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Abstract
Plants in various republics of the world face many dangers, including diseases that threaten crop productivity. The devel-
opment and increase of novel species of infectious pathogens have made plant growth threatened. Fusarium wilt is one of 
the fiercest diseases affecting vegetables, which causes a great loss in the quality and quantity of pepper plants all over the 
world. In this study, stimulation of physiological immune responses in pepper plant using ecofriendly inducers (Aspergillus 
alabamensis, Aspergillus oryzae, and Aspergillus tubingensis) against Fusarium wilt had been studied. Endophytic fungi were 
assayed for their capability to synthesize hydrocyanic acid, phosphate solubilization, siderophores, and indole acetic acid 
synthesis, and the antifungal potential of ecofriendly inducers against F. oxysporum was also examined. A notable antifungal 
potential antifusarial with a supreme activity of A. tubingensis was found. More ultrastructure by TEM of Fusarium showed 
that sharp changes occurred in the cell wall, mycelium, and conidia as a result of treatment with A. tubingensis, A. oryzae, 
and A. alabamensis. The results demonstrated the high severity of F. oxysporum on pepper seedlings. Infected seedlings 
showed a high reduction in all vegetative parameters, photosynthesis, entire protein, and total carbohydrate. In the current 
study, the potential of endophytic fungi through foliar and soil application was applied to the Fusarium-infected pepper 
plants under pot conditions. Disease index, vegetative growth, photosynthetic pigments, osmolyte content, stress markers, 
and antioxidant isozymes were assessed. The achieved result indicates that tested endophytes through two modes (foliar and 
soil) lowered PDI and produced high protection, with the most protection influence represented by A. tubingensis (through 
the soil) by 83.33%. It was concluded that use of A. tubingensis, A. alabamensis, and A. oryzae could be commercially used 
as eco-friendly agents for the defense of pepper seedlings against Fusarium wilt disease.
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1 Introduction

Vegetables suffered from many pests, nematodes, and 
fungi that caused a severe loss in production pre- and 
postharvest [1]. The pepper plant is affected by different 

biotic diseases. Soil-borne plant pathogens mostly cause 
wilt and root rot diseases in pepper, thereby significantly 
affecting the growth and yield [2–4]. Fusarium wilt is one 
of the most destructive diseases of pepper in organic and 
conventional farming as it infects seedlings and kills them 
as soon as they germinate after their appearance on the 
surface of the soil, which leads to a small number of the 
resulting seedlings [5–8]. The infection of Fusarium can 
cause failure to capture light, reducing the efficiency of the 
photosynthesis process, and the difficulty of transporting 
water and salts, which causes burst condition inside cells 
in plants and causes an impact negative on plant growth 
and physiological signalization [9, 10]. The presence of 
these two free radicals can generate oxidative damage 
by encouraging the accumulation of superoxide  (O2−), 
hydrogen peroxide  (H2O2), and hydroxyl radicals (OH), 
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and many compounds in plants are attacked by these spe-
cies, including lipids, proteins, and nucleic acids [11]. 
Recently, in light of the economic crisis, there were voices 
calling for a stay away from environmental pollution to 
limit climate changes, which prompted plant pathologists 
to think of modern and effective methods that help in com-
bating disease [12]. The use of biostimulants is the most 
important recent trend in the formation of a strong plant 
capable of resisting pathogens and creating an internal bal-
ance under stress conditions, which is known as induced 
resistance [13]. To protect themselves, plants developed 
the ability to scavenge those toxic species using a non-
enzymatic pathway (accumulation of many secondary 
metabolites such as carotenoids, phenolics, soluble sugar, 
and proline content) and an enzymatic pathway (peroxi-
dase and polyphenol oxidase) [14, 15]. The use of fun-
gicides chemically synthesized has become less efficient 
in eliminating the disease in light of climatic changes, 
but plant resistance may be induced by biotic and abi-
otic elicitors [16, 17]. Plant physiological immunity can 
be stimulated by many means, perhaps the most impor-
tant of which are growth-stimulating organisms against 
stress [3, 18, 19]. The harmful effect of Fusarium wilt 
can be minimized by the induction of natural exogenous 
inducers such as phytohormones and antioxidant mole-
cules [20–22]. Furthermore, the molecules extracted from 
endophytes have been reported to be powerful biostimu-
lants of growth, physiological immunity, and yield, as they 
enhanced tolerance to environmental stress by stimulating 
the antioxidant system and improving nutrient availabil-
ity and nutrient uptake from the soil [23–26]. Applica-
tion of endophytic Aspergillus resulted in a significant 
rise in the content of chlorophyll, protein contents, total 
sugar, and phenolic component of infected plants [18]. 
Endophytes are microorganisms that produce improved, 
growth-stimulating, and antimicrobial compounds that 
grow naturally within plants [27–29]. The application of 
Aspergillus as a biostimulant was documented to enhance 
chlorophyll contents and morphological growth attributes 
in different stressed crops via modifiable osmolytes and 
enzyme activities [30, 31]. Hence, the usage of endophytes 
in stimulating the synthetic immunity of plants was one of 
the most important biological factors in increasing crops 
yield [32–35]. Thus, the chief target of this study is to 
learn more about the mechanisms by which endophytic 
fungi Aspergillus spp. help plants resist wilt disease. Our 
study evaluates the effect of endophytic fungi Aspergil-
lus spp. on F. oxysporum in vitro and then evaluates the 
effect of endophytic fungi on the induction of substances 
responsible for defense against Fusarium in pepper plants. 
Our study opens an effective way to control fungal phy-
topathogens in a way that is safe for the environment and 

has high effectiveness and efficiency instead of chemical 
fungicides that negatively affect the environment.

2  Materials and methods

2.1  Pepper seedlings

Three-week-old pepper seedlings were obtained from the 
Agricultural Research Center, Giza, Egypt (ARC).

2.2  Endophytic fungi

Endophytic fungi A. alabamensis MW444552, A. oryzae 
MW444554, and A. tubingensis MW444553 were used in 
this study. The biochemical traits of endophytic fungi were 
completed as the following; the capability of the tested fungi 
to create hydrocyanic acid (HCN) was achieved according to 
the procedure described by Trivedi et al. [36]. The capacity 
of the fungi to solubilize phosphate was established accord-
ing to Rezzonico et al. [37]. The assessment of siderophores’ 
creation was assayed according to Sujatha and Ammani [38]. 
The ability of fungi to create indole acetic acid (IAA) was 
established by the technique described by Leveau and Lin-
dow [39].

2.3  Fungal pathogen

F. oxysporum was obtained from the Regional Center for 
Mycology et al.-Azhar University (RCMB) and then was 
established by pathogenicity test according to Hibar et al. 
[40]. The inoculum was ready according to Büttner et al. 
[41].

2.4  In vitro antifusarial activity of endophytic fungi

Well-diffusion method was used to determine the activity of 
ethyl acetate crude extract of endophytic against F. oxyspo-
rum. The extracts were inoculated on potato dextrose broth 
medium (PDB) and then incubated at 28 ± 2 °C for 15 days. 
Fungal inoculum of F. oxysporum was spread thoroughly on 
the sterilized potato dextrose broth medium (PDA). Wells 
(7 mm) were occupied with 100 µL of extract (10 mg/mL). 
The plates were incubated at 25 °C for 7 days, and the inhi-
bition zones were measured. The cytological variations that 
occurred in F. oxysporum were examined with a JEOL-JEM 
1010 transmission electron microscope employed by the 
Regional Center for Mycology and Biotechnology (RCMB), 
Al-Azhar University, to examine stained slices at a voltage 
of 70 kV. The samples were handled and post-fixed accord-
ing to [42–44].



16605Biomass Conversion and Biorefinery (2024) 14:16603–16613 

1 3

2.5  Pot experiment design

Three-week-old pepper seedlings were transplanted into 
40 × 40-cm pots (each pot one seedlings and ten replicates). 
In the green plastic house, the pots contained 7 kg of 1:3 
sand and clay (a temperature of 22 °C during the daylight 
hours and 18 °C at the nighttime, with a relative humidity 
of 70–85%). F. oxysporum  (107 spores/mL) was inoculated 
into the soil after planting except for the healthy control. 
Endophytic-tested fungi were applied three times by soil 
treatment or foliar spraying. The pots were prepared as the 
following: T1-healthy control (pepper seedlings were sow-
ing in sterilized soil), T2-infected control (pepper seedlings 
were sowing in infected soil with F. oxysporum), T3-infected 
plants soil treated with A. alabamensis, T4-infected plants 
soil treated with A. oryzae, T5-infected plants soil treated 
with A. tubingensis, T6-infected plants foliar treated with 
A. alabamensis, T7-infected plants foliar treated with A. 
oryzae, and T8-infected plants foliar treated with A. tubin-
gensis. For plant resistance evaluation, disease development 
and severity and morphological and biochemical indicators 
for resistance analysis were recorded after the plant reaches 
the age of 60 days.

2.6  Disease index

Disease symptoms were daily observed until 40 days after 
inoculation, while disease index and protection were evalu-
ated according to Farrag et al. [16], using five score classes: 
0 (no symptoms), 1 (slight yellow of leaves), 2 (moderate 
yellow plant), 3 (wilted plant and browning of vascular 
bands), and 4 (plants completely destroyed). PDI was calcu-
lated by the equation PDI = (1n1 + 2n2 + 3n3 + 4n4) × 100/4nt, 
where n1–n4 are the number of plants in each class and Nt is 
the total number of plants. Percent protection was calculated 
by Protection % = A–B/A × 100%, where A = PDI in infected 
control plants and B = PDI in infected-treated plants.

2.7  Metabolic indicators for pepper resistance

The measurement of chlorophyll and carotenoids achieved 
by the procedure of Vernon and Seely [45]. Photosynthetic 
pigments were extracted from fresh leaves (1  g) using 
100 mL of 80% acetone, and then the color was determined 
spectrophotometrically at 665, 649, and 470 nm after the 
extract was filtered. A method of Umbreit et al. [46] was 
used for assayed of total soluble carbohydrate in dried tis-
sues. The dried shoots (0.5 g) from each treatments were 
diluted with 5 mL of 30% trichloroacetic acid (TCA) and 
2.5 mL of 2% phenol and filtered through filter paper, and 
then 1 mL of the filtrate was treated with 2 mL of anthrone 
reagent (2 g anthrone/L of 95%  H2SO4). 620 nm was used 
to determine the produced blue-green color.

Total soluble protein determined by the method [47]. One 
milliliter of plant extract was combined with 5 mL (50 mL 
of 2%  Na2CO3 prepared in 0.1 N NaOH and 1 mL of 0.5% 
 CuSO4) and 0.5 mL of Folin’s reagent (diluted by 1:3 v/v). 
After 30 min, a color change could be seen at a wavelength 
of 750 nm. Free proline and phenol in plants were altered in 
response to infection; thus, the content of free proline was 
established by the methods of Bates et al. [48] and Dai et al. 
[49] and was used to assessed the total phenolics. Adopted 
method of Srivastava [50] was applied to determine the 
peroxidase activity. The activity of polyphenol oxidase was 
measured by the method of Matta [51].

2.8  Statistical analyses

One-way variance analysis (ANOVA) was applied to the 
resulting data. Least significant difference (LSD test) by 
CoStat (CoHort, Monterey, CA, USA) was used to demon-
strate statistically relevant differences between treatments 
at p < 0.05 [52].

3  Results

3.1  In vitro antifusarial activity of endophytic fungi

Results in Fig. 1 showed that tested endophytic fungi have 
great antifusarial activity, where A. tubingensis showed 
highly inhibition zone (25  mm diameter), A. oryzae 

Fig. 1  Antifungal activity of endophytic fungi; A A. oryzae; B A. tub-
ingensis, C A. alabamensis, and D − ve control (ethyl acetate)
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(23  mm diameter), and then A. alabamensis (22  mm 
diameter).

3.2  Ultrastructure responses

Results in Fig.  2 showed that the ultrastructure of F. 
oxysporum components was abnormal when applied to 
tested endophytes. There are detected abnormalities in 
fusarial cell wall and cytoplasmic substances compared 
with the control, where A. tubingensis caused distortion 
of conidia (macro- and microconidia). On the other hand, 
A. oryzae and A. alabamensis resulted in a moderately 
devastated Fusarium structure through the extension of 
macroconidia and microconidia, losing cytoplasmic com-
ponents and proliferation wall thickness compared with 
the control.

3.3  Biochemical characteristics of endophytic fungi

Results in Table 1 revealed that the tested endophytic fungi 
have capability to produce HCN, IAA, and siderophores and 
can solubilize phosphorus, where A. alabamensis recorded 
the maximum activity of HCN and IAA production. Regard-
ing to the ability of the tested endophytes to produce Sidero-
phores, the results showed that A. oryzae recorded the high-
est siderophores amount, followed by A alabamensis and A. 
tubingensis. Also, A. alabamensis was best followed by A. 
tubingensis and then A. oryzae. 

3.4  In vivo study

3.4.1  Disease severity (DS) and protection

The data in Table 2 revealed that F. oxysporum infection 
of pepper seedlings caused a high percent disease severity 

Fig. 2  Ultrastructure of antifun-
gal activity of endophytic fungi; 
A A. oryzae, B A. tubingensis, 
C A. alabamensis, and D − ve 
control (ethyl acetate)

Table 1  Ability of fungal 
isolates to the production of 
HCN, IAA, and siderophores 
and the solubilization of 
phosphates

Fungal endophytes Hydrocyanic acid 
(HCN)

Indole-3-acetic acid 
(IAA)

Siderophores Solubilization 
of phosphates

A. alabamensis  +  +  +  +  +  +  +  +  +  +  + 
A. oryzae  +  +  +  +  +  +  +  + 
A. tubingensis  +  +  +  +  +  +  + 
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(PDI) 90.00%. Decreasing the severity of disease is the first 
evidence of the efficiency of the tested endophytes in induc-
ing plant resistance. The results showed that both methods 
of treatment with the tested fungi, whether soil treatment 
or foliar spraying, reduced the severity of infection and 
increased the percentage of protection ranging (58.33: 
83.33%), whereas during soil and foliar treatment, A. tubin-
gensis recorded the lowest severity of infection by 15.00% 
and 25.00%, and the highest protection rate reached 83.33% 
and 72.22%.

3.4.2  Growth biomarkers

The severe decline in plant morphological characteristics 
(stem, root length, and leaves number) is the clear indi-
cations of the seriousness of the disease. It is clear from 
Table 3 that the infection with F. oxysporum caused a severe 
decrease in shoot length by 74.24%, root length by 59.48%, 
and number of leaves by 63.63%. On the other hand, appli-
cation of all entophytic fungi, whether through soil or foliar 
led to the improvement morphological indicators of infected 
pepper seedlings, whereas treatment with A. tubingensis 
through soil and foliar recorded the highest shoot length 
(77.91 and 75.96 cm).

3.4.3  Effect of endophytic fungi on photosynthetic 
pigments

Photosynthesis is one of the most important vital processes 
in the development of plant growth stages, and at the same 
time, it is negatively affected by fusarial infection. There-
fore, it was important to measure the photosynthesis pig-
ments in this study. The data observed in Fig. 3 showed 
that F. oxysporum infection caused a significant deficiency 
of chlorophyll pigments a and b by 40.09% and 68.13%, 
respectively, and a significant increase in the carotenoid 
content by 87.78%. The results presented the improvement 
of photosynthetic pigments due to applying all tested endo-
phytic fungi. These responses differed according to the 
method of application (soil or foliar). However, infected 
plants treated with A. tubingensis and A. alabamensis 
through the soil showed a significant improvement in chlo-
rophyll a and b, followed by A. tubingensis through foliar, 
respectively. Also, the obtained results demonstrated that, 
the contents of carotenoids were decreased throughout the 
two-method application in response to the treatment with 
A. tubingensis, A. alabamensis, and A. oryzae). 

Table 2  Protection of fungal 
endophytes against fusarial wilt

Treatment Method of 
application

Disease symptoms classes DI (disease 
index) (%)

Protection (%)

0 1 2 3 4

Control infected 0 0 0 4 6 90.00 0
Infected + A. alabamensis Soil 5 0 1 4 0 35.00 61.11
Infected + A. oryzae 4 2 2 1 1 32.5 63.88
Infected + A. tubingensis 6 2 2 0 0 15.00 83.33
Infected + A. alabamensis Foliar 3 3 1 2 1 37.50 58.33
Infected + A. oryzae 4 2 2 2 0 30 66.67
Infected + A. tubingensis 4 3 2 1 0 25 72.22

Table 3  Effect of entophytic 
fungi on morphological traits

Treatments Method of 
application

Shoot length (cm) Root length (cm) Number of leaves/plant

Control healthy 81.08 ± 0.3a 36.9 ± 1.08a 23.18 ± 0.59a

Control infected 20.88 ± 0.002e 14.95 ± 0.09f 8.43 ± 0.71d

Infected + A. alabamensis Soil 66.73 ± 0.613bc 25.8 ± 0.51c 12.88 ± 0.54c

Infected + A. oryzae 29.7 ± 0.61d 9.6 ± 0.7e 10.3 ± 0.32 cd

Infected + A. tubingensis 77.91 ± 0.41a 34.5 ± 0.51b 21.17 ± 0.16a

Infected + A. alabamensis Foliar 65.73 ± 0.613bc 33.18 ± 1.4b 16.08 ± 0.55b

Infected + A. oryzae 62.66 ± 0.613c 23.7 ± 1.3d 12.24 ± 0.48c

Infected + A. tubingensis 75.96 ± 0.46ab 33.6 ± 0.51b 17.01 ± 0.32b

LSD at 0.05 8.75 2.069 3.056
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3.4.4  Effect of endophytic fungi on metabolic indicators

The results in Fig. 4 exhibited that the total sugars of 
fusarial-infected pepper seedlings declined significantly by 
68.14%. The treatment of infected plants with endophytic 
fungi either through soil or foliar recovers the harmful 

effect of the F. oxysporum, by improving the sugar con-
tents. Concerning the effect A. alabamensis, A. oryzae, 
and A. tubingensis through soil or foliar treatments on the 
infected plants with F. oxysporum, it was found that all 
fungi showed considerable increase in total carbohydrate, 

Fig. 3  Effect of endophytic 
fungi on photosynthetic pig-
ments; T1-healthy control, 
T2-infected control, T3-infected 
plants soil treated with A. 
alabamensis, T4-infected plants 
soil treated with A. oryzae, 
T5-infected plants soil treated 
with A. tubingensis, T6-infected 
plants foliar treated with A. 
alabamensis, T7-infected plants 
foliar treated with A. oryzae, 
and T8-infected plants foliar 
treated with A. tubingensis 

Fig. 4  Effect of endophytic 
fungi on metabolic indicators



16609Biomass Conversion and Biorefinery (2024) 14:16603–16613 

1 3

whereas the soil treatment of A. tubingensis and A. alaba-
mensis were more efficient.

The results in Fig. 4 indicated that the protein content of 
infected pepper seedlings had a severe deficiency by 68.17 
%. On the other hand, the application of endophytes recovers 
the damaging effect of the F. oxysporum infection through 
increasing the protein contents. Furthermore, the most effec-
tive treatments were A. alabamensis, A. oryzae, and A. tub-
ingensis through foliar application. For more, the infected 
pepper plants showed an increase in the free proline and phe-
nol contents by 22.13 % and 48.52 % compared to control 
healthy seedlings. Concerning the effect of tested entophytic 
fungi though soil or foliar treatment on the challenged plants 
with F. oxysporum, it was found that all tested entophytes 
causes an improvement of free proline and phenol content, 
whereas the treatment of A. alabamensis, A. oryzae, and A. 
tubingensis, respectively, through the foliar was more effec-
tive in increasing free proline. But the treatment of A. ala-
bamensis and A. oryzae, respectively, through the foliar was 
more effective in increasing the phenol content.

3.4.5  Effect of endophytic fungi on antioxidant enzyme 
activity

Results in Table 4 revealed that, generally, there were sig-
nificant rises in the activities of peroxidase (POD) and poly-
phenol oxidase (PPO) in infected pepper seedlings. the activ-
ity of POD and PPO enzymes in pepper seedlings diver in 
response to soil or foliar treatment with endophytic fungi. 
Moreover, all treatments stimulated POD and PPO activi-
ties, and maximum values for PPO were observed due to the 
application of A. alabamensis and A. oryzae on the trough 
(soil), followed by followed by A. oryzae and A. alabamensis 
(foliar), respectively. Also, POD activity was significantly 
improved in response to soil or foliar treatment with endo-
phytic fungi. Application of A. tubingensis and A. oryzae 
through foliar as well as trough (soil), respectively, were 
the best stimulators for POD antioxidant enzyme activity.

4  Discussion

The increasing severity of plant diseases in light of cli-
matic aberration in all countries of the world resulted in to 
need of application of a safe and effective method to con-
trol plant diseases urgent and necessary. Scientific reports 
have proven the importance of endophytic microorgan-
isms in terms of their ability to stimulate plant growth 
and their antimicrobial properties, antifungal, antioxidant, 
anticancer, antiviral, and antimalarial activities [18]. In 
the previous study, the three fungi tested in the current 
study confirmed that they are able to inhibit the fungus F. 
oxysporum f. sp. lycopersici RCMB008001 from tomato 
[18]. The endophytic fungi have the capability to supply 
vital compounds that recover the destructive impacts of 
fungal disease through enhancing plant health as well as 
inducing resistance [53]. HCN is bioactive compound 
produced as a biological control agent, based on its toxic-
ity against fungal phytopathogens [54]. The current study 
presented the capacity of the tested fungi to supply HCN 
and IAA, where A. alabamensis documented the great-
est content of HCN and IAA. HCN is a wide spectrum 
against fungal pathogens [54–56]. In this regard, Ramette 
et al. [57] mentioned that HCN act on fungal pathogen 
by causing a direct imbalance in the cytochrome of the 
fungus cells, which impedes the breathing process of the 
pathogenic fungus.

The current results confirm the capability of the tested 
fungi to supply IAA that shows an essential function in 
growth, which improves plant health [58]. Phosphorus 
in its organic formulae, which will not be taken up by 
plant cells, seems to have substantial qualities, but to 
be absorbed, organic phosphorus must first be changed 
into inorganic phosphorus through dissolving by micro-
organisms that result in enhanced plant health [59, 60]. 
By focusing on the efficiency of tested endophytes on 
phosphorus solubilization, the results recorded that A. 

Table 4  Effect of endophytic 
fungi on antioxidant enzyme 
activity

Treatments Method of applica-
tion

Polyphenol oxidase (PPO) 
(unit/g) f. wt/h

Peroxidase 
(POD) (unit/g) 
f. wt/h

Control healthy 1.01 ± 0.08d 0.84 ± 0.07d

Control infected 1.46 ± 0.05c 1.03 ± 0.032 cd

Infected + A. alabamensis Soil 2.78 ± 0.07a 1.28 ± 0.05c

Infected + A. oryzae 2.54 ± 0.019a 2.11 ± 0.016a

Infected + A. tubingensis 1.46 ± 0.057 cd 1.22 ± 0.048c

Infected + A. alabamensis Foliar 1.92 ± 0.06b 1.7 ± 0.03b

Infected + A. oryzae 2.52 ± 0.03a 1.6 ± 0.05b

Infected + A. tubingensis 1.54 ± 0.01c 2.31 ± 0.05a

LSD at 0.05 0.336 0.305
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alabamensis was the best isolate. One of the most vital 
features of growth-stimulating microorganisms is their 
ability on phosphorus solubilization, as they secrete acids 
that dissolve mineral elements in the soil, such as dissolv-
ing insoluble rock phosphate salts and transforming them 
into soluble phosphate salts [61, 62].

In this work, we studied the effect of endophytic fungi 
on infected pepper plants by two methods of uses (soil 
and foliar). The results indicated that both modes of treat-
ment whether soil treatment or foliar recover the severity 
of infection and recover the protection against Fusarium 
wilt, whereas during soil treatment, A. tubingensis docu-
mented the lower severity of infection by 17.5% and the 
protection by 80%; these effects may be described by [63]; 
they reported that Aspergillus recorded the maximum pro-
tection against Fusarium wilt by 33% in tomato plants. The 
current results agree with Kriaa et al. [64]. A. tubingensis 
has antifungal activity and can be applied as a new bio-
fungicide against fungal phytopathogens. It is interesting 
to apply A. tubingensis as a biofungicide against Fusarium 
wilt by breaking down and preventing the formation of toxic 
fusaric acid [65]. This antifusarial activity is evidenced by 
the development of phenols and flavonoids by endophytic 
A. oryzae [66].

Plants are affected by a clear effect that appears in the 
decreasing of growth indicators as a result of biotic stress 
with the fungal disease. Our current results showed a sharp 
decrease in all growth traits as a clear result of fusarial infec-
tion. These results are in agreement with several studies 
[18]; they proved that Fusarium infection leads to a signifi-
cant decrease in all vegetative growth traits (stem length, 
root, and number of leaves). This harmful influence on the 
vegetative growth is due to the occurrence of disorders and 
severe imbalance in growth hormones and the generation of 
oxidative explosions within plant cells [67].

The improvement of pepper growth is a strong evidence 
of the plant’s recovery from disease and the increase in 
systemic resistance in the plant. The results of this study 
indicated the improvement of growth in response to the 
application of endophytic fungi through soil or foliar appli-
cation. This improvement can be clarified by the statement 
that endophytic fungi contains stimulating compounds for 
plant growth, in addition to its antifungal ability that induces 
the growth of plants under unfavorable conditions [68, 69].

The process of photosynthesis is the most important 
indicators of plant health. The data observed in the current 
study showed that F. oxysporum infection caused a severe 
deficiency of chlorophyll pigments a and b by 40.09% and 
68.13%, respectively, and a significant raised in the level 
of carotenoid by 87.78%. This marked decrease in chlo-
rophyll pigments is the evidence of the interruption of 
chlorophyll and the failure of the photosynthesis process 
and at the same time a noticeable increase of carotene 

pigment which is a non-enzymatic antioxidant, as it con-
firms that the plant is under stress [70]. It is interesting 
that the management of infected pepper plants with A. 
tubingensis and A. alabamensis through soil showed a sig-
nificant improvement in chlorophyll a and b, followed by 
A. alabamensis through foliar respectively, compared to 
control infected. Also, the obtained results demonstrated 
that, the contents of carotenoids were decreased through-
out the two-method application in response to the treat-
ment with tested endophytes. These results are in agree-
ment with Aldinary et al. [18]; they indicated that the use 
of fungal endophytes increases and improves the efficiency 
of the photosynthesis process, due to many changes in the 
chloroplasts and the contents of carotene and chlorophyll.

Decreased total soluble carbohydrate in plants as a 
result of Fusarium wilt was observed in several stud-
ies [18, 71]. On the other hand, the application of tested 
endophytic fungi to infected plants either through soil or 
foliar significantly improve the carbohydrate contents of 
the infected pepper seedlings.

The results of our current study showed that carbo-
hydrates decreased significantly due to Fusarium infec-
tion, which can be explained by the infection resulting in 
a minimized photosynthetic rate; thus, a high respiration 
rate causes the lower carbohydrate and protein content [18, 
72–74].

Phenols play a vigorous role in building plant resistance 
against biotic stress. The results showed a proliferation 
in the content of infected plants from phenols in accord-
ance with [75, 76]. The buildup of these compounds in the 
infected plants by fungi was reported in several studies 
[77]. These results suggest that each enhancement or accu-
mulation in phenol content induces systemic resistance in 
the host to face the stress.

Under fungal infection, plants accumulate osmolytes 
such as proline that act as osmoregulator to scavenge 
reactive oxygen species [78]. The increase of proline 
contents in infected pepper plants was similarly to that in 
heavy studies [21, 79]. In addition, stressed plants treated 
with fungal endophytes (such as Piriformospora indica 
and Aspergillus ochraceus) have low levels of proline 
in comparison with non-treated plants [80]. The results 
of this study dealt with the estimation of the activity of 
antioxidant enzymes and indicated that infection with F. 
oxysporum caused a significant increase in enzymes (POD 
and PPO). The usage of fungal endophyte induced the 
enzymatic activity as enhanced agents of defense. Results 
exhibited that POD and PPO activity improved signifi-
cantly in plants exposed to endophytic fungi to keep ROS 
at a lower level in the cell as POD helps in the conversion 
of  H2O2 to  H2O [81].
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5  Conclusion

Endophytic fungi (A. alabamensis, A. oryzae, and A. tub-
ingensis) isolated from healthy Moringa oleifera leaves 
can be used as a hopeful and safe alternative bio antifungal 
against F. oxysporum in vitro and in vivo. The results of this 
study include important recommendations for adding fungal 
endophytic in plant disease resistance, as it improves differ-
ent growth characteristics and stimulates the formation of 
carbohydrates, proteins, proline, and antioxidants. However, 
the application of endophytic A. alabamensis, A. oryzae, and 
A. tubingensis through soil or foliar significantly offers the 
prospective to recovery F. oxysporum wilt disease in pep-
per plants through obstructing the F. oxysporum mycelium 
and conidia and improving the growth performance of the 
infected pepper plants.
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