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Abstract
The current study aimed to investigate the biosorption of rhodamine B from aqueous solution using an almond shell as an agricultural 
solid waste biosorbent. The almond shell biosorbent was characterized via Fourier transform infrared spectroscopy (FT-IR), scan-
ning electron microscope (SEM) with energy dispersive X-ray (EDX), and point of zero charge  (pHPZC) analyses. The parameters 
that influence the biosorption process such as contact time, initial dye concentration, biosorbent dose, temperature, and pH were 
investigated. According to the correlation coefficient, the data were best outlined by the Langmuir isotherm with adsorption capac-
ity of 14.70 mg  g−1. The adsorption energy found from the D-R model showed that the adsorption process is chemical. The kinetic 
data were described by the pseudo-second-order kinetic and intraparticle diffusion kinetic models. Thermodynamic parameters were 
calculated; it was seen that the biosorption process is spontaneous and endothermic. The density functional theory (DFT) calculation 
results are well-matched with those discovered through experimentation. The results indicate that almond shells could be interesting 
alternative material used for dye removal from aqueous solutions.
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1 Introduction

Water pollution has increased substantially in recent decades 
due to population growth and rapid developments in infra-
structure, industrial, agricultural, and pharmaceutical sectors. 
The main contaminants typically found in water bodies include 
dyes, pharmaceutical waste, heavy metals, radioactive materi-
als, fertilizers, and pesticides [1, 2]. Dyes consist of synthetic 
aromatic compounds along with different functional groups 
[3, 4]. The discharge of wastewater with such dyes into the 

environment causes many problems which have a detrimental 
effect on human health and aquatic life [5]. These dyes are 
synthetic and composed of complex aromatic structures that 
may be carcinogenic and non-biodegradable [6]. Among them, 
Rd-B is one of the dyes found in industrial wastewater. Rho-
damine B is a highly water-soluble dyestuff with the chemical 
formula  C28H31ClN2O3 (479.02 g  mol−1). Rd-B is a dye with 
amphoteric properties, although it is generally included in the 
dyestuff group with basic properties. Therefore, the chromo-
phore groups that give color to the dyestuffs form the cation 
group of the molecule. The oxochromes, which provide the 
binding affinities of dyestuffs, are dimethylamino groups in 
the molecular structure, and chromophore groups are con-
nected by quinoid rings [7, 8]. Rd-B dye is used in the textile 
industry for coloring papers, dying cotton, wood, leather, and 
silk [9]. Rd-B causes produce harmful effects such as tissue 
necrosis in humans, heartbeat increase, shock, and vomiting. 
Therefore, it is important to develop low-cost approaches that 
balance cost and effectiveness to remove organic contaminants 
from residual waters to enable its proper handling either for 
safe waste disposal or for safe reutilization for human use. 
Various physical or chemical methods such as ion exchange, 
reverse osmosis, chemical precipitation, membrane filtration, 
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and adsorption are used for the treatment of wastewater 
[10]. In the removal of colored pollutants from wastewater, 
the adsorption process has the advantages of low cost, high 
selectivity, efficiency, environmental friendliness, and ease of 
application [11–13]. For the adsorption process to be applied 
more effectively, it is of particular importance that the material 
chosen as an adsorbent is economical, easily obtainable, easily 
recoverable, and non-toxic [4, 14–16]. For this purpose, the 
use of cheap, non-toxic, abundant in nature, low-cost adsor-
bents has become widespread in recent years. Natural minerals 
and polymers are widely used such as clay [17], vermiculite 
[18], sepiolite [19], and dolomite [20] and natural minerals 
such as chitosan [21] and lignin [22] in the removal of dyes 
from wastewater. In addition to these adsorbents, the use of 
biosorbent, which is defined as the removal of dyes by living 
or dead biomass, stands out today. The biosorption process 
is very attractive because the biosorbent is inexpensive and 
readily available. Today, various agricultural solid wastes as 
natural biosorbent such as agave bagasse [23], apricot stone 
[24], grapefruit peel [25], corncob [26], avocado seed [27], and 
bamboo shoot shell [28] were utilized for the removal of dyes 
from wastewater. The use of agricultural solid waste biomass 
as a biosorbent is very interesting due to its advantages such as 
the high potential for ion exchange, the biosorbent recovery by 
sorption–desorption cycles, the low cost and easy availability, 
the abundance, and the high surface area [29, 30].

Therefore, this study investigates the feasibility of using 
an almond shell (AS)-based biosorbent to remove Rd-B as a 
cationic dye from an aqueous solution. AS is a readily avail-
able lignocellulosic biowaste feedstock that contains cellulose, 
hemicellulose, and pectic components. The experiments were 
designed, and the operating conditions were optimized. Iso-
therm and kinetic studies were also carried out to identify the 
adsorption properties of the biosorbent. To our knowledge, 
this is the first report on the removal of Rd-B dye using AS 
biosorbent. Moreover, this study also involves quantum chemi-
cal calculations. Quantum chemical parameters were calcu-
lated by the DFT/B3LYP/6-311G method for the unprotonated 
and protonated Rd-B. Finally, to prove the effective application 
of the material, we treat wastewater from paper photography 
processing operations using AS biosorbent showing efficient 
removal of organic contaminants.

2  Methods

2.1  Reagents and instrumentation

2.1.1  Reagents

Rd-B and methanol were purchased from Sigma-Aldrich. 
HCl, NaOH,  KNO3, and ethanol were all purchased from 
Merck. Other all chemicals were of analytical grade.

2.1.2  Instrumentation

FT-IR (Bruker Model: Tensor II), SEM–EDX (SEM Tes-
can Mira3 Xmu), and UV–vis spectrophotometer “Shi-
madzu 160A” measuring device.

2.2  Preparation of biosorbent

The almond shells called Prunus dulcis were obtained 
from the Kaynarlar company in Tokat province in Tur-
key. After collection samples were washed with distilled 
water, dried at room temperature, and then used and 
stored in a polypropylene container for use in biosorption 
experiments.

2.3  Biosorption experiments

To understand the nature of the biosorption process, experi-
ments were carried out in a 10 mL solution volume poly-
propylene tube, at 500 mg  L−1 Rd-B dye concentration, at 
natural solution pH: 5.8, in 100 mg biosorbent mass, and 
at 25 °C for 24 h carried out. The solution was then vigor-
ously stirred, and after 24 h, the concentration of Rd-B dye 
in the equilibrium solution was determined by absorbance 
measurement at λ = 554 nm using a UV–vis spectrophotom-
eter [31]. Biosorption%, Q (mg  g−1), and recovery% were 
calculated in Eqs. 1, 2, and 3, respectively.

(1)Biosorption% =

[

Ci − Cf

Ci

]

× 100

(2)Q =

[

Ci − Cf

m

]

× V

Fig. 1  FT-IR spectra of unloaded (a) and Rd-B loaded AS (b)
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Ci, Cf, m, and V represent the initial and equilibrium 
liquid-phase concentrations of the Rd-B dye (mg  L−1), the 
biosorbent mass (mg), and the volume of the solution (L), 
respectively [32–34].

2.4  Computation details

Quantum chemical calculations are important to describe 
the quantum chemical parameters of the molecule, such as 
molecular orbital energy HOMO and LUMO, gap energy, 
dipole moment (μ), softness (σ), and total energy (ET). All 
calculations were made with Gaussian 09 software [35] the 
geometry of the molecules studied was fully optimized using 
the DFT/B3LYP/6-311G in the aqueous phase. The quantum 
parameters are presented by mathematical formulas as fol-
lows (Eqs. 4–7):

(3)Recovery% =
Qdes

Qads

x100

3  Results and discussion

3.1  FT‑IR and SEM–EDX analysis

On almond shells FT-IR (Fig. 1), the broad flattened peak 
was observed at 3281  cm−1 attributed to the OH group. Peak 

(4)ΔEgap = ELUMO − EHOMO

(5)� =
−
(

ELUMO + EHOMO

)

2

(6)� =

(

ELUMO − EHOMO

)

2

(7)� =
1

n

Fig. 2  SEM photographs of 
AS biosorbent before (a, c) and 
after (b, d) biosorption of Rd-B
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intensity increased to 2820  cm−1 showing the symmetric 
and asymmetric stretching of the C-H bond of the  CH2 
group. The broadbands in the region of 1750–1000  cm−1 
are characteristic of the stretching of C = O, C-O groups 
and bending vibrations of adsorbed water [36]. Rd-B shows 
significant changes after biosorption, and the new peak was 
observed at 1464  cm−1 attributed to C-H bending of alkane 
[37]. Two different new peaks emerge from 973 to 778  cm−1 

attributed to C = C bending [38]. The spectral changes and 
new peaks formation confirm the biosorption of Rd-B dye 
on the almond shells.

SEM analysis was used to observe the morphological dif-
ferences of AS biosorbent before and after the biosorption of 
Rd-B dye. The SEM images in Fig. 2a and c show the struc-
ture of AS biosorbent before biosorption, and Fig. 2b and 
d shows the structure after biosorption. Figure 2a and c show 

Fig. 3  EDX spectrum of AS 
biosorbent before (a) and after 
(b) biosorption of Rd-B
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that the structure of the biosorbent is porous and irregular. 
In the SEM images in Fig. 2b and d, it is clearly observed 
that after the biosorption, the pores turn into a smoother 
and more regular structure as they are filled with Rd-B dye 
molecules. This significant differentiation in the structure of 
the biosorbent indicates surface complexation.

Elements before and after biosorption on AS biosorbent 
were determined using EDX analysis, and EDX spectra are 
given in Fig. 3. The peaks of C and O were determined in 
the EDX analysis of AS biosorbent before biosorption. After 
biosorption, the peaks of C, O, and N were determined in 
the EDX analysis. The presence of N in the structure of the 
Rd-B dye was evaluated as evidence for biosorption.

3.2  Effect of pH on biosorption and PZC 
for AS biosorbent

The protonation mechanism of the Rd-B molecule was stud-
ied between pH 0 and 14 by the MarvinSketch software. 
Figure 4 represents the different forms of this molecule and 

the percentage of protonation sites. It is observed that the 
Rd-B molecule has weak basic properties which facilitate 
their protonation in the acid medium; also the presence of 
heteroatoms in the molecule studied also suggests their 
strong tendency to protonation in acid solution. Figure 4 has 
illustrated the distribution ratio of each species as a function 
of pH; it is clear that only one major form (Rd-B-H+) was 
94% at pH = 0 [39]

Generally, for a cationic dye, the percent dye removal will 
decrease at a low pH solution and increase at high pH solu-
tion [40]. Figure 5 depicts the effect of pH on the adsorption 
capacity. The elimination as a function of pH was investi-
gated at a pH 2.0 to 12.0. We can mark that the maximum 
dye biosorption was noticed at a pH of 2–6 (acid medium), 
while the minimum biosorption capacity was at pH of 8–12 
(basic medium). By increasing pH value, the concentration 
of  H+ increase, and the tendency of Rd-B dye molecules 
to occupy active sites increase leading to a decrease in the 
quantity biosorbed of AS biosorbent [41]. At high pH, the 
Rd-B dye molecules may get converted to their hydroxides, 

Fig. 4  Speciation diagram for Rd-B as function of pH
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resulting in a decrease in the biosorption of Rd-B by the 
active sites of AS biosorbent [42] The point of zero charge 
(pzc) of AS biosorbent was 5.43 (Fig. 5). The finding sug-
gests that the biosorbent surface will be positively charged 
at pH below  pHpzc, favoring anionic attraction. On the other 
hand, the biosorbent becomes negatively charged when the 
 pHpzc > pH, favoring cationic attraction [43].

3.3  Effect of biosorbent dose

To study the effect of the biosorbent mass on the retention of 
Rd-B dye by almond shells powder, we varied the value of the 
biosorbent dose from 1 to 20 g  L−1 a concentration of 500 mg 
 L−1 of Rd-B dye and a natural pH. All the results are grouped in 
Fig. 6; it can be seen that the dye removal percentage increases 

Fig. 5  Effect of pH on biosorp-
tion of Rd-B onto AS {[Rd-B]0: 
500 mg  L−1, biosorbent mass: 
10 g L.−1, pH: 2.0–12.0, contact 
time: 24 h, temperature. 25 °C} 
and pzc for almond shells (Pru-
nus dulcis)

Fig. 6  Effect of biosorbent dose 
on biosorption of Rd-B dye 
onto AS {[Rd-B]0: 500 mg  L−1, 
biosorbent mass: 1–20 g  L−1, 
natural pH: 5.8, contact time: 
24 h, temperature: 25 °C}
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from 9.83 to 70.82% with the biosorbent dose increasing from 
1 to 20 g  L−1 proportionally. This is possibly due to the increase 
in the number of biosorption sites following the increase in the 
biosorbent dose [44]. However, the encounter (molecules-site) 
is more probable, leading to better retention of the Rd-B dye by 
the AS biosorbent [45]. The biosorbent dose was set at 10 g  L−1 
for the subsequent experiments.

3.4  Biosorption isotherm models

In the current study, Langmuir [46, 47], Freundlich [48], and 
Dubinin-Radushkevich (D-R) [49] models (Fig. 7) were selected 

to investigate the interaction between the Rd-B dye molecules 
and the AS biosorbent surface. The biosorption isotherm model 
parameters are presented in Table 1; it is seen that the correla-
tion coefficient of the Langmuir model (R2: 0.960) is larger than 
the Freundlich model (R2: 0.886). This showed that Rd-B dye 
biosorption on AS better fitted the Langmuir model. Rd-B dye 
biosorption on AS took place in a monolayer. The D-R isotherm 
model, on the other hand, evaluates biosorption on porous sur-
faces from an energetic point of view [50]. If the adsorption 
energy is less than 8 kJ  mol−1, it is physical, and if it is between 
8 and 16 kJ  mol−1, it is chemical. When the Rd-B dye biosorp-
tion to the AS biomass is evaluated from this point of view, it is 

Fig. 7  Biosorption isotherms 
{[Rd-B]0: 10–1000 mg  L−1, 
biosorbent mass: 10 g  L−1, natu-
ral pH: 5.8, contact time: 24 h, 
temperature: 25 °C}

Table 1  Biosorption isotherms and their parameters

Model Parameter Value

Langmuir
Q =

XLCe

1+KLCe

XL (mg  g−1) 14.7
KL (L  mg−1) 0.0064
R2 0.960

Freundlich
Q = XFC

�

e

XF 0.751
β 0.429
R2 0.886

D-R
Q = XDRe

−(KDRε
2)

� = RTln
(

1 +
1

Ce

)

EDR = (2KDR)
−0.5

XDR (mg  g−1) 40.8

 − KDR ×  109/mol2  KJ−2 4.54
EDR/kJ  mol−1 10.5
R2 0.915

Table 2  Comparison of sorbent capacities of low-cost sorbents

Sorbent type Qm (mg  g−1) References

Coffee ground 5.26 [51]
Banana peel 3.88 [52]
Walnut shell 2.29 [53]
Activated carbon 4.93 [54]
Multi-walled carbon nanotubes (MWC-

NTs)
3.53 [55]

Fe3O4/MWCNTs-COOH 11.4 [56]
Starch grafted p-tert-butyl-calix[n]arene 9.81 [57]
Diatomite 8.13 [58]
Almond shells (Prunus dulcis) 14.70 This study
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seen that the EDR: 10.5 kJ  mol−1 is, in this case, the biosorption 
process chemical.

Maximum monolayer sorption capacities of Rd-B dye 
to various sorbents are presented in Table 2. When Table 2 
is examined, it is seen that the biosorption capacity of 
AS biomass is relatively larger compared to other sorb-
ents. This is promising because AS biomass is an effec-
tive, inexpensive, and natural biosorbent for the removal 
of Rd-B dye from wastewater.

3.5  Biosorption kinetics

Biosorption kinetics provide vital information about the 
rate and mechanism of the biosorption process. Generally, 
an adsorption process takes place in three stages: (i) mass 
migration from solution to biosorbent surface, which is very 
rapid due to mixing, (ii) the film diffusion of the biosorb-
ent from the bulk solution to the surface of the biosorbent, 
and (iii) the intraparticle diffusion of the biosorbate into the 
pores of the biosorbent.

Pseudo-first-order (PFO), pseudo-second-order (PSO), 
and intraparticle diffusion (IPD) models (Fig. 8) [59, 60] 
are commonly used to explain biosorption kinetics. As a 
result of the fit to the models, the biosorption mechanism 
can be predicted. From Table 3, it is seen that the R2 value 
of the PSO model (R2: 0.907) is higher than that of the PFO 
(R2: 0.834) model. This showed that Rd-B dye adsorption 
on AS biomass better fitted the PSO model.

When the IPD model fit graph is examined, it is seen 
that it has two linear components instead of a single line 
passing through the origin. In this case, he states that the 
biosorption process includes firstly rapid adsorption to the 
surface and then relatively slow intraparticle diffusion steps. 
This showed that it is not possible to explain the biosorption 
process with a single kinetic model. The biosorption kinetics 
of Rd-B dye to AS biomass can be explained by PSO and 
IPD models [61].

Fig. 8  Biosorption kinetics 
{[Rd-B]0: 500 mg  L−1, biosorb-
ent mass: 300 mg, natural pH: 
5.8, contact time: 10–1440 min, 
temperature: 25 °C}

Table 3  The calculated parameters of PFO, PSO, and IPD models

Model Parameter Value

PFO
Qt = Qe

(

1 − e−k1 t
)

H
1
= k

1
Qt

Qt/mg  g−1 11.08
Qe/mg  g−1 10.04
k1 ×  103/mg−1 g  min−1 19.4
H1 ×  103/mg  g−1  min−1 0.195
R2 0.834

PSO
t

Qt

=
1

k
2
Q2

e

+
t

Qt

H
2
= k

2
Q2

t

Qt/mg  g−1 11.08

Qe/mg  g−1 11.07
k1 ×  103/mg−1 g  min−1 2.64
H2 ×  103/mg  g−1  min−1 323
R2 0.907

IPD
Qt = kit

0.5

ki ×  103/mg  g−1  min−0.5 1797
R2 0.863
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3.6  Biosorption thermodynamics

During the biosorption process, thermodynamic parameters 
such as ΔH°, ΔG°, and ΔS° were calculated using the fol-
lowing equations [62] ΔG° was determined using Eq. 8.

where R (8314 J  mol−1  K−1) is the ideal gas constant, T (K) 
is the absolute temperature, and Kd is the distribution coef-
ficient. The dispersion coefficient, which reveals the affinity 
of the biosorbent surface, is calculated by Eq. 9.

ΔH° and ΔS° parameters were found using the Van’t 
Hoff Eq. 10.

(8)ΔG
◦

= −RTln(Kd)

(9)Kd =
Q

Ce

(10)lnKD =
ΔS

◦

R
−

ΔH
◦

RT

ΔH°, ΔG°, and ΔS° were determined using the slope and 
intercept values of the lnKD-1/T plot (Fig. 9, Table 4). When 
Table 4 is analyzed, it is seen that the biosorption process is 
spontaneous, entropy-increasing, and endothermic.

3.7  Recovery and reusability of AS

The recovery and reusability of AS biosorbent after the 
biosorption process is extremely important in terms [63, 
64]. Therefore, 5 times desorption experiment was carried 
out using HCl, methanol, and ethanol, solutions with 0.1 mol 
 L−1 concentration to recover the Rd-B dye biosorbed on the 
AS biosorbent surface. Obtained recovery percentages are 
given in Fig. 10. In Fig. 10, it is seen that the highest recov-
ery is achieved with ethanol (46%), and the lowest recovery 
is with HCl (23%).

3.8  DFT calculations

3.8.1  Reactivity descriptor analysis

Several quantum chemical parameters have been calcu-
lated and summarized in Table 5. The neutral form and the 
protonated form of the Rd-B molecule can be explained in 
terms of geometry, and it could be explained in terms of 
the gap energy ΔEgap and other quantum parameters. There-
fore, the lower the energy difference between the orbital 
HOMO and LUMO, the easier the electrons of the mole-
cule to pass to the surface of the adsorbent, and the higher 

Fig. 9  The effect of temperature 
{[Rd-B]0: 500 mg  L−1, biosorb-
ent dose: 10 g  L−1, natural pH: 
5.8, contact time: 24 h, tempera-
ture: 5 °C, 25 °C, and 40 °C}

Table 4  Thermodynamic parameters

Temperature/°C ΔG°/kJ 
 mol−1

ΔH°/kJ 
 mol−1

ΔS°/
Jmol−1  K−1

R2

5  − 12.1 2.35 55 0.999
25  − 14.1
40  − 15.0
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the application of biosorption will be, on the other hand, 
larger gap values   will provide low chemical reactivity [65]. 
According to the results obtained in Table 5, we note that 
the proton form (P-Rd-B) has the smallest energy difference 
(1.3765 eV), so it is the least stable and most reactive form. 
Chemically relative to the neutral form (Rd-B), the P-Rd-B 
molecule is the easiest to be adsorbed by the almond shell 
adsorbent. The proton molecule (P-Rd-B) has a low hard-
ness value (η = 0.6882 eV) and the highest softness value 
(S = 1/η = 1.4528 eV); this suggests the ability to adsorb by 
the almond shells; also the dipole moment of the protonated 
form is higher compared to the neutral form; maybe a larger 
dipole moment is responsible for the biosorption.

Figure 11 represents the frontier orbitals HOMO and 
LUMO of the neutral and protonated form after optimiza-
tion. This Fig. 12 confirms that the Rd-B dye molecule is 
rich in electrons and capable of donating electrons. It is also 
observed that the HOMO density distribution of Rd-B dye 
is located on the heterocyclic atom rings, the nitrogen, and 
the  CH3 groups. The distribution of the HOMO density of 
protonated form P-Rd-B is located in the function C = C, 
C–C = C, the oxygen atom, and the nitrogen atom which can 
play an essential role in the absorption.

3.8.2  The Mulliken charges

Several authors agree that the more the heteroatom is nega-
tively charged, the more it is able to adsorb by the adsor-
bent and has a serious reaction of the donor–acceptor type. 
The Mulliken charges for Rd-B and P-Rd-B are reported in 
Fig. 12. Examination of these results shows that all heter-
oatoms have negative charges with high electron density. 
These atoms behave as nucleophilic centers when they inter-
act with the adsorbent. From the values   of Fig. 12, it is pos-
sible to observe that all the atoms of nitrogen and oxygen 
have a considerable excess of negative charge, and some 
carbon atoms have a negative charge, which are adsorbent 
active atoms.

4  Conclusion

In this study, agricultural solid waste biosorbent (almond 
shell) was used, and its effectiveness in removing Rd-B 
dye from aqueous solution was investigated. The maximum 
biosorption capacity of AS biosorbent for the Rd-B dye was 
found as 14.7 g  mg−1 at 25 °C from the Langmuir model. 

Fig. 10  The effect of desorption 
on AS biomass

Table 5  Quantum chemical 
parameters are calculated by the 
DFT/B3LYP/6-311G method 
for the Rd-B and P-Rd-B

Quantum 
chemical 
descriptor

EHOMO (eV) ELUMO (eV) ΔEgap (eV) χ (eV) η (eV) S (eV) ETot (u.a) Dipole

Rd-B  − 5.8969  − 3.0795 2.8174 4.4882 1.4087 0.7098  − 1421.07 06.26
P-Rd-B  − 7.9848  − 6.6082 1.3765 7.2965 0.6882 1.4528  − 1420.61 10.45
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The adsorption energy found from the D-R model showed 
that the adsorption process is chemical. Adsorption kinet-
ics showed that the adsorption process is quite suitable for 

PSO and IPD models. Thermodynamic parameters of the 
biosorption process of Rd-B dye molecules by AS biosorb-
ent were determined. At 25 °C, ΔH0, 2.35 kJ  mol−1; ΔS0, 

Fig. 11  Representation of the optimized geometry, frontier orbitals (HOMO, LUMO), and electrostatic potential (ESP) of the Rd-B and P-Rd-B

Fig. 12  Mulliken charges for Rd-B and P-Rd-B
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55 kJ  mol−1; and ΔG0, − 14.1 kJ  mol−1 were found. Also, 
at different temperatures, the adsorption process is nega-
tive, so it happens spontaneously. In addition, the adsorp-
tion of Rd-B dye molecules on the AS biosorbent surface 
was demonstrated by FT-IR and SEM–EDX analyses. The 
adsorption–desorption experiment results showed that the 
AS biosorbent has very good reusability and stability. The 
results of this work show that an effective low-cost adsorbent 
can be produced starting from almond shells without any 
treatment, which can be used by communities with limited 
resources facing water contamination by dyes. Moreover, 
the quantum chemical calculations used allowed us to pro-
pose the binding mechanism for Rd-B biosorption to the AS 
biosorbent. The overall results showed that the AS biosorb-
ent has a remarkable biosorption affinity towards the Rd-B 
dye in aqueous medium.
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