. Fur-
ther studies are needed to optimize the NaOH concentration 
and temperature of  CO2 impregnation on combined pretreat-
ment to reduce chemicals and energy uses in the process.
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