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Abstract
This work aims to recycle peanut shells (residues) to use them as raw materials to produce nanocrystal cellulose. Two methods 
were used to synthesis zinc oxide nanoparticles (ZnO NPs) on cellulose nanocrystals (CNCs), in order to form the cellulose/
zinc oxide nanoparticles (CNC/ZnO NPs). According to the results, Fourier transform infrared, X-ray diffraction, UV–visible, 
scanning electron microscopy, and energy-dispersive X-ray analysis characterized the CNC/ZnO NPs. UV-Visble spectra 
showed maximum absorption at 366 nm related to the zinc oxide. Fourier transform infrared spectra exhibit a weak peak at 
432  cm−1 attributed to zinc oxide vibration, confirming the formation of zinc oxide nanoparticles on cellulose nanocrystals. 
X-ray diffraction confirmed the crystalline nature of cellulose/zinc oxide nanoparticles with an average size between 20 and 
28 nm. Scanning electron microscopy survey shows that the obtained nanoparticles have a lattice shape of rods surrounded 
by zinc oxide nanoparticles with a hexagonal wurtzite structure, as established by energy-dispersive X-ray analysis to confirm 
the presence of carbon, zinc, and oxygen. These cellulose/zinc oxide nanoparticles were tested against human pathogenic 
bacteria (Escherichia coli ATCC25922, Klebsiella pneumoniae ATCC 10,031, Staphylococcus aureus ATCC 25,923) and 
a fungus (Candida albicans ATCC 14,053). The obtained results revealed that these cellulose/zinc oxide nanoparticles 
synthesized from peanut shells have the effectiveness of an antibacterial activity against Gram ( +) and Gram ( −) bacteria 
together, and it shows excellent antifungal activity against Candida albicans; it seems to have an immense potential as the 
source of antibacterial and antifungal compounds. These results indicate that these newly fabricated cellulose/zinc oxide 
nanoparticle bio-nanocomposites by both methods contain potential antimicrobial components that may be of great benefit 
in the development of antimicrobial pharmaceutical industries and can be used as a treatment against various diseases caused 
by these organisms. It can also be employed in food systems as a novel preservative to inhibit microbial growth and repress 
the synthesis of exotoxins or control the growth of spoilage and disease-causing microorganisms.
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ZNI  zones inhibitions
DMSO  dimethyl sulfoxide

1 Introduction

The appearance and development of nanotechnology have 
brought new possibilities and broader perspectives to the 
world, as well as allowing people to achieve further goals 
by manipulating materials at the nanometer scale; it has trig-
gered a paradigm shift in global life due to its application in 
several fields [1, 2]. Through the many numbers of existing 
nanoparticles, metal oxide nanoparticles are considered to be 
the most used due to their physical, chemical, and biological 
properties [3–5].

Zinc oxide (ZnO) is a semiconductor material. It has a 
direct wide bandgap of 3.37 eV and a large binding energy 
of 60 meV at room temperature. ZnO NPs are commonly 
used in modern nanotechnology research because of their 
physical and chemical properties, and wide range of appli-
cations, such as oleic acid batteries [6], gas sensors and 
catalysts [7–10], and antibacterial agents [11]. Also, it is 
an effective bactericide against Gram-positive and Gram-
negative bacteria [12, 13]. ZnO NPs have been reported to 
disrupt membrane structure and alter permeability, thereby 
accumulating in the cytoplasm of bacteria [14].

The agricultural domain annually produces large quanti-
ties of plant waste which pollutes the environment and con-
tains a high percentage of cellulose. Cellulose is one of the 
most abundant natural polymers [15], because it is derived 
from renewable, biodegradable, non-toxic, and inexpensive 
sources [16, 17]. CNCs are characteristically rod-formed 
monocrystals, 1 to 100 nm in diameter [18].

CNCs can be produced from various agricultural wastes 
by many extraction methods like high-pressure mechanical 
[19], enzymatic hydrolysis [20], acid hydrolysis [21], and 
ultrasound of ultrasonication [22].

CNCs show such outstanding properties as a large aspect 
ratio [23], minimal thermal degradation behavior [24], good 
mechanical properties [25], and a big capacity for absorption 
of metallic particles [26]. Can be used in bio-energy, chemi-
cal, catalytic, and biomedical applications [27].

Peanut (Arachis hypogaea L.) [28] is a leguminous plant 
of the Arachis genus, native to Central and South America, 
and is an important and abundant agricultural product in 
many countries [29, 30], especially Algeria, for human and 
animal production; mass consumption is widespread in 
many different forms of food.

The aim of this study was to evaluate the CNCs produced 
from peanut shells in the wilaya of El-Oued (Algeria). The 
CNC extraction method used in this study is a combination 
of acid hydrolysis and ultrasound of ultrasonication. Also in 
this work, we synthesized CNC/ZnO NPs in two different 

methods by loading ZnO NPs on the CNCs to obtain the cor-
rect component (CNC/ZnO NPs). The resulting CNC/ZnO 
NPs were characterized using Fourier transform infrared 
spectroscopy, scanning electron microscopy (SEM), X-ray 
diffraction, and ultraviolet–visible spectroscopy (UV). In 
addition, this study also evaluates the antibacterial and anti-
fungal activities of the resulting nanoparticles.

2  Experimental section

2.1  Materials

Peanut shells were collected from the city of El-Oued in 
Algeria. Hydrochloric acid (HCl, BioChem, 37%), sodium 
hydroxide (NaOH, BioChem, 99%), sodium hypochlorite 
 (NaClO2, 99%), sulfuric acid  (H2SO4, BioChem, 96%), urea 
 (CH4N2O, Sigma-Aldrich, 99%), zinc nitrate (Zn(NO3)2, 
BioChem, 99.7%), dimethyl sulfoxide ((CH3)2SO, Sigma-
Aldrich, 99.9%), and zinc chloride  (ZnCl2, Sigma-Aldrich, 
98%) were used as received.

Bacteria Escherichia coli (ATCC25922), Klebsiella 
pneumoniae(ATCC 10,031), and Staphylococcus aureus 
(ATCC 25,923) and one species of yeast Candida albicans 
(ATCC 14,053).

2.2  Preparation of cellulose/zinc oxide 
nanoparticules

2.2.1  Isolation of cellulose

Peanut shells were repeatedly washed using water to remove 
impurities and dried at a controlled temperature (60 °C for 
72 h). After drying, they were grounded in an electric mill 
and classified by a 500-μm sieve.

The shells are first rinsed with hot water, using a (W/V) 
(1:6)/(g: ml) adapter at 100 °C for 15 min to remove some 
compounds such as waxes, phenolic compounds, sugars, and 
water-soluble polysaccharides. Then, the treated shells were 
dried at 50 °C for 12 h. Then, the waste was treated with 
HCl solution (1 M) at 85 °C for 30 min to remove acid-
soluble substances. After that, the residue was filtered and 
washed several times with deionized water until the pH was 
neutral, followed by a basic treatment with NaOH solution 
(1 M) at 85 °C for 1 h to partially remove hemicellulose 
and lignin. Lastly, the residue was filtered and rinsed sev-
eral times with deionized water to neutral pH, followed by 3 
times of bleaching with  NaClO2 solution (2%) at 95 °C for 
1 h. Finally, the cellulose fibers were obtained by centrifuge 
separation. The precipitate was washed several times with 
deionized water and passed through a centrifuge (5000 rpm; 
15 min) to neutral pH. Fibers were sonicated for 20 min and 
dried in a convection oven at 65 °C for 24 h [31].
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2.2.2  Preparation of cellulose nanocrystals

Cellulose nanocrystal (CNCs) was isolated by hydrolyz-
ing cellulose fibers (1 g) with 50 ml sulfuric acid solution 
 (H2SO4) with different concentrations (C H2SO4 = 40%, 38%, 
and 36%), respectively, at room temperature for 4 h [32]. The 
resultant suspension was diluted 10 times with cold water 
(4 °C). Followed by centrifuge at 5000 rpm to reduce its 
water content and washed until a neutral pH. Finally, the 
samples of CNCs obtained were treated with ultrasound of 
ultrasonication and dried at 50 °C.

2.3  Syntheses of CNC/ZnO NPs

In this work, two methods to synthesis the CNC/ZnO NPs 
were used.

2.3.1  The first method (CNC/ZnO NPs.M1)

Modified protocols from previous studies were used for the 
synthesis of CNC/ZnO NPs by a green method using plant 
extract [33–39]. In this method, we prepared a mixed aque-
ous solution to dissolve CNCs by directly mixing distilled 
water, NaOH, and urea. The concentrations of NaOH and 
urea were respectively, 7% and 12%. All concentrations were 
calculated by weight percent [40]. The quantity of dried 
CNCs was immersed in the solvent and stirred at ambient 
temperature for about 30 min until it became transparent 
without any natural fibers cellulose solution; cellulose is 
considered to be completely dissolved. The mixture was 
then cooled to − 20 °C for 17 h. After 17 h, the mixture 
was heated and melted to 80 °C, and zinc nitrate solution 
(50 mM) was added dropwise (by the gel solution method) 
to the dissolved mixture solution until the color changed to 
milky white. The reaction was carried out at 80 °C for 4 h 
using reflux with continuous gentle stirring. We then stopped 
the reaction by diluting and cooling the mixture.

2.3.2  The second method (CNC/ZnO NPs.M2)

For this method, we used CNCs as the insoluble solid. In 
the reflux assembly, 1 g of CNCs milled to  ZnCl2 solution 
was added (50 mL/0.2 M), stirring and heating the mixture 
to 80 °C (about 30 min).

After 30 min, NaOH solution (50 ml/1 M) was added 
dropwise to the mixture, then continue the stirring and heat-
ing at the same temperature, 80 °C, for 2 h. After that, the 
mixture was cooled and the precipitate was recovered using 
a centrifuge.

The white solid products (CNC/ZnO NPs) of the two 
methods were collected separately by centrifugation (5000 
t/min, 10 min) at room temperature and washed several 
times with distilled water to make the pH neutral. It was 

then sonicated for 30 min and dried at 70 °C to completely 
convert the remaining zinc hydroxide to zinc oxide.

2.4  Characterization of CNC/ZnO NPs

The characterization of CNC/ZnO NPs depended on the use 
of the following techniques: FT-IR, XRD, UV–Vis, SEM, 
and energy-dispersive X-ray analysis (EDAX).

2.4.1  Fourier transform infrared spectroscopy

Raw materials, purified cellulose, and CNC/ZnO NPs 
were analyzed using Fourier transform infrared spectros-
copy. Analysis was performed using an Agilent Cary 630 
FTIR instrument to examine functional group changes due 
to cellulose purification, preparation of CNCs/ZnO NPs, 
and comparison between samples. Spectra were collected 
under the following conditions, with a quantity range of 
4000–400  cm−1, 16 scan samples, 16 background scans, and 
a resolution of 16  cm−1.

2.4.2  X‑ray diffraction analysis

X-ray diffraction spectra were obtained using X-ray diffrac-
tion to observe the diffraction patterns of all developed sam-
ples (XRD, Mini Flex 600 Rigaku) with Cu-kα radiation at 
Cu-k and wavelength (λ = 1.5418 Å). Data were collected at 
2θ values between 10° and 80° and room temperature.

The crystallinity index (CrI) of cellulose was calculated 
from the XRD patterns according to the Segal method [41]:

where I
002

 is the maximum (002) lattice diffraction intensity 
at 2θ = 23.0° and I

am
 is the diffraction intensity at 2θ = 18°.

Calculate crystal size using Scherer’s equation [42, 43].

where K = constant = 0.91, λ is the X-ray wavelength = 1.5418, 
θ = Bragg angle, and β = full width at half maximum intensity 
of the high-intensity peak corresponding to the diffraction 
level.

2.4.3  UV–visible absorption spectroscopy

UV–Vis absorption spectroscopy plays a very important 
role in examining the optical properties of nanoparticles 
[44]. The optical properties of CNC/ZnO NPs were studied 
using UV–visible transmittance spectroscopy by means of 
Shimadzu device (the device was Shimadzu-1800, Japanese 
UV–vis spectrophotometer) worked in the wavelength range 
of 200–900 nm. The analysis was performed in a quartz cell 
using distilled water as the reference solvent.

(1)CrI(%) =
((

I
002

− I
am

)

∕I
002

)

× 100

(2)CrS = (k × �)∕(� × cos�)
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2.4.4  Scanning electron microscope

The morphology of the CNC/ZnO NPs was investigated 
using a scanning electron microscope (SEM-TESCAN 
VEGA 3) equipped with EDAX at an accelerating voltage 
of 20 kV.

2.5  Evaluate the antimicrobial and antifungal 
activities of CNCs/ZnO NPs

Agar well diffusion method has been used to determine the 
antimicrobial activities of different samples extracted from 
peanut shells (CNC, CNC/ZnO NPs.M1, and CNC/ZnO 
NPs.M2) each sample at a concentration of 20 mg/ml in 
DMSO solution [45], against Gram-positive bacteria (Staph-
ylococcus aureus), Gram-negative bacteria (Escherichia coli 
and Klebsiella pneumonia), and one fungus (Candida albi-
cans), which is similar to disk streaming. This method has 
been modified from [46].

Mueller Hinton agar applied for bacterial culture and Sap-
poro agar applied for yeast culture into a 90-cm Petri dish. 
From 18 to 24 h, small colonies were formed, making bacte-
rial suspensions of each strain in 9 ml of sterile physiological 
water (diluted tenfold). After the agar has solidified in the 
petri dish, raked pipette was used to inoculate the surface 
with the bacterial suspension and spread the bacterial sus-
pension with 100 μl of the dilution solution. Agar wells with 
a diameter of 6 mm were made in each of the agar plates 
using a sterile stainless steel cork borer and filled 50 µl of the 
sample. A standard antibiotic disk of levofloxacin (a refer-
ence antibiotic and antifungal drug) was used as a positive 
control, and a disk soaked in DMSO was used as a negative 
control. The test was performed twice, using an average of 
two sample wells during each test.

After overnight incubation at 37 °C. The diameter of the 
zone of inhibition (IZ) around the disk containing the sample 
to be tested was measured.

3  Results and discussion

3.1  FTIR spectroscopy

The FTIR analysis spectra of untreated and treated peanut 
hull fibers are shown in Fig. 1a, showing similar patterns in 
the range of 4000 to 400  cm−1. The first absorption range 
of all samples is centered at 3650 to 3000  cm−1, indicat-
ing hydrogen-bonded O–H groups [47, 48]. The presence 
of this hydroxyl group explains the presence of cellulose, 
lignin, and water in the fibers. Within this range, a reduction 
occurs in the hydrogen bonding strength of the cellulose 
hydroxyl groups, and thus, the hydrophilic behavior was also 
observed in all treated fibers. In the range between 2980 

and 2800  cm−1 in the CNC spectrum, Trans, an indication 
that the number of –CH and –CH2 vibrations originating 
from the –CH and –CH2 nanobattery samples is increased 
[49]. The characteristic band of C–C has a benzene ring at 
1634  cm−1 and a peak at 2886  cm−1, corresponding to C–H 
stretching vibrations in cellulose, hemicellulose, and water 
[49–51].

The peak at 1734  cm−1 represents the C = O stretching 
in the lignin carboxylate bond, which may be related to the 
stretching vibration of the C = O group and the ester group 
in hemicellulose [50]. The peak at 1243  cm−1 for untreated 
fibers can be explained by the carbon dioxide stretching 
of acetyl groups in lignin [52, 53]. The peak observed at 
1618  cm−1 is the result of water uptake [50, 54, 55].

We also noticed an improvement in peaks from the 
original sample (peanut shells) to other samples due to the 
removal of fat and non-cellulosic material after various 
chemical treatments. The 1156–896  cm−1 peaks show the 
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Fig. 1  FT-IR spectra (a) for CNCs isolated from peanut shells 
 (CH2SO4 = 36%, 38%, and 40%); b for the composites CNC/ZnO NP 
synthesis from two methods (CNC/ZnO NPs.M1 and CNC/ZnO NPs.
M2)
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C–O–C bond vibration and C–H bond vibration of glucose, 
respectively [56, 57]. The peak at 1025  cm−1 in all spectra 
is due to the (1–4) d-glycosidic bond between the monosac-
charide bands as an extension [50, 54, 58]. Due to the strong 
interaction between the oxygen atoms of CNCs and ZnO 
molecules, their absorption intensity increases throughout 
the treatment stages and shows a transition to higher wave-
numbers and becomes broader [18, 59].

The absorption bands at 425   cm−1 and 432   cm−1 are 
shown in Fig. 1b which correspond to the stretching vibra-
tions of Zn–O bonds in ZnO from CNC/ZnO NPs (M1 et 
M2) and match the spectra of pure ZnO. Small differences 
can also be observed between Zn–O adsorption bands due 
to variations in lattice parameters of ZnO NPs [60], and dif-
ferences in Zn percentage in nanocomposite synthesis (con-
firmed by EDAX).

3.2  Crystal structure and composition

Figure 2a shows the XRD pattern of CNCs extracted from 
peanut shells. Three distinct main peaks were observed. 
An initial peak was detected at 2θ = 16°, at the lattice level 

(110), indicating the presence of amorphous components of 
cellulose and CNCs [51, 61–63].

It can be seen that the main sharp crystalline peaks for 
CNCs on each pattern are formed at about 2θ = 22° of the 
(002) lattice plane [51, 63–65]. The highest density of CNCs 
was in the samples treated with 40% of  H2SO4 solution con-
centration. The peak appears at 2θ = 34° of the (004) lattice 
plane, which is due to the amorphous part of cellulose and 
CNCs [51, 63, 66].

Also, from XRD diffractograms, we determined the crys-
tallinity index and crystal average size of extracted CNCs. 
According to Table 1, the higher CrI of the CNCs after acid 
treatment with concentration  CH2SO4 = 40% is 77.95%, and 
the CrS is 8.88 nm. The reason for this is due to the reduc-
tion of cellulose chains after the removal of amorphous com-
ponents such as hemicellulose, pectin, lignin, and impurities 
in the fibers, and the reduction of hydrophobicity after treat-
ment [67, 68]. Therefore, this sample was approved for the 
assembly of CNC/ZnO NPs.

Figure 2b shows the XRD pattern of CNC/ZnO NPs.M1 
and CNC/ZnO NPs.M2 synthesized from CNCs with ZnO 
NPs of peanut shells, which were synthesized by two dif-
ferent methods. The diffraction peaks are 2θ: 31.8°, 34.47°, 
36.29°, 47.59°, 56.64°, 62.92°, 66.45°, 68.02°, and 69.16° 
corresponding to (100), (002), (101), (102), (110), (103), 
(200), (112), and (201) crystal planes [69]. All diffraction 
positions and relative intensity peaks are correctly set using 
JCPDS file card 0,361,451 and are in a good fit to the hex-
agonal ZnO wurtzite structure in previously reported work 
[69].

The CrS of CNC/ZnO NPs varied between 20.14 nm in 
the first method to 27.31 nm in the second method. The 
different properties of each method used lead to a different 
degree of stabilization of Zn(OH)2 NPs against agglomera-
tion of CNCs. This leads to the formation of ZnO NPs on the 
CNCs with the observed variation in its density (confirmed 
by DREX), crystallite size, and final shape of CNCs/ZnO 
NPs formed.

To obtain CNCs, here mild acid–alkali conditions were 
used for the fractioning process of biomass (peanut shells). 
Alkaline treatment in cellulose extraction leads to formation 
of crystals, which in turn leads to the disorder of fibrous 
crystals, which are considered amorphous because they 

Fig. 2  XRD patterns of a CNCs  (CH2SO4 = 36, 38, and 40%); b super-
impose curves of CNCs  (CH2SO4 = 36, 38, and 40%)

Table 1  Crystallization Index (CrI) and crystal size (CrS) of CNC/
ZnO NPs

Samples CNCs 
(36%)

CNCs 
(38%)

CNCs 
(40%)

CNC/ZnO 
NPs.M1

CNC/ZnO 
NPs.M2

CrI (%) 69.714 68.757 77.957 / /
CrS (nm) 11.82 11.90 8.88 20.14 27.31
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are not part of the crystals. Swelling of the structure due 
to penetration of the cellulose fibers by NaOH results in 
an increase in crystal size [70], while the acid treatment of 
HCl during the extraction of cellulose reduces the size of the 
crystals. This approach ensures the minimum degradation of 
valuable substances contained in biomass such as pectic and 
hemicellulosic polysaccharides.

Also, low-temperature process was chosen contrary to 
high-temperature hydrothermal processes in preparation of 
CNCs by the second acid treatment with  H2SO4 solution. 
The polysaccharides are weakly bonded among each other 
and are packed in less structured tissue compared with pea-
nut shell biomass. Hence, the low temperature is sufficient 
enough to improvement and miniaturization of cellulose 
crystal size which makes beneficial changes as it increases 
the specific surface area and water absorption capacity of 
bio-fibers, depending on their crystal size, as increasing 
crystal size can enhance the resistance to moisture absorp-
tion and chemical reactions of the fibers.

These characteristic peaks of pure ZnO observed in the 
XRD patterns confirm the formation and growth of ZnO NPs 
on CNC. Furthermore, XRD analysis also revealed that all 
recorded peak intensity distributions confirm the hexagonal 
writing structure of ZnO [70, 71]. Although the positions of 
the different ZnO peaks were similar for the two different 
methods, the width of the peaks decreased and the intensity 
of the peaks gradually increased by increasing ZnO content, 
indicating an increase in crystal size and crystallinity [72].

It can be seen that the reflection peaks are broadened in 
the samples synthesized by the first method, indicating that 
the particle size in the CNC/ZnO NPs.M1 is reduced and has 
more ZnO NPs (Fig. 3).

All the corresponding CNCs peaks can also be observed 
in samples with low intensities, especially in the first sample, 
which may be due to formation of a thick layer from ZnO 
NPs as a coating for CNCs (confirmed by SEM images), 
which results in a difficulty determining the value of the CrI.

3.3  Bandgap and optical properties

Figure. 4a shows the UV–Vis absorption spectra of CNC/
ZnO NPs. UV–Vis spectroscopy revealed a maximum 
absorption near 366 nm, which may be an indicator of ZnO 
NP formation. This peak confirms the synthesis of pure ZnO 
NPs in the CNCs and the use of peanut shells to obtain CNC/
ZnO NPs. Furthermore, it has been reported that the peak 
position of the UV–Vis spectrum correlates with nanopar-
ticle size and color changes with decreasing nanoparticle 
crystal size [72].

The bandgap energy is calculated based on the numeri-
cal derivative of the optical absorption coefficient using the 

Fig. 3  XRD patterns of (a) Cs, (b) CNC/ZnO NPs.M1, (c) CNC/ZnO 
NPs.M2, and (d) ZnO NPs

Fig. 4  a UV–Vis absorption spectrum, b plots of (αhʋ)2 versus hʋ of 
CNC/ZnO NPs.M1 and CNC/ZnO NPs.M2.
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Tauc relationship between the optical absorption coefficient 
(α), the photon energy (hv), the constant (A), and the direct 
bandgap energy (eg). In Fig. 4b, it was found to have a band 
gap energy value of 3.66 eV for the ZnO NPs synthesized by 
the two methods, which is in correlation with the previously 
reported value [73]. For example, differences in different 
ratios may be due to differences in average crystal size in 
NPs.

3.4  Morphological investigation

The surface morphology of samples is a very important tool 
to investigate their microstructure. SEM was used to investi-
gate the shape and morphology of the CNC/ZnO NPs. Fig-
ure 5a–d show SEM images of ZnO installed on the surface 
of CNCs extracted from peanut shells. The ZnO on the sur-
face of the CNCs was different between the two methods. In 
the sample manufactured in the first method, Fig. 5a–c, the 
general surface structure shows that the CNCs are smooth 
and light gray and completely and uniformly covered with 
spherical-shaped granules without any cracks or pores. The 
positioning of ZnO on the surface of the CNCs in this way 
indicates that it is dominant on the surface of CNC/ZnO 
NPs. Further analysis of CNC/ZnO NPs.M1 by EDAX, as 
shown in Fig. 6a confirms the associated data, the presence 
of zinc and oxygen, with a weight ratio of approximately 

56.93% Zn and 26.22% O indicating the presence of zinc 
oxide in addition to the weight ratio of the affinity 16.85% 
C indicating the presence of cellulose.

In the sample manufactured by the second method in 
Fig. 5b–d, the results showed a separate and heterogene-
ous random positioning of white spots on a dark gray mesh 
background. This gray lattice corresponds to CNC particles, 
and white spots in hexagonal shapes with smooth surfaces 
dispersed are ZnO NPs. In this method, the growth of ZnO 
NPs on of CNCs was at a lower percentage. This is con-
firmed by the additional analysis by EDAX (Fig. 6b), in 
which zinc was in a weight ratio of approximately 13.69% 
which is much less than the first sample.

3.5  Evaluation of the antibacterial and antifungal 
activities of CNC/ZnO NPs

In this study, the antibacterial activity was qualitatively 
assessed according to the presence of a zonal inhibitor and 
the zonal diameter (IZ) compared to levofloxacin. This aims 
to look for the susceptibility of the strains to the studied sam-
ples and the antibiotics presented in Fig. 7 can be observed 
from the formation of clear areas. The clear area is the area 
covered by bacteria and yeast, so it is denoted as the zone of 
bacterial inhibition (IZ) (Table 2).

Fig. 5  SEM image: a, c CNC/
ZnO NPs.M1; b, d of CNC/
ZnO NPs.M2
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The ZNI indicated the effectiveness of biocomposites 
inhibiting bacteria. The wider the clear zone, the better the 
ability of biocomposite to inhibit bacterial [74].

The obtained results showed that CNCs hybridized with 
ZnO NPs prepared by both methods have a positive reaction 
and close sensitivity against all three tested Gram ( −) and 
Gram ( +) strains, as the results of both samples are close 
and have almost the same intensity of effect (ranging from 9 
to 11 mm). About the antifungal activity, it showed a strong 
sensitivity against Candida albicans, as the sample prepared 
by the second method showed a higher inhibition (19 mm) 
than the sample prepared by the first method (17 mm). This 
confirms that CNC/ZnO NPs extracted from peanut shells 
have antibacterial and antifungal properties, whereas the 

antibiotic used in general represented a strong inhibition 
of all tested bacterial strains except for Candida albicans. 
Although this inhibition varies from one strain to another, it 
remains superior to studied samples.

Antimicrobials are defined as substances used to destroy 
microorganisms or prevent their growth and include antibiot-
ics and other antibacterial and antifungal agents.

From these results, the addition of ZnO NPs was proven 
to be able to increase the ability of CNCs to inhibit bacteria 
by 3 to 4 mm in the IZ, and to inhibit fungi by 8.5 mm and 
11.5 mm in the IZ in CNC/ZnO NPs.M1 and CNC/ZnO NPs.
M2, respectively. On the other hand, the addition of ZnO 
NPs more percentage to CNCs did not show an increment in 
the area of inhibition. This could be due to the limited ability 

Fig. 6  EDAX: aCNC/ZnO NPs.
M1; b CNC/ZnO NPs.M2

Fig. 7  Antibacterial and 
antifungal activity of samples 
by well diffusion method. A 
Escherichia coli; B Klebsiella 
pneumonia; C Staphylococcus 
aures; D Candida albicans 

Table 2  The inhibition zone 
of antibacterial and antifungal 
activity of the samples by well 
diffusion method (inhabitation 
zones are given in mm)

Activity: Antibacterial Antifungal

Bacterial strains: Escherichia coli
ATCC 25,922

Klebsiella pneumonia 
ATCC 10,031

Staphylococcus aureus
ATCC 25,923

Candida 
albicans ATCC 
14,053

ZnO NPs 7.16 ± 0.235 7.16 ± 0.235 6.83 ± 0.235 14.33 ± 0.471
CNCs 7 ± 0.00 6.83 ± 0.235 7.16 ± 0.235 8.16 ± 0.235
CNC/ZnO NPs
M1

10.33 ± 0.471 11.33 ± 0.471 11 ± 0.00 16.66 ± 0.471

CNC/ZnO NPs
M2

11.33 ± 0.471 11 ± 0.00 9.33 ± 0.471 19.66 ± 0.471

Levofloxacin 29.33 ± 0.471 22.66 ± 0.471 27.66 ± 0.471 /
DMSO / / / /
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of ZnO NPs to bind CNCs. Based on the chemical structure 
of CNCs and ZnO NPs, the bonds that occurred in the bio-
composite are strong hydrogen bonds between the hydroxyl 
group of ZnO NPs dissolved in water and the hydroxyl group 
of CNCs. From the dissolution difficulty of CNCs and ZnO 
NPs, it cannot bind all CNCs by ZnO NPs[75].

The biocomposite mixture is thought to be able to inhibit 
microbes by destroying the structure of cell walls and dena-
turing proteins, resulting in enzyme deactivation [76–78].

This happens because the process of inhibiting the growth 
of microorganisms is generally caused by several things 
including the presence of disruptive compounds on the cell 
walls, causing increased cell membrane permeability result-
ing in loss of cell components, inactivity of enzymes in cells, 
and the process of destruction or damage to genetic material 
[79, 80].

According to Candan et al. [81], the effect of water-sol-
uble substances is weaker than that of water-insoluble sub-
stances. This may indicate that water-insoluble compound 
molecules can insert themselves into and disrupt bacterial 
cell membranes.

Padmavathy et al. [82], ZnO NPs also have an abrasive 
surface roughness that impairs the antibacterial process and 
destroys the bacterial membrane of both Grampositive and 
Gram-negative bacteria.

Jones et al. investigated the antibacterial activity of ZnO, 
 TiO2, CuO,  CeO2,  Al2O3, and MgO against the bacterium 
Staphylococcus aureus and compared their antibacterial 
activities. The ZnO NPs were among them and showed sig-
nificant growth inhibition [83].

Yamamoto et al. investigated the ability of Escherichia 
coli and Staphylococcus aureus to control bacteria cultured 
in an infusion medium to the influence of ZnO NPs size. 
It was found that the antibacterial activity increased with 
decreasing particle size. Regarding our antifungal activity 
results, they are interesting. Therefore, it is necessary and 
beneficial to develop natural products with antibacterial 
activity [84].

The biocomposite CNC/ZnO NPs.M2 was chosen to be 
the most optimum sample with the optical and morphologi-
cal properties with anti-microbial activities tested.

4  Conclusion

Cellulose is the most abundant biopolymer on earth, being 
the main structural component of the plant cell wall, with 
chemical functional groups that can be modified for the pur-
pose of using it in a variety of useful applications.

The originality of this work is based on the recycling of 
plant waste represented in peanut shells. In this work, CNCs 
were extracted from peanut shells by acid treatment method 

using different concentrations of  H2SO4 solution (36%, 38%, 
and 40%) as a shape, size, and crystallinity index.

The particle size of CNCs from different  CH2SO4 = ( 36%, 
38%, and 40%) are 11.82 nm, 11.90 nm, and 8.88 nm, and 
the crystallinity index is 69.71%, 68.75%, and 77.95%, 
respectively.

Then, the CNC/ZnO NP compound was prepared by two 
different methods. In the first stage, we relied on the first 
method of dissolving cellulose in a basic solution, while 
in the second method we used cellulose crystals directly 
without dissolving them. In the second stage, ZnO NPs were 
prepared by sol–gel synthesis method on the CNCs. The 
particle size of CNC/ZnO NPs from the first method and 
second methods is 20.14 nm and 27.31 nm, and the band gap 
energies are 3.66 eV and 3.66 eV, respectively.

The obtained CNC/ZnO NPs showed good antimicrobial 
activity and were significantly more resistant in yeast than 
in Gram-positive and Gram-negative bacteria. A decrease 
in the antimicrobial activity was observed in the sample 
prepared by the first method, which contained a higher pro-
portion of zinc particles (in EDAX) although it had a lower 
particle size, which indicates a possible mechanism of anti-
bacterial action, where direct contact with cell walls leads to 
the release of  Zn+2 ions from the CNC/ZnO NPs in limited 
locations to inhibit microbes by destroying the structure of 
the cell wall.

In conclusion, from the current study, these results indi-
cate that the CNC/ZnO NPs tested in this study by both 
methods contain potential antimicrobial components that 
may be of great benefit in the development of antimicro-
bial pharmaceutical industries and can be used as a treat-
ment against various diseases caused by these bacteria. It 
can also be used as a natural preservative for food to elimi-
nate or control the growth of spoilage and disease-causing 
microorganisms.

The present findings will form a basis for selecting certain 
plant species for further investigation of the potential discov-
ery of new bioactive natural compounds for it to be benefi-
cial to conduct further studies to better evaluate the potential 
efficacy of this compound as an anti-microbial agent.

Also, based on these results, there is also a need to 
develop more innovative techniques to modify nano-cel-
lulosic composites based on metal oxides as materials of 
interest for a wide range of applications. They can be used 
as multifunctional nanomaterials as solar photocatalysts, 
cells, wastewater treatment, photodetector, and sensors with 
potential applications in coatings, biomedical, and packag-
ing materials.
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