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Abstract
Attention is called to numerous publications that have recently appeared in Biomass Conversion and Biorefinery and reported 
on the application of single heating rate methods to pyrolysis data. Emphasis is laid on the fact that these methods gener-
ally fail to determine trustworthy kinetics triplets, i.e., the reaction model, activation energy, and preexponential factor. The 
reasons and instances of the failure are briefly discussed and illustrated. It is stressed that the International Confederation for 
Thermal Analysis and Calorimetry recommends single heating rate methods to be avoided and the methods that use several 
heating rates simultaneously to be employed for reliable kinetic analyses.
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This note calls attention of the readership of Biomass Con-
version and Biorefinery to multiple publications that employ 
single heating rate methods for kinetic analysis of pyrolysis 
data. Only in the years 2021 and 2022 at least 21 such publi-
cations [1–21] have appeared in this journal. In these publi-
cations, the kinetic measurements are conducted by noniso-
thermal thermogravimetric analysis at a single heating rate. 
Then, the Coats-Redfern method [22] is typically applied 
to the obtained data for determining the kinetic parameters, 
which include the activation energy, E, preexponential fac-
tor, A, and reaction model, g(α). All three parameters are 
oftentimes called the kinetic triplet.

The Coats-Redfern method is the most popular among 
the single heating rate methods and rather representative of 
the problem characteristic of all such methods. This problem 
resides in the fact that these methods cannot generally pro-
duce trustworthy kinetic parameters. In actual practice, a sin-
gle heating rate data set can normally be described by several 

statistically equivalent kinetic triplets [23, 24]. Unfortu-
nately, this fact remains commonly unnoticed because of 
not performing a proper statistical analysis. To put it simply, 
one usually chooses a single kinetic triplet related to the 
largest value of the correlation coefficient. Such a choice is 
unjustified statistically without testing whether the differ-
ence between the largest value and the correlation coefficient 
values for other kinetic triplets is statistically significant. A 
proper statistical analysis typically discovers that there are 
at least 2 or 3 statistically equivalent triplets [23, 24]. Yet, 
the difference in the activation energies in the statistically 
equivalent triplets readily reaches 100%. This difference 
represents the actual level of uncertainty characteristic of 
the methods that employ a single heating rate [24]. That is 
why these methods generally fail in evaluating trustworthy 
kinetic parameters. This is a well-established fact that was 
officially recognized by the Kinetics Committee of the Inter-
national Confederation for Thermal Analysis and Calorim-
etry (ICTAC). In its recommendations for kinetic analysis, 
the Committee states [25] that the “methods that use single 
heating rate program…should be avoided” and that “the 
methods that use multiple heating rate programs…are rec-
ommended for computation of reliable kinetic parameters.”

The ICTAC recommendations have been guiding 
kinetic studies by thermal analysis for over a decade and 
have been cited 3600 [26] times. Presently, the major-
ity of kinetic computations on thermal analysis data are 
performed by simultaneously using the data collected at 
several heating rates. In this regard, the fact that some 
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workers continue to choose single heating rate methods for 
their kinetic studies is quite alarming. Needless to say that 
this misfortunate situation is in dire need of rectification.

The relevance of the ICTAC recommendations is further 
enhanced by quickly examining the kinetic triplets found 
in the above referenced papers. A simple piece of evidence 
that the kinetic triplet is likely to be faulty is unrealisti-
cally large or small values of the activation energy. For 
example, the values higher than 400 [1, 2] or even 500 
and 600 [2] kJ  mol−1 are most likely to be faulty in the 
case of organic compounds that include carbon–carbon 
and carbon–oxygen chemical bonds because the dissocia-
tion enthalpy of these bonds is less than 400 kJ  mol−1 [27].

However, most of the above referenced papers report 
values that are much lower than 100 kJ  mol−1. Such val-
ues are likely to be faulty because they are too low for 
decomposition of organic compounds that are known to 
be stable at ambient temperature. This can be exemplified 
by using one of the above referenced papers [9]. It reports 
the kinetic triplets for tea leaf brewing waste (TLBW) as 
well as for the cellulose (TLBW-C) and hemicellulose 
(TLBW-H) samples isolated from TLBW. The reaction 
model, g(α), for all three compounds is determined to be 
F3 (third-order reaction) and E (kJ  mol−1) and ln(A/min−1) 
are reported as follows: 46.715 and 7.669 (TLBW), 23.838 
and 11.916 (TLBW-C), and 14.424 and 13.407 (TLBW-H) 
[9]. These kinetic triplets can be used to predict the ther-
mal stability of the samples at an ambient temperature of 
27 °C. Such prediction is accomplished by inserting the 
reported kinetic triplets into Eq. (1) [23]:

where ta is time to reach the extent of decomposition a at 
temperature T.

According to this prediction (Fig. 1), the tea leaf brew-
ing waste would decompose by ~ 50% in about 2 months. If 
this was true, this fact would be impossible to miss in prac-
tice. In turn, cellulose and hemicellulose would decom-
pose completely on the scale of minutes and seconds, 
respectively, that would qualify both compounds as very 
unstable. This is most obviously incorrect based either on 
the common knowledge about cellulose and hemicellulose 
as well as on the fact that both compounds permitted their 
experimental examination without any evident problems 
associated with their stability [9].

Even if a single heating rate method produces activation 
energy values that seem reasonable, it does not mean that 
the obtained kinetic triplets are not faulty. In this situation, 
the faulty nature of the kinetic triplets is easily discovered 
as their failure to correctly predict the isothermal kinetics. 
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This issue is illustrated and discussed at length elsewhere 
[23].

On the other hand, reliable kinetic triplets are routinely 
obtained by various methods that simultaneously use data 
measured at multiple heating rates, as recommended by the 
ICTAC [25]. Hopefully, this note provides compelling argu-
ments for abandoning single heating rate methods for the 
sake of the pyrolysis kinetics field.
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