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Abstract
This work reports the use of Bambusa vulgaris bamboo fibers (BF) as a biomass source for obtaining cellulose nanocrystals 
(CNCs). The fibers were first subjected to an alkali treatment, followed by bleaching and subsequent acid hydrolysis with 
concentrated sulfuric acid. The materials were chemically characterized according to TAPPI standards. Moreover, their 
structural, thermal and morphologic characteristics were studied through Fourier transform infrared spectroscopy (FTIR), 
X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning elec-
tron microscopy (SEM). FTIR and XRD results demonstrated a reduction in non-cellulosic constituents and an increase in 
crystallinity after bleaching and acid hydrolysis. TGA and DSC analysis revealed a good thermal stability of CNCs. From 
SEM and TEM images, defibrillation of the fibers occurred, and the CNCs have a needle/time-like structure with nanometer 
dimensions. These results confirm the production of CNCs with high potential for application in nanocomposites. These 
results confirm the production of CNCs with high potential for application in nanocomposites.
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1 Introduction

Recent global environmental issues have driven researches 
around the world to look for the development of cleaner, 
sustainable and ecologically friendly materials. Biomass 
is a renewable and abundant resource of natural materials 
that attracted great interest due to the depletion of natural 
sources and new environmental regulations [1]. Cellulose 
is the most abundant biopolymer in earth and has attracted 
considerable attention due to its biodegradability, renewabil-
ity, sustainability, biocompatibility and possibility of numer-
ous modifications. Due to these characteristics, cellulose has 
been continuously considered as a green alternative to fossil 
fuels-based polymers for a wide range of applications [2, 3].

Cellulose can be obtained from different sources, which 
includes algae, wood pulp, cotton, bamboo, among others 
[4–6]. Among the most desirable non-woody raw materi-
als for the paper industry, bamboo is known as a renewable 
alternative resource for the production of wood-based cellu-
lose due to its combination of high cellulose content, excel-
lent tensile strength, rapid growth and regrowth, easy propa-
gation and large planting areas in many countries [7, 8]. 
However, it is still a challenge to isolate pure cellulose from 
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bamboo due to the complex structure of cellulose fibrils sur-
rounded by the lignin matrix and hemicellulose [9].

In recent years, different mechanical, chemical and che-
momechanical methods have been reported to extract cel-
lulose from bamboo [5]. Alkaline treatment, acid chlorite 
(bleaching), acid hydrolysis, TEMPO ((2,2,6,6-tetrameth-
ylpiperidin-1-yl) oxyl) mediated oxidation and enzymatic 
treatment are the most commonly used chemical methods. 
Alkaline treatment ensures the segregation of amorphous 
segments present in cellulosic biomass including hemicel-
lulose and lignin [10]. Acid-chlorite treatment is used for 
delignifying cellulosic fibers and is extensively employed 
in the pulp and fabric industry [11]. Acid hydrolysis eradi-
cates the disordered domains in cellulose leaving behind the 
ordered ones. Mechanical treatments like ultrasonication, 
high-speed grinding, ball milling, etc. ensure the cleavage 
of large microfibrils up to nanometer-scale by high-intensity 
shear forces [12].

Some researchers have successfully extracted the nano-
cellulose/nanocrystals of various natural fibers using dif-
ferent methods such as chemo-mechanical, cryocrushing 
and high-speed grinding [13]. Mandal and  ChakrabartyX 
obtained nanocellulose of bagasse by acid hydrolysis, with 
improved thermal stability and crystallinity when compared 
to other fibers. The same method was also used to isolate 
the nanocrystalline cellulose of bamboo, and it was found 
that its crystallinity index (71.98%) was higher than that of 
other non-wood materials [14]. Chandra et al. (2016) [15] 
extracted nanocellulose of areca nut husk with an average 
diameter less than 3–5 nm and a good aspect ratio ranging 
from 120 to 150 using the chemo-mechanical method.

Furthermore, when cellulose is produced as nanofibers, 
excellent properties such as high mechanical strength, high 
surface area, biocompatibility, low density, biodegradabil-
ity and non-toxicity are achieved, resulting in potential of 
application in food packaging, papermaking, and as a rein-
forcement in polymer composites [16]. The nanocellulose 
properties are known to be strongly dependent not only on 
isolation process, but also on the extraction sources such 
as leaves, stems and roots of plants. Compared with cel-
lulose microfibrils, cellulose nanocrystals (CNCs) have a 
large specific surface area [17, 18]. High strength, specific 
modulus, high aspect ratio (L/D), presence of reactive and 
low density hydroxyl groups that can facilitate the grafting 
of chemical species from the surface, non-abrasive nature, 
non-toxic character, biocompatibility and biodegradability 
are some specific useful characteristics of CNCs that make 
them promising nanoparticles [19].

Hydrolysis with sulfuric acid has been described as the 
most widely used route to prepare CNCs, since it is simple 
process that results in nanoparticles with high crystallinity, 
rigidity and also proved to be effective in eliminating amor-
phous components [20].

2  Experimental

2.1  Materials

The Bambusa vulgaris bamboo biomass was collected dur-
ing March 2021, in the interior of Rio Grande do Sul State, 
Morro Redondo, Brazil, and can be seen in Fig. 1. The bio-
mass was crushed in knife mill, dried in an oven a 50 °C 
overnight and had its particle size standardized in a 32-mesh 
sieve. Commercial brands of sodium hypochlorite (NaClO, 
from Girando Sol), sodium hydroxide (NaOH) and sulfuric 
acid  (H2SO4), obtained from Dinâmica Química Contem-
porânea LTDA, Brazil, were used for CNC extraction. All 
solvents and reagents were used without further purification.

2.2  Preparation of cellulosic material

The bamboo-derived cellulose fiber was obtained through 
the typical alkaline treatment followed by bleaching and 
was prepared similarly as the processes described by Qian 
et al. (2018) [20] and Wijaya et al. (2019) [21]. Firstly, the 
bamboo biomass was treated with an alkaline 10% treatment 
(w/v) NaOH solution at 80 °C for 1 h. The resulting material 
was filtered and washed several times with distilled water 
until reaching neutral pH. Subsequently, the biomass was 
bleached with a 20% (w/v) NaClO solution. The mixture was 
filtered with distilled water and oven dried for 24 h at 50 °C. 
Figure 2 shows a schematic representation of the process for 
obtaining cellulose.

Fig. 1  Bamboo culm sections cut in 50 cm long
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2.3  Preparation of CNCs

The CNCs were obtained by acid hydrolysis performed at 
45 °C for 1 h using a 35 wt%  H2SO4 solution. In a typical 
experiment, the cellulosic material was mixed with  H2SO4 
in a 1:20 mass/volume ratio (1 g of cellulose and 20 ml of 
 H2SO4). Then, cold distilled water was added to the solu-
tion, followed by centrifugation at 3600 rpm for 10 min. 
The resulting precipitate was dialyzed with distilled water 
to reach neutral pH and freeze-dried through lyophilization 
for further characterizations [20]. Figure 3 illustrates the 
process of obtaining CNCs derived from bamboo fiber.

2.4  Characterizations

The chemical composition of the cellulose was investigated 
according to TAPPI standards T 258, T 204, T 222, T 257 
and T 204, aiming to evaluate the content of soluble extrac-
tives, insoluble lignin, hemicellulose, holocellulose and cel-
lulose, respectively. All tests were performed in triplicate 
for statistical comparison. The bamboo fibers, cellulose and 
CNCs were also characterized by Fourier-Transform Infrared 

Spectroscopy (FTIR), in a Shimadzu Prestige-21 equipped 
with ATR-8200 HA. The spectrum was recorded from 400 to 
4000  cm−1 with 32 scans and 4  cm−1 resolution. The crystal-
linity of the samples was determined using a D8 Advance 
diffractometer Bruker, with wavelength (ƛ = 1.541 Å), oper-
ating at 40 kV and 40 mA. Scanning was performed in the 
2θ range between 10 and 60°, at a rate of 1°/min. The Segal 
crystallinity index [22] was calculated according to the fol-
lowing equation:

where I200 refers to the maximum intensity of the 200 
lattice diffraction peak at 2θ = 22° and Iam is the intensity 
of diffraction for the amorphous part at 2θ = 18.5°.

The thermal behavior of the samples was first evaluated 
by differential scanning calorimetry (DSC), using a TA 
Instruments equipment, model Q 2000, with nitrogen as 
carrier gas, in a constant flow of 50 ml/min, heating ramp 
of 10 °C/min, from 20 to 200 °C. The thermal stability of 
the materials was measured by thermogravimetric analysis 
(TGA, TA Instruments, model Q50). Tests were performed 
in  N2 atmosphere, from 30 to 800 °C, with heating rate of 

(1)Ic = (I(200) − I(am)∕I(200) × 100%

Fig. 2  Schematic representa-
tion of the process of obtaining 
cellulose

80°C during 1 h Filtration and washing Treated fiber Cellulose + NaClO

Filtration and washingDrying at 50°CCellulose

Fig. 3  Illustration of the process 
for obtaining CNCs derived 
from bamboo fiber

Cellulose + 

H2SO4

Centrifugation
Dialysis and 

freeze drying
CNCs
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20 °C/min. The morphology of the bamboo fibers, cellulose 
and CNCs was observed by scanning electron microscopy 
(SEM, Jeol, JSM-6610LV). CNCs were also observed by 
transmission electron microscope (TEM, Jeol, JEM-1400).

3  Results and discussion

3.1  Chemical composition

The chemical composition of the cellulose obtained from the 
bamboo fiber biomass after the alkaline and bleaching treat-
ments was determined according to TAPPI standards, and 
the results are summarized in Table 1. As it is well known, 
the bamboo fiber has a highly stable structure, which is 
mainly composed of cellulose, hemicellulose and lignin. 
Cellulose provides structural support in cell walls, while 
the hemicellulose and lignin are complex organic polymers 
that acts as binding agents, being responsible for holding 
cellulose fibers together, providing rigidity to the structure. 
These three components are entangled in a thin layer and are 
responsible for the formation of bamboo cell walls [23, 24]. 
In addition to lignocellulosic structures, bamboo also con-
tains a variety of low-molecular-weight organic compounds 
known as extractives (resins, fatty acids, waxes and phenols) 
that can be removed [23, 25]. During the heat treatment, the 
chemical components of bamboo undergo chemical reac-
tions, which induce changes in the contents of holocellu-
lose, α-cellulose, lignin and extractives. The mass fraction 
of cellulose, hemicellulose, holocellulose and lignin were 
70.04%, 17.13%, 64.08% and 3.37%, respectively, which are 
compatible with other similar studies reported as described 
in Table 1. Furthermore, a low fraction of extractives was 
obtained, which can be attributed to their dissolution associ-
ated to the degradation of cellulose and hemicellulose [26]. 
Similarly, the relatively low concentration of hemicellulose 
suggests that the chemical treatment partially degraded is 
structure. Hemicellulose is a heterogeneous low molecular 
weight material composed of acetyl and glycosyl groups, 
which are not thermally stable structures. Also, the high 
portion of cellulose and the low fraction of lignin indicate 

that the methodology was efficient for the fabrication of the 
cellulosic material.

The natural fibers exhibited a green coloration, which 
changed to a dark-brown after the alkaline treatment due 
to the degradation of hemicellulose and lignin [27]. After 
the bleaching process, the fibers displayed the typical white 
color of cellulosic-based materials, suggesting that the treat-
ment was effective in purifying the cellulose fibers, remov-
ing non-cellulosic components, such as a part of lignin, 
hemicellulose, pectin and other extractives [28, 29].

3.2  X‑ray diffraction

The XRD patterns of the bamboo fiber biomass before and 
after the alkaline treatment, cellulose and CNCs are shown 
in Fig. 4.

The presence of two peaks at 22.30° and 34.56° was 
clearly observed, corresponding to the (200) and (004) crys-
tallographic planes, respectively [35, 36]. The main peak at 
22.30° suffered a slight right shift for the samples that were 
subjected to alkaline and bleaching treatments, as can be 
seen in detail in the inset of Fig. 3a. This can be ascribed to 
a change of crystal order in the (200) plane, which induces 
hydrolytic cleavage of glycosidic bonds, releasing individual 

Table 1  Comparison of the 
chemical composition of 
cellulose obtained in this work 
with other similar studies 
reported

Biomass Extractives Lignin Hemicellulose Cellulose Ref

Bambusa vulgaris 0.33% 3.37% 17.13% 70.04% This work
Bamboo grid 5.77% 24.37% 23.05% 41.03% [23]
Bamboo pulp - 0.08% 15.10% 79.34% [8]
Pineapple - 7.3% 9.9% 73.6% [30]
Jute - 14% 21.8% 62.1% [31]
Corypha taliera fruit - 17.6% 21.78% 55.1% [32]
Shwetark - 16.82% 0.2% 69.65% [33]
Acalypha indica - 18.75% 0.24% 67.82% [34]
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Fig. 4  X-ray diffraction patterns
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crystallites [37, 38]. Moreover, two overlapped bands were 
observed at between 14 and 16° corresponding to (1–10) 
and (110) crystalline reflections, respectively. According to 
the literature, all crystallographic planes observed confirmed 
that the cellulose was successfully extracted from the bam-
boo biomass and indicated that the structural type of CNC 
samples was Iβ cellulose [38, 39]. Furthermore, the crystal-
linity index of bamboo fiber was 47.56% (Table 2), while for 
the CNCs the crystallinity was 72.24%, indicating that the 
amorphous components related to lignin and hemicellulose 
were removed [38].

3.3  Fourier transform infrared spectroscopy (FTIR)

The FTIR spectra of bamboo fiber before and after the alka-
line treatment, cellulose and CNCs are shown in Fig. 5. All 
samples presented similar results, with the typical bands 
characteristic of cellulose, suggesting that the cellulose 
structure was preserved after all processes and that the meth-
odology was effective, which is in agreement with the results 
of chemical composition and XRD. A large band between 
3000 and 3500  cm−1 and a peak at 1637  cm−1 were observed 
in all samples and are attributed to OH stretching and 

bending vibrations of the adsorbed water, respectively. The 
presence of OH in CNCs is essential for good bonding with 
a polymer matrix, aiming at their use as a reinforcing agent 
[40]. The band at 2900  cm−1 is characteristic of asymmetric 
stretching of C–H bonds on –CH, –CH2 and –CH3 groups 
[40]. The peaks at 1463  cm−1 and 1512  cm−1 are related to 
the deformation of the methyl group and elongation of the 
C–C bond of the lignin aromatic ring, respectively for natu-
ral bamboo fiber and alkaline treatment. These two peaks 
were not observed in the cellulose and CNC samples, con-
firming the removal of lignin after the acid treatments. Thus, 
the peak at 1736  cm−1 was attributed to the elongation of the 
C–O bond of hemicellulose, which was observed only in the 
bamboo fiber [41]. Characteristic peaks of cellulose were 
observed between 850 and 1500  cm−1 for all samples. The 
peak at 1057  cm−1 corresponds to C–O bond at the C-3 posi-
tion of cellulose. The range between 1200 and 1236  cm−1 
is attributed to the C–OH bond in the C-6 plane [42]. The 
peaks at 1061 and 897  cm−1 are associated to C–O and C–H 
stretching of cellulose, suggesting that there was no loss of 
cellulosic material during acid hydrolysis [43].

3.4  Thermal analysis (TGA and DSC)

The thermal stability of the samples was investigated 
through TGA, and the results are shown in Fig. 6a. It was 
observed three well-defined weight loss stages: the first 
in the range of approximately 20–180 °C, which is a non-
accentuated weight loss (inferior to 5%) attributed to the 
evaporation of moisture or volatile residues generated dur-
ing the nanocellulose isolation processes [5, 44]. The sec-
ond between 180 and 360 °C, corresponding to a weight 
loss of approximately 80%, related to the degradation of 
hemicellulose, lignin and α-cellulose, depolymerization of 
cellulose chains, dehydration, decarboxylation and decom-
position of glycosyl cellulose units; and finally, the third 
stage at temperatures higher than 360 °C, which is mainly 
associated to decomposition of α or L-cellulose. Thus, the 
high stability of lignin groups coincides with the degrada-
tion that leaves ash as a residue, generating products of 
low molecular weight for temperatures higher than 200 °C 
[31]. In the case of bamboo fiber, the decomposition region 
for hemicellulose, cellulose and lignin was 200–380 °C, 
250–380 °C and 180–800 °C, respectively. Then, with 
increasing temperature, the cellulose dehydrated and depo-
lymerized intensely, competing to form CO,  CO2,  H2O and 
coal [5]. The alkaline treatment and the bleaching process 
apparently have not influenced the thermal stability fibers, 
since the thermal degradation temperatures of the samples 
were similar. These results are in accordance with previ-
ous studies, where it is described that the alkaline treat-
ment and bleaching process did not modify the thermal 
behavior of cellulosic materials obtained from biomass 

Table 2  Crystallinity index of 
the samples after each step of 
production

Samples Crystal-
linity 
index

Bamboo fibers 47.96
Alkaline treatment 55.72
Cellulose 63.52
CNCs 72.40

Fig. 5  Fourier transform infrared spectroscopy of the cellulosic-based 
materials



14158 Biomass Conversion and Biorefinery (2024) 14:14153–14162

1 3

[45, 46]. On the other hand, the thermal degradation of 
CNCs presented a weight loss of 77% in the temperature 
range of 230–370 °C. The greater surface area of   CNCs 
can play an important role in reducing thermal stability, 
in which it is essential for CNCs to be used as an effective 
reinforcement material. CNCs can provide high rigidity 
and favorable strength for reinforced composites as there 
are rich hydroxyl groups on the surface of CNCs. In fact, 
CNCs have good matrix compatibility and can be evenly 
distributed in the matrix, which is useful to improve the 
mechanical properties of nanocomposites [47] (SHEN, P 
et al., 2022). Cao et al. (2008) [48] extracted CNCs from 
hemp fibers by sulfuric acid hydrolysis to reinforce nano-
composite materials, successfully improving mechanical 
properties. In addition, in the process of acid hydrolysis 
using sulfuric acid, the crystalline and amorphous struc-
tures are decomposed, which results in structures that are 
more sensitive to temperature [49]. Roman and Winter 

(2004) [49] reported that the activation energy for the 
degradation of CNCs is significantly reduced by the use of 
sulfuric acid in the hydrolysis process [44].

According to the data found, the studied samples have dif-
ferent pyrolysis behaviors, with different temperature ranges; 
the chemical treatment performed increased the thermal sta-
bility of the fibers, although the thermal stability of CNC 
was lower than that of cellulose, but sufficient for most prac-
tical applications. It was also possible to notice that the high 
portion of cellulose and low fraction of lignin indicate that 
the methodology used was effective for the production of 
cellulosic material as reported by previous characterization 
techniques such as chemical composition, XRD and FTIR. 
Therefore, the CNCs developed in this work have feasible 
thermal stability to be applied in food packaging, such as 
polyolefins, since both the processing temperature and the 
working temperature of these packaging materials are lower 
than the CNC degradation temperature [50].
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Fig. 6  TGA (a), DTG (b) and DSC (c) analysis of the cellulose-based materials obtained from bamboo fiber biomass
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Results obtained from DTG shown in Fig. 6b confirm that 
the main stage of mass loss occurs between 180 and 360 °C 
for all samples, which is in agreement with other studies that 
described a similar behavior [8]. Figure 4c further shows 
the DSC thermograms of the samples, and the values cor-
responding to the crystalline melting temperature (Tm) and 
enthalpy of melting (ΔHm) are described in Table 3. The Tm 
showed a slight deviation, while the ΔHm values increased 
after each treatment performed to obtain the CNCs. Through 
the DSC results, it was also verified that the initial thermal 
transition occurs around 100 °C for each of the analyzed 
samples; such behavior can be attributed to the absorption 
of thermal energy [51].

3.5  Morphologic characterization

The surface characteristics of the samples were observed by 
SEM, and the micrographs are shown in Fig. 7. In addition, 
the TEM micrograph of the CNCs can be seen in Fig. 8. 
The bamboo fibers (Fig. 7a) exhibited a rough surface cov-
ered by globular particles. Thus, the presence of amorphous 

constituents such as lignin and hemicellulose was also 
observed [52]. After the alkaline treatment (Fig. 7b), the 
fibers became less stacked, i.e. the removal of lignin sepa-
rated the fibers into individual structures [53–55]. The cel-
lulose (Fig. 7c) showed more uniform fibrils in terms of 
morphology, with the elimination of residual lignin [7, 56] 
indicating that the pre-treatment with sodium hypochlorite 
 (NaClO2) induced the oxidation of aromatic rings of lignin 
and removed most of non-cellulosic constituents, which cov-
ered the outer surface of the cell wall of the fibers [52, 57]. 

Table 3  Values of crystalline melting temperature (Tm) and enthalpy 
of melting (ΔHm) obtained from DSC analysis

Sample Tm (°C) ΔHm (J/g)

Bamboo fiber 108.49 44.08
Alkaline treatment 106.80 49.96
Cellulose 109.97 52.58
CNCs 101.02 74.18

Fig. 7  SEM images of the 
bamboo fibers (a), the fibers 
after the alkaline treatment (b), 
cellulose (c) and CNCs (d)

Fig. 8  TEM micrograph of CNCs isolated from bamboo fiber
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Finally, the CNCs were fragmented into crystals, resulting 
in a uniform fibrous morphology [57]. The CNCs presented 
a structure similar to small stems, which are connected to 
each other, as can be seen in Fig. 7d. It is also verified that 
the CNCs presented a less aggregated morphology and with 
fibrils with smaller diameter compared to the other sam-
ples. This result can be attributed to differences in cellulosic 
materials and chemical treatment conditions [36].

Through the TEM analysis depicted in Fig. 8, it can be 
stated that the CNCs exhibit individual needle-like nano-
metric structures, thus confirming the expected morphology 
for CNCs isolated from bamboo fiber [58]. The micrograph 
shows individual nanocrystals and some aggregates. This is 
due to the high density of hydroxyl groups on the surface 
of the cellulose chain molecules, coming from the forma-
tion of hydrogen bonds [59, 60]. The surface availability of 
hydroxyl groups is due to the hydrophilic nature of CNCs 
[61].

The existence of fibers as fine filaments suggests that 
the amorphous region has been removed during the acid 
hydrolysis process. The existence of the aggregates may also 
be a result of the TEM sample preparation when the disper-
sion medium was removed [62] (Shojaeiarani, J., Bajwa, D. 
S., & Chanda, S. (2021)). The reinforcing capacity depends 
mainly on its structure. The type of morphology is important 
in determining its surface area, since the greater the surface 
area, the greater its reactivity and the better the likelihood 
that CNCs will be used as reinforcement in polymer nano-
composites [63].

The length of CNCs ranges from 200 to 300 nm in length, 
which is in agreement with the bamboo-derived CNC in the 
study reported by [58]. Furthermore, the CNC width found 
in this work ranged from 10 to 20 nm is also in the range of 
values found for hemp (15 nm) [65] and sisal (9.45 nm) [66]. 
The aspect ratio (length/width) found for the CNCs was 10 
to 15. In the literature, the aspect ratio ranges from 10 to 70 
for different natural sources of CNCs. The high aspect ratio 
provides high stiffness for the nanoparticles and results in 
increased reinforcement effect, which is important for the 
use of CNCs as filler in composites [29].

4  Conclusion

This work described an effective methodology to produce 
CNCs derived from bamboo pulp. Results demonstrated that 
the proposed experimental process was able to produce high 
aspect ratio nanocrystals using bamboo fibers as resource. 
Isolated cellulose and CNCs contained low amounts of 
hemicellulose and lignin, as confirmed by chemical charac-
terization, XRD and FTIR results. The CNCs showed sub-
stantially higher crystallinity compared to the other samples, 

and the TGA revealed good thermal stability of CNCs. The 
CNCs showed a stem-shaped morphology, which can help 
to achieve good dispersion and interaction of these materials 
with polymer matrices in nanocomposites.
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