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Abstract
The present study relates to the physicochemical investigation of the methylene blue, diclofenac, and copper(II) sorptions 
from the water of the new activated carbon (RPAC) prepared in single-step KOH-activated pyrolysis from red pepper (Capsi-
cum annuum L.) industrial processing pulp (RP) under optimized conditions. Sorption conditions were optimized according 
to the maximum effects of key factors (RPAC dosage, sorbate concentration, interaction time, and temperature) affecting 
sorption processes at their natural pH in water. The kinetic and equilibrium experimental sorption data of the examined 
sorbates were simulated to widely used models and found to fit well with the pseudo-second-order and Langmuir models, 
respectively. The maximum sorption capacity for methylene blue, diclofenac, and copper(II) by RPAC was found to be 
322.6, 303.0, and 196.1 mg g−1 at their natural pH and 50 °C, respectively. Thermodynamic parameters determined for each 
sorption system indicated that the sorption processes were endothermic and spontaneous. The outputs of the present study 
highlight that RPAC can be used as an effective sorbent in removing contaminants from water.
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1  Introduction

In recent decades, the number of pollutants discharged into 
water systems has been increasing from industries with 
growing demands as a result of the rapid increase in the 
world population. Generally, water pollutants such as heavy 
metals, drugs, dyes, pesticides, petroleum products, and 
water-soluble inorganic and organic substances cause seri-
ous problems as they can affect the ecosystem and threaten 
the health of living organisms due to their toxic effects. 
Therefore, recently, scientists have increased their efforts 
to develop more effective new methods to treat wastewater 
[1, 2].

Various physical, chemical, and biological water treat-
ment methods are applied to remove water contaminants. 
Although most of these methods are quite effective, they are 
rarely applied due to the disadvantages of being quite expen-
sive and creating secondary pollutants [3–5]. Therefore, 
low-cost and high-efficient method research has become 
the focus of the scientific world. Among these methods, the 
sorption method is commonly used in the remediation of 
polluted water due to its ease of use, high efficiency, low 
operating cost, and reliability compared to other methods [6, 
7]. The effectiveness of this method depends on the textural 
features such as porosity and internal surface area as well 
as the surface chemical features of the sorbent [8]. In this 
context, carbonaceous porous sorbents, especially activated 
carbons (ACs), have a very important place among sorbents 
[9]. They, which have properties such as chemical inertness, 
large porosity, high specific surface area, and good thermal 
stability, have been successfully applied from an undeter-
mined date to the present in various fields such as water 
treatment, gas separation, environmental remediation, cata-
lyst support, energy storage, pharmacology, and gas storage 
[10, 11]. They are produced by pyrolysis by one- and two-
stage physical activation in the existence of oxidizing gases 
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such as carbon dioxide, air, steam, and chemical activation 
of the precursors used with chemical agents such as alkali 
hydroxides, inorganic acids, and alkali carbonates [12–14]. 
Different precursors such as lignite, coconut, wood, peat, 
and coal are often used in commercial AC production. How-
ever, since they are not available everywhere, the shipping 
cost increases the cost of AC production and limits their 
use as precursors [15, 16]. In recent decades, there has been 
increasing use of agricultural and agro-industrial wastes, 
which are abundantly available, renewable, inexpensive, and 
sustainable, as a precursor to reducing the cost of AC pro-
duction [17, 18]. Since biomass wastes such as agricultural 
wastes, forest residues, industrial wastes, animal wastes, and 
municipal solid wastes are renewable, widely available, inex-
pensive, and environmentally friendly resources, their effec-
tive use in the production of AC by thermochemical con-
version attracts increasing attention all over the world [19]. 
The production of ACs based on circular economy criteria, 
especially by using industrial processed food waste, is a very 
important approach for sustainable global development [20].

According to our literature review, no studies have been 
performed on the removal of methylene blue, diclofenac, 
and copper(II) ions with AC (RPAC) produced under opti-
mum production conditions by single-step KOH-activated 
pyrolysis from red pepper industrial processing pulp (RP). 
Methylene blue, diclofenac, and copper(II) ions are among 
the most emerging water pollutants in wastewater treatment 
plant influent, effluent, surface water, and drinking water, 
which is why they are frequently used as model sorbate to 
test the pollutant sorption performance of a prepared sorb-
ent. Methylene blue is a water-soluble cationic dyestuff. 
Acute exposure to it has been reported to cause increased 
heart rate, vomiting, shock, Heinz body formation, cyano-
sis, jaundice, quadriplegia, and tissue necrosis in humans 
[21]. Diclofenac is a drug with the highest acute toxicity 
among non-steroidal anti-inflammatory drugs [22]. It has 
been reported to cause severe visceral gout or renal failure 
in humans even at low concentrations due to its non-easily 
biodegradable and aquatic ecotoxic properties. It is one of 
the most common heavy metal pollutants in the environment 
with the highest toxicity to living organisms [23].

The specific objectives of the present study are to (i) 
examine the sorptive performance of RPAC with physico-
chemical parameters for the elimination of methylene blue, 
diclofenac, and copper(II) in water; (ii) determine the opti-
mum sorption conditions according to the effects of the key 
process variables (i.e., RPAC dosage, initial sorbate con-
centration, interaction period, and solution temperature) at 
the natural pH of each sorption system; (iii) model sorption 
kinetics and isotherm data for each sorbate; (iv) elucidate 
the sorption mechanisms of sorbates by comparing Fourier 
transform infrared (FT-IR) and scanning electron micros-
copy-energy dispersive X-ray (SEM–EDX) spectroscopic 

analyses of RPAC before and after sorption; and (v) test the 
reusability stability of RPAC by cyclic sorption/desorption 
studies for each sorbate.

2 � Materials and methods

2.1 � Materials

RPAC was produced by one-step KOH-activated pyrolysis 
of red pepper pulp (RP) supplied from a local pepper paste 
factory in Diyarbakır, Turkey. The influence of production 
variables, some physicochemical characterizations, and cost 
estimation are mentioned in our previous study. Some of its 
important physicochemical properties are listed in Table 1 
[24]. Methylene blue (chemical formula, C16H18ClN5S; 
molecular weight, 319.9 g mol−1; ionization, basic; chemi-
cal class, cationic dye; maximum wavelength, 665 nm), 
diclofenac (chemical formula, C14H10Cl2NNaO2; molecu-
lar weight, 296 g mol−1; chemical class, non-steroidal anti-
inflammatory drug; maximum wavelength, 276 nm) and 
copper (molecular weight, 63.5 g mol−1; chemical class, 
transition metal) were provided from the distributor of 
Sigma-Aldrich Co. in Ankara, Turkey, and used as original 
without any processing. Artificial solutions at the desired 
concentration for each sorbate were prepared with appropri-
ate dilutions with ultrapure water from their stock solutions 
of 1000 mg L−1.

2.2 � Batch sorption and desorption studies

Batch sorption experiments were accomplished by stirring at 
150 rpm for the needed time in a water bath with a tempera-
ture-controlled shaker (J.P. Selecta, Spain) of 100 mL Erlen-
meyer containing a 50 mL solution of known concentrations 
of the sorbates. Optimum sorption conditions were decided 
by investigating the effects of some operating parameters 

Table 1   Physical and chemical characteristics of RPAC [24]

† SBET, BET surface area; VT, total pore volume; Vmic, micropore vol-
ume; Vmes, mesopore volume; Vmic (%), micropore fraction; Vmes 
(%), mesopore fraction; DP, average pore diameter; pHPZC, point of 
surface zero charge

Textural characteristics Surface chemical characteristics

SBET (m2 g−1) 1564 Carboxylic (mEq g−1) 0.48
VT (cm3 g−1) 0.623 Phenolic (mEq g−1) 0.18
Vmic (cm3 g−1) 0.570 Lactonic (mEq g−1) 0.42
Vmes (cm3 g−1) 0.053 Total acidity (mEq g−1) 1.08
Vmic (%) 90.7 Total basicity (mEq g−1) 1.05
Vmes (%) 9.3 pHPZC 5.78
DP (nm) 1.8
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on their sorption by varying the studied parameters such as 
RPAC amount (50–100 mg), initial sorbate concentration 
(300, 400, and 500 mg L−1), interaction time (0–380), and 
temperature (20, 30, 40, and 50 °C) at natural pH (7.0 for 
methylene blue, 4.9 for diclofenac, and 5.0 for copper(II) 
level in water of each sorbate studied by retaining the others 
constant). The concentrations of the sorbates used before 
and after sorption were measured with UV–Vis (Perkin 
Elmer-Lamda 25, USA) and atomic absorption (PerkinElmer 
AAnalyst, 100A) spectrophotometers.

For kinetic experiments, 50 mg of RPAC was mixed with 
50 mL of each sorbate solution with initial concentrations 
of 300, 400, and 500 mg L−1, a temperature of 25 °C, and a 
shaking speed of 150 rpm at the natural pH of each RPAC-
sorbate sorption system. At the indicated time intervals 
(0–380 min), 10 mL of samples was removed and filtered. 
The amount (qt, mg g−1) sorbed at any time t (min) was 
calculated from Eq. (1):

where Ci (mg L−1) is the initial sorbate concentration, Ct 
(mg L−1) is the concentration of sorbate at any time, V (L) 
is the volume of solution, and m (g) is the mass of sorbent.

Equilibrium isotherm experiments were performed at 20, 
30, 40, and 50 °C temperatures using solutions of various 
concentrations of the sorbates under optimized sorption con-
ditions previously determined at the natural pH of each sorb-
ate sorption system. Thesorption capacity (qe, mg g−1) per 
gram of sorbent at equilibrium was calculated from Eq. (2):.

Where Ce (mg L-1) is the equilibrium concentration of 
sorbate in the solution.

Determining the kinetic and isotherm model best suited 
to the sorption systems examined was determined by prox-
imity to the unit and zero, respectively, of the regression 
coefficient (R2) and normalized standard deviation (∆q, %) 
values computed with Eqs. (3) and (4) [25]:

where qe,cal and qe,exp represent the calculated and experi-
mentally determined sorbed amounts of sorbate, respec-
tively. N is the experimental data number. In addition, the 
compatibility comparison of qe,cal and qe,exp values deter-
mined from the kinetic models was also taken into account 
in the kinetic modeling [26].

(1)qt =
(

Ci − Ct

)

V∕m

(2)qe =
(

Ci − Ce

)

V∕m

(3)R2 = 1 −

[

∑n

i=1

(

qe,exp − qe,cal
)2
∕
∑n

i=1

(

qe,exp
)2

−

(

(

∑n

i=1
qe,exp

)2

∕n

)2
]

(4)Δq(%) = 100

√

∑n

i=1

[(

qe,exp − qe,cal
)

∕qe,exp
]2
∕N − 1

Surface physical morphology, elemental composition, 
and organic functional groups of RPAC before and after 
sorption of each sorbate were identified by using SEM–EDX 
and FT-IR spectroscopic techniques. SEM–EDX analyses 
were performed by using an SEM–EDX device (Supra 
40VP, Zeıss, Germany). FT-IR spectrum was recorded with 
a spectrophotometer (PerkinElmer spectrum 100) through 
attenuated total reflectance (ATR) using 16 cm−1 resolutions 
in the range of 4000–450 cm−1.

Batch desorption cycle experiments were performed with 
different eluents such as HCl, H2SO4, NaOH, and C2H5OH 
with various concentrations and distilled H2O to test the 
reusability of spent RPAC after sorption of the investigated 
sorbates. To this end, firstly, the sorption of the investi-
gated sorbates on the RPAC was accomplished by shaking 
Erlenmeyer including 50 mg of RPAC and 50 mL sorbate 
solutions of 50 mg L−1 concentration at a shaking speed 
of 150 rpm and at 25 °C and their natural pH for 1 h in 
a shaking water bath. The spent RPAC after each sorbate 
sorption was removed from the solution medium by filter-
ing the solutions and dried at 105 °C overnight. Then, it 
was shaken for 6 h with the solutions of the eluents used 
to determine the eluent that was effective in eliminating 
the sorbate from the RPAC surface. Sorbed and desorbed 
concentrations of sorbate in the supernatant were measured 
as described above. These experiments were carried out in 
triplicate under the same conditions and averaged. Desorp-
tion studies were repeated in five cycles to determine the 
reusability efficiency of RPAC for each sorbate. The sorption 
and desorption efficiencies were calculated from Eqs. (5) 
and (6) equations, respectively:

where qd and qa (mg g−1) indicate the sorbed and desorbed 
amounts of the sorbate, respectively.

3 � Results and discussions

3.1 � Effects of sorption variable–sorption 
optimization

3.1.1 � Effect of RPAC dosage

The effect of RPAC dose on the sorption of used sorbates 
was investigated by adding different dosages of RPAC (rang-
ing from 50 to 100 mg) into 50 mL of a sorbate solution of 
300 mg L−1 concentration in 100 mL of capped Erlenmeyer 
at 25 °C and is shown in Fig. 1. The sorbed amount of meth-
ylene blue, diclofenac, and copper(II) ions by increasing the 

(5)Sorptionefficiency(%) =
(

Ci − Ce∕Ci

)

100

(6)Desorptionefficiency(%) =
(

qd∕qa
)

100
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dose of RPAC from 50 to 100 mg decreased from 235.5 to 
216.7 mg g−1, from 114.2 to 107.2 mg g−1, and from 33.3 
to 22.9 mg g−1, respectively. This reduction may be due to 
the progressive reduction of active sites for sorption on its 
surface as a result of surface overlap with increasing dosage. 
Similar observations and comments were also emphasized 
in previous studies [27–29]. The optimum RPAC dosage 
was chosen as 50 mg for subsequent sorption studies of each 
sorbate.

3.1.2 � Effects of interaction period/initial sorbate 
concentration–kinetic modeling and diffusion 
mechanism

Figure 2 demonstrates the effect of the interaction period/
initial sorbate concentration on the sorption of used sorbates 
by RPAC. The sorption of each sorbate was fast at the begin-
ning and then reached equilibrium with a slight increase. 
The fact that the rate of sorption is fast at first and then 
slower is probably due to the presence of active binding sites 
on the surface and slow pore diffusion of the sorbate ions 
into the mass of the sorbent, respectively [30]. The sorption 
of methylene blue, diclofenac, and copper(II) ions reached 
equilibrium at 240, 260, and 80 min, respectively, and was 
chosen as the equilibrium interaction time for their further 
sorption experiments. The sorption capacity of methylene 
blue, diclofenac, and copper(II) ions at equilibrium increases 
from 192.5 to 270.3 mg g−1 and from 122.8 to 141.3 mg g−1 
and from 28.2 to 51.3 mg g−1, respectively, by increasing 
from 200 to 400 mg L−1 of the initial sorbate concentration. 
These increases are most likely due to an increase in the 
driving force of the concentration gradient with an increase 
in the initial sorbate concentration [31, 32].

For kinetic modeling of each sorption system, kinetic 
data of each sorbate in Fig. 2 were evaluated in the widely 
used pseudo-first-order (PFO) [33] and pseudo-second-order 
(PSO) [34] kinetic models, and their linearized equations are 
given in Eqs. (7) and (8):

where qe (mg g−1) is the sorbed amount at equilibrium, qt 
(mg g−1) is the sorbed amount at time t, k1(1/min) is PFO 
rate constant, and k2 (mg g−1 min−1) is PSO rate constant. 

(7)PFO ∶ ln
(

qe − qt
)

= lnqe − k1t

(8)PSO t∕qt = 1∕k2q
2

e
+
(

1∕qe
)

t
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Fig. 1   Effect on the sorption of methylene blue (MB), diclofenac 
(DCF), and copper (Cu(II)) of RPAC dosage (initial sorbate concen-
tration, 300 mg L.−1; pH, 7.0 for methylene blue, 4.9 for diclofenac, 
and 5.0 for copper(II); interaction period, 240  min for methylene 
blue, 260  min for diclofenac, and 80  min for Cu(II); temperature, 
25 °C)
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Fig. 2   Effect of interaction time/initial sorbate concentration on the MB, DCF, and Cu(II) sorption capacity of RPAC (RPAC dosage, 50 mg; pH, 
7.0 for methylene blue, 4.9 for diclofenac, and 5.0 for copper(II); temperature, 25 °C)
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In addition, the initial sorption rate (h, mg g−1 min−1) was 
calculated from Eq. (9) [35]:

The kinetic parameters, R2, and Δq(%) values for each 
sorbate were determined from the plots (Fig. S1) drawn 
according to the linearized equation of the PFO (log(qe − qt) 
vs. t) and PSO (t/qt vs. t) kinetic models and are given in 
Table 2. The R2 and Δq (%) values determined from the 
PSO kinetic model for all three sorbates are closer to one 
and to zero than the PFO, respectively. Accordingly, the 
PSO kinetic model is more appropriate to define the sorp-
tion kinetics of the sorbates studied onto RPAC. It also con-
firms that the qe,cal and qe,exp values calculated by the PSO 
kinetic model are much closer than those of the PFO kinetic 
model. In addition, k2 values decrease with increasing the 
initial concentration of used sorbates. This is most likely 
because the affinity between the sorbate ions and the surface 
decreases with the decrease of active centers on the RPAC 
surface with increasing sorption with increasing initial sorb-
ate concentration. Also, the initial sorption rate, h, calculated 
from Eq. (9) for the used sorbates decreases with increasing 
initial sorbate concentration. This decrease is possibly due 
to the sorbate ions, which are concentrated in a unit volume 
with increasing concentration, preventing the orientation of 
one another to the sorbent surface.

PFO and PSO kinetic models cannot elucidate the dif-
fusion mechanism of a sorption process. Therefore, kinetic 
data are assessed in the equation of the intra-particle dif-
fusion (IPD) model based on the theory proposed by 
Weber–Morris [36]. This model is described by the equation 
given in Eq. (10):

(9)h = k2q
2

e

where the kid (mg g−1 min−1/2) is the IPD rate constant and 
I (mg g−1) is the thickness of the boundary layer between 
sorbent–sorbate in a sorption system. If the I value is zero 
or close to zero in a sorption process, it implies that the rate-
controlling stage is only the IPD stage or it is more dominant 
than the other stages, respectively [37]. Furthermore, the 
graph of qt versus t1/2 gives a straight line through the origin 
that the rate-controlling stage in a sorption mechanism is 
only the IPD stage; otherwise, there is a complex mechanism 
affected by the other stages mentioned above [38].

The kinetic data in Fig. 2 of each sorbate was evaluated 
in Eq. (10), and IPD plots were drawn and shown in Fig. 3. 
This figure shows that they are non-linear in the whole 
time range, which shows that the rate-controlling stage in 
the sorption of all three sorbates is not only the IPD stage 
but a complex mechanism in which the above-mentioned 
stages are also effective. kid and I values for different initial 
concentrations of each sorbate were calculated from the 
slope and intersection points of the second linear portion 
of curves in Fig. 3, respectively, and are given in Table 2. 
The kid values increase with the increase in the initial 
concentration. This is probably due to an increase in the 
driving force of the sorbate ions to the sorbent pores with 
increasing initial sorbate concentration. It is also seen that 
I values are greater than zero and increase with increasing 
initial sorbate concentration. This fact approves that the 
rate-controlling stage in the sorption process is not only 
the IPD stage but may contribute to other stages [39].

(10)qt = kidt + C

Table 2   Kinetic parameters of methylene blue, diclofenac, and copper(II) sorption onto RPAC

† Ci, mg L−1; qe,exp, mg g−1; qe,cal, mg −−1; k1 × 10−2, min−1; k2 −10−3, g mg−1 min−1; kid, mg g−1 min−1/2; C, mg g−1; h, mg g−1 min−1

Model Pseudo-first-order Pseudo-second-order Intra-particle diffusion

Ci qe,exp qe,cal k1 R2 ∆q% qe,cal k2 R2 ∆q% h kid I R2 ∆q%

Methylene blue
300 203.6 56.7 2.4 0.9556 5.78 204.1 1.5 0.9999 1.72 63.3 2.6 167.3 0.9656 8.61
400 244.8 80.6 1.2 0.9733 4.86 237.5 0.8 0.9991 1.11 44.6 4.7 171.4 0.9772 5.70
500 263.3 124.5 1.3 0.9896 3.60 256.4 0.4 0.9969 0.99 28.3 6.3 173.2 0.9716 4.04
Diclofenac
300 139.0 61.9 1.6 0.9972 6.77 138.9 0.9 0.9976 2.55 17.0 3.4 47.0 0.9413 7.33
400 140.5 64.9 1.3 0.9918 3.98 136.0 0.8 0.9956 1.83 15.3 4.8 73.1 0.9796 4.91
500 148.0 71.2 1.3 0.9888 3.01 144.9 0.7 0.9957 0.78 15.1 11.9 91.4 0.9820 3.78
Copper(II)
300 34.5 8.2 2.5 0.9790 4.88 34.1 13.4 0.9997 1.82 55.3 0.4 28.6 0.9896 6.65
400 44.0 8.6 2.2 0.9876 3.22 43.1 13.1 0.9993 1.25 24.3 0.5 34.4 0.9798 5.24
500 52.0 6.2 2.2 0.9271 2.67 51.6 20.8 0.9999 0.75 15.6 0.9 47.3 0.9897 2.99
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3.1.3 � Effect of temperature–isotherm modeling 
and thermodynamic analysis

Figure 4 displays the temperature effect on the sorp-
tion of the used sorbates by RPAC. The methylene 
blue, diclofenac, and copper(II) sorption capacity of 
RPAC by increasing the temperature from 20 to 50 °C 
increased from 238.3 to 317.6 mg g−1, from 191.10 to 
270.9 mg g−1, and from 82.1 to 114.3 mg g−1, respec-
tively, pointing that their sorption process is endother-
mic. This increase is probably due to the increase in the 
diffusion rate of sorbate ions to the surface and pores 
of the sorbent as a result of decreasing viscosity with 
increasing solution temperature [40].

For isotherm modeling, the isotherm data at 20, 30, 
40, and 50 °C temperatures in Fig. 4 of each sorbate were 
evaluated in the widely used Langmuir [41] and Freun-
dlich [42] isotherm models. The linearized equations of 
these models are as in Eqs. (11) and (12):

where qm (mg g−1) is the maximum sorption capacity, KL 
(L mg−1) is the Langmuir equilibrium constant, KF ((mg 
g−1) (L mg−1)1/n) is the Freundlich constant, and n is the 
heterogeneity factor. If 1/nF is less than and greater than 
one, it indicates that the sorption process is favorable and 
unfavorable, respectively [43].

Also, Langmuir’s dimensionless separation factor (RL) 
was calculated from Eq.  (13) to predict the adsorption 
tendency:

If the RL value is less than or greater than unity, the sorp-
tion process is assumed to be favorable and unfavorable, 
respectively [44].

(11)Langmuir Ce∕qe = 1∕qmKL +
(

1∕qm
)

Ce

(12)Freundlich lnqe = lnKF +
(

1∕nF
)

lnCe

(13)RL = 1∕
(

1 + KLCi

)
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Fig. 4   Effect of temperature on the MB, DCF, and Cu(II) sorption capacity of RPAC (RPAC dosage, 50 mg; pH, 7.0 for methylene blue, 4.9 for 
diclofenac, and 5.0 for copper(II); interaction period, 240 min for methylene blue, 260 min for diclofenac, and 80 min for Cu(II))
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Fig. 3   Intra-particle diffusion plots for MB, DCF, and Cu(II) sorption of RPAC
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The sorption isotherm parameters and R2 were calculated 
from the linear plots of Langmuir (Ce/qe vs. Ce) and Freun-
dlich (lnqe vs. lnCe) (Fig. S2) drawn according to Eqs. (11) 
and (12) of the equilibrium data at the studied temperatures 
of each sorbate listed in Table 3. As can be seen from this 
table, the equilibrium isotherm data of the used sorbates fit 
the Langmuir isotherm model with higher R2 values and 

lower Δq (%) values than the Freundlich model. This indi-
cates that the sorption of the sorbates used occurs as mon-
olayer sorption on the RPAC surface that is homogeneous in 
sorption affinity. The Langmuir constant, KL, of each sorbate 
increases with increasing temperature, indicating that the 
sorption affinity to the surface is greater at higher tempera-
tures. The maximum sorption amount, qm, determined from 

Table 4   Comparison of 
maximum sorption capacity 
of methylene blue, diclofenac, 
and copper(II) ions of RPAC 
with some other biomass-based 
carbonaceous sorbents reported 
in the literature

†  AC, activated carbon; BC, biochar; HC, hydrochar

Sorbent Experimental conditions qm (mg g−1) References

Methylene blue
  Tea waste, AC 25 °C, pH - 357.1 [45]
  Bamboo waste, AC 40 °C, pH 4.0 1100.1 [46]
  Waste palm shell, BC – 20.0 [47]
  Rice husk, BC 30 °C, pH 6.5 43.2 [48]
  Rice husk, HC 30 °C, pH 6.5 11.7 [48]
  Red pepper pulp, 50 °C, pH 7.0 322.6 Present study

Diclofenac
  Pinewood, BC 10 °C, pH 6.5 0.5 [49]
  Pig manure, BC 10 °C, pH 6.5 12.5 [49]
  Olive stone, AC 25 °C, pH 6.0 30.7 [50]
  Tea waste, AC 30 °C, pH 6.5 62.5 [51]
  Red pepper pulp, AC 20 °C, pH 4.9 303.0 Present study

Copper(II)
  Grape bagasse, AC 35 °C, pH 5.0 43.5 [52]
  Orange waste, HC 24 °C, pH 5.0 5.8 [53]
  Date seed, BC 25 °C, pH 6.0 26.7 [54]
  Cow manure, BC 25 °C, pH 5.0 38.4 [55]
  Grape waste 50 °C, pH 5.0 80.0 [56] 
  Red pepper pulp, 50 °C, pH 5.3 196.1 Present study

Table 3   Isotherm and 
thermodynamic parameters of 
methylene blue, diclofenac, and 
copper(II) sorption onto RPAC

† T, K; KF, mg g−1 L/mg−1/n; qm, mg g−1; KL, L mg−1; ΔG°, kJ mol−1; ΔH°, kJ mol−1; ΔS°, kJ mol−1 K−1

Freundlich Langmuir Thermodynamics

T KF 1/nF R2 ∆q(%) qm KL R2 RL ∆q(%) ΔG° ΔH° ΔS°

Methylene blue
293 124.4 0.12 0.8041 6.1 256.4 0.051 0.9990 0.040 2.2  − 23.6 36.5 0.20
303 142.6 0.10 0.6256 4.9 270.3 0.069 0.9984 0.033 1.6  − 25.2
313 181.6 0.09 0.7085 3.7 312.5 0.114 0.9994 0.020 1.1  − 27.3
323 216.1 0.07 0.7774 3.1 322.6 0.204 0.9998 0.011 0.6  − 29.8
Diclofenac
293 93.3 0.13 0.7287 7.4 212.8 0.018 0.9977 0.080 2.9  − .20.9 10.3 0.11
303 82.5 0.18 0.7056 6.2 270.3 0.025 0.9942 0.076 1.8  − 22.4
313 78.5 0.20 0.7506 4.2 285.7 0.023 0.9940 0.069 1.3  − 23.0
323 92.6 0.19 0.7565 3.8 303.0 0.027 0.9958 0.055 0.9  − 24.1
Copper(II)
293 1.9 0.62 0.9080 6.9 122.0 0.002 0.9678 0.476 2.5  − 11.3 10.5 0.07
303 19.8 0.57 0.8650 4.4 185.2 0.003 0.9883 0.408 1.7  − 12.1
313 4.2 0.47 0.8612 3.9 188.2 0.004 0.9844 0.324 1.4  − 12.5
323 2.0 0.62 0.9079 2.6 196.1 0.005 0.9942 0.276 0.9  − 13.6
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the slope of the curves (Fig. S2) drawn according to the 
linear equation of the Langmuir model for methylene blue, 
diclofenac, and copper(II) was found to be 322.6, 303.0, 
and 196.1 mg/g at their natural pH and 50 °C, respectively. 
The comparison of sorption capacities used sorbates of 
RPAC with some other biomass-based carbonaceous sor-
bents reported in the literature is given in Table 4 [45–56]. 
From this table, it can be seen that RPAC has the capac-
ity to sorb more methylene blue, diclofenac, and copper(II) 
ions than other carbon sorbents. The high sorption capacity 
of RPAC is due to its textural properties with a high inter-
nal surface area of 1564 m2 g−1 and advanced microporous 
with an average diameter of 1.8 nm as seen in Table 1 as 
well as its surface chemical properties. The ionic sizes of 
methylene blue, diclofenac, and copper(II) are 0.9 nm [57], 
0.81 nm [22], and 0.146 nm [55], respectively, which can 
easily enter its pores. Moreover, the sorption capacity of 
RPAC can also be explained by its surface zero charge point 
(pHPZC) value and the surface properties at the natural pH of 
the used sorbates. The pHPZC of the RPAC is 5.78 (Table 1). 
At pH < pHPZC, the sorbent surface has a net positive charge, 
while at pH > pHPZC, the surface has a net negative charge 
[58]. Accordingly, the surface of RPAC becomes positively 
charged at pH < 5.78 and negatively charged at pH > 5.78. 
Since the pH (7.0 for methylene blue, 4.9 for diclofenac, 
and 5.0 for copper(II)) studied in each sorbate sorption are 
larger and smaller, respectively, than the pHPZC of RPAC, 
its surface is negatively and positively charged, respectively. 

The sorption of positively charged methylene blue ions and 
negatively charged diclofenac ions is most likely due to elec-
trostatic attraction forces. Since the sorption of copper(II) 
ions is constantly repelled by the positively charged RPAC 
surface at the ıts natural pH, its sorption is most likely due 
to an ion-exchange mechanism with the protons of the pro-
tonated surface. In addition, it indicates that the RL values 
(Table 3) of each sorbate at the studied temperatures are less 
than one, their sorption is favorable, and the fact that they 
are less than unity with increasing temperature increases 
the favorability at high temperatures. According to these 
values, the favorability of the sorption of the sorbates used 
by RPAC is methylene blue > diclofenac > copper(II), which 
confirms the increase in their maximum sorption capacity, 
qm, in Table 3 calculated from the Langmuir equation. This 
fact confirms that the 1/n values (Table 3) obtained at the 
investigated temperatures calculated from the Freundlich 
equation for all three sorbates are less than unity, confirm-
ing that their sorption is favorable.

The thermodynamic behavior of the investigated sorp-
tion systems was interpreted with thermodynamic parame-
ters like the change in standard Gibbs free energy (∆G°, kJ 
mol−1) mean enthalpy (∆H°, kJ mol−1), and mean entropy 
(∆S°, kJ mol−1 K−1). ∆G° parameters were calculated by 
evaluating of the Langmuir equilibrium constants, KL 
derived from Langmuir linear isotherms at different tem-
peratures in Eq. (14) [59]:

(14)ΔGo = −RTlnKo
e

Fig. 5   SEM images and EDX spectra before and after MB, DCF, and 
Cu(II) sorption of RPAC

◂

Fig. 6   FT-IR spectra of RPAC 
before and after MB, DCF, and 
Cu(II) sorption
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where R (8.314 J K−1 mol−1) is the universal gas constant. T 
(K) is the temperature.Ko

2
 is the thermodynamic equilibrium 

constant, which was calculated from Eq. (15) [60]:

where 1000 is the unit conversion factor, Mm (g mol−1) is 
the molar mass of sorbate, C° is the standard concentration 

(15)Ko
e
=
(

1000KL ⋅Mm

)

Co∕�

of sorbate (1 mol L−1), and γ is the dimensionless activity 
coefficient, which is about 1.0 in the case of a very diluted 
solution. The mean ΔH° and ΔS° values were calculated 
from the slope and shear values, respectively, of the graph 
(Fig. S3) drawn according to the van’t Hoff equation given 
in Eq. (16):

The ∆G° values of each sorbate at 20, 30, 40, and 
50  °C were calculated as − 23.63, − 25.20, − 27.33, 
and − 29.77  kJ  mol−1 for methylene blue; − 20.90, − 
22.44, − 22.97, and − 24.93  kJ  mol−1 for diclofenac; 
and − 11.26, − 12.08, − 12.47, and − 13.61 kJ mol−1 for 
copper(II), respectively (Table 3). The negative ∆G° val-
ues calculated for all three sorbates and the increase in 
their absolute values with increasing temperature indi-
cate that their sorption is favorable and more spontaneous 
with increasing temperature. The mean ∆H° and ΔS° val-
ues for RPAC-methylene blue, diclofenac, and copper(II) 
sorption systems were calculated as 36.51, 10.31, and 
10.48 kJ mol−1 and 0.20, 0.11, and 0.07 kJ mol−1 K−1, 
respectively. The positive mean ΔH° values for the inves-
tigated sorption systems state that the processes are endo-
thermic in nature. Furthermore, the magnitude of the 
ΔH° value for a sorption system gives information about 
whether a sorption process is physical or chemical. It is 
stated that the ΔH° value between 2.1 and 20.9 kJ mol−1 
and greater for a sorption process corresponds to physi-
cal and chemical sorption, respectively [61]. This con-
firms that methylene blue sorption is chemical and that 
of diclofenac, and copper(II) ions are physical. The fact 
that the sorption of all three sorbates on the RPAC is an 
endothermic and spontaneous process as the temperature 
increases are also supported by the increase in qm and 
KL Langmuir isotherm parameters and the decrease in 
1/n and RL values (Table 3). The positive value of the 
mean ΔS° values indicates increased irregularity, which 
exhibits affinity between all three sorbates and the RPAC 
surface during sorption processes.

3.2 � Effect of ionic strength

The effect of NaCl concentration on the sorption of methyl-
ene blue, diclofenac, and copper(II) ions by RPAC is shown 
in Fig. S4. The sorptions of methylene blue and diclofenac, 
and copper(II) increase and decrease insignificantly with 
increasing NaCl concentration, respectively. This is prob-
ably because the solubility of NaCl in water is higher than 
the sorbates used, and its affinity for the sorbent surface is 
less than theirs, so it does not affect their sorption.

(16)lnKo
e
= −(ΔHo∕RT) + (ΔSo∕R)

Fig. 7   Possible binding mechanism of the MB (a), DCF (b), and 
Cu(II) (c) on the RPAC
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3.3 � SEM–EDX and FT‑IR analysis of sorption 
mechanisms

Figure 5 depicts SEM images and EDX spectra of RPAC 
before and after sorption of each sorbate. It can be seen from 
SEM images that the outer surface of the RPAC, which had 
different sizes of voids and pores before sorption, partially 
filled its pores after sorption of each sorbate and also turned 
into light color. These may be due to the sorption of the 
investigated sorbates onto the RPAC surface In addition, 
when the EDX spectra before and after the used sorbates 
sorption of RPAC are examined, the presence of chlorine, 
which is in the structure of methylene blue and diclofenac, 
and copper ions indicates that the sorbates used are sorbed. 
Figure 6 shows the FT-IR spectra before and after the sorp-
tion of each sorbate of the RPAC. In the spectrum of RPAC, 
weak C≡C stretching vibration at 2100 cm−1, C-H bend-
ing vibration at 1830 cm−1, and C = C stretching vibration 
caused by aromatic ring stretching vibrations enhanced by 
polar functional groups at 1549 cm−1 observed C-O stretch-
ing due to carboxylic acid, ether, alcohol, and ester and are 
seen at 1219 cm−1, and C–O–C asymmetric stretching vibra-
tion is seen in the structure of ether or ester at 1010 cm−1 
[24, 62]. The peaks at 875, 670, and 574 cm−1 are caused by 
out-of-plane C-H bending vibration. There appears to be a 
slight shift in some spectra on diclofenac and copper(II) ion-
loaded RPAC, indicating that the sorption phenomenon is 
physical. It is seen that both shifts and new peaks are formed 
in the FT-IR spectrum of methylene blue-loaded RPAC. 
The weak peaks at 1374 and 1321 cm−1 indicate the C = C 
stretching of the alkyl R- and C-N axial deformation of the 
aromatic amine, respectively [63, 64] and indicate the pres-
ence of chemically sorbed methylene blue ions. Accordingly, 

the binding mechanism of used sorbate ions on the RPAC 
could most likely be as shown in Fig. 7.

3.4 � Reusability of RPAC

Figure 8a-c shows drawings of five cycle sorption–des-
orption processes performed with various eluents and the 
determined effective eluent for the reusability of RPAC 
relative to sorptions of the methylene blue, diclofenac, 
and copper(II) ions. Figure 8a shows the plots of stud-
ies on the selection of effective eluent for the desorption 
of used sorbates from the RPAC surface. It can be seen 
from this figure that the effective eluent for the desorp-
tion of methylene blue, diclofenac, and copper(II) ions is 
C2H5OH and HCl, respectively. Figure 8b depicts plots 
for determining the effective concentrations of the active 
eluents identified in Fig. 8a, which show 0.50 M C2H5OH, 
C2H5OH, and HCl for used sorbates, respectively. Fig-
ure 8c demonstrates plots of five cyclic reusability stud-
ies at the active eluent and their effective concentrations 
determined in Fig. 8a and b for each sorbate. It can be seen 
from this figure that the sorption effectiveness of RPAC 
for all three sorbates decreased after three cycles. This 
decrease is probably due to the fact that active sorption 
sites on the RPAC surface gradually lose their activity 
with increasing cycle numbers.

4 � Conclusion

In this study, the performance of industrially processed red 
pepper pulp-based activated carbon to remove methylene 
blue, diclofenac, and copper(II) ions selected as sorbate 

Fig. 8   Effect of different eluents 
on desorption efficiencies of 
MB, DCF, and Cu(II) (a); 
the effect of effective eluent 
concentrations on desorption 
efficiencies of MB, DCF, and 
Cu(II) (b); and regeneration 
cycles on MB, DCF, and Cu(II) 
sorption efficiencies onto RPAC 
(c)
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from aqueous solutions was investigated physicochemi-
cally. The sorption of examined sorbates increased with the 
rise of interaction period, initial sorbate concentration, and 
solution temperature while decreasing with the increase in 
RPAC dosage. Moreover, the sorption of methylene blue, 
diclofenac, and copper(II) ions increased and decreased 
insignificantly with increasing NaCl concentration, respec-
tively. The kinetic data obtained at the initial concentrations 
at diverse time intervals for each sorbate are well defined by 
the PSO model which is supported by the fact that the exper-
imental sorbed amounts are consistent with the calculated 
ones, with high R2 and low ∆q% values. The rate-controlling 
in the sorption mechanism of each sorbate is not only the 
IPD stage but the others also affected. The equilibrium data 
at the temperatures studied for each sorbate best fit the Lang-
muir isotherm model, with higher R2 and low ∆q% values 
than the Freundlich model. The maximum sorption amounts 
for methylene blue, diclofenac, and copper(II) ions by RPAC 
were 322.6, 303.0, and 196.1 mg g−1 at their natural pH and 
50 °C, respectively. The Langmuir RL separation factors and 
Freundlich 1/n constants calculated for each sorption sys-
tem were found to be in the range of 0.0–1.0 and less than 
1.0, respectively, indicating that the sorption processes are 
positive. The thermodynamic parameters computed for each 
sorption system specified that the sorption processes were 
endothermic and spontaneous in nature. Reusability studies 
demonstrated that RPAC can be used for up to three cycles 
for each sorbate with high sorption efficiency.

In conclusion, current research results show that RPAC 
can be used as an effective sorbent as an alternative to com-
mercial sorbents to reduce pollutants from water.
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