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Abstract
The process of bioethanol production has several economic drawbacks such as the cost of enzymes, i.e., cellulase, which 
hydrolyze cellulose to produce fermentable sugars. In this study, to reduce the production cost of cellulase, agricultural 
wastes such as wheat straw (WS) and rice straw (RS) were used as carbon sources for cellulase production through solid-
state fermentation. First, the standard cellulase production conditions were optimized, the initial moisture content of the 
solid medium was 60%, the biomass particle size was 100 µm to 4 mm size mixed, and the optimal carbon/nitrogen (C/N) 
ratio in the medium of WS and RS was 59.0 and 41.2, respectively. Subsequently, to simplify process handling, eliminating 
trace elements such as MgSO4, CaCl2, FeSO4, MnSO4, ZnSO4, CoCl2, and phosphorous compounds such as KH2PO4 in the 
general Mandel’s medium was used for cellulase production medium and compared with the standard medium. Maximum 
5.4 filter paper unit (FPU)/g-substrate (WS) and 5.3 FPU/g-substrate (RS) were attained under trace element eliminating 
medium; these were similar to that from the standard medium of WS (4.8 FPU/g-substrate) and RS (5.7 FPU/g-substrate). 
Moreover, the produced crude cellulases from RS were evaluated for their potential in hydrolysis of alkaline-treated RS. The 
performances of the crude cellulases were similar to those of commercial cellulases.
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1  Introduction

Lignocellulosic biomass as the carbon–neutral resources is 
a promising resource for the production of bioethanol and 
other beneficial chemicals [1, 2]. The conversion of ligno-
cellulosic biomass to bioethanol entails the following three 
main steps: pretreatment to remove lignin and reduce the 
recalcitrance of cellulose, enzymatic hydrolysis to release 
fermentable sugars such as glucose, and fermentation to 

produce bioethanol [3]. Enzymatic hydrolysis is conducted 
using cellulase, which breaks down cellulose into glucose 
[4]. Cellulase is an industrially important enzyme for 
bioethanol production, food processing (more optimized 
extraction and clarification of fruit juice), the detergent 
industry (accelerating detergency), the pulp and paper 
industry (biomechanical pulping), and the textile industry 
(biopolishing of textile fibers) [5–7]. However, the cel-
lulase production process is quite costly; it accounts for 
50% of the overall cost of hydrolysis [6, 7]. Therefore, the 
production cost of bioethanol is greatly affected by the 
cost of cellulase [8].

Solid-state fermentation (SSF) has numerous advan-
tages, such as high volumetric productivity and low 
moisture content in the medium, and occurs in a natural 
state for enzyme production [9, 10]. SSF has numer-
ous economic and practical advantages over submerged 
fermentation. Particularly, SSF can utilize heterogene-
ous byproducts such as agricultural wastes and indus-
trial wastes based on cellulosic materials [11]. As the 
expression of the produced cellulase is greatly influenced 
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by physical state and chemical properties of the carbon 
source [12], identical microorganisms growing on dif-
ferent types of cellulosic materials can yield varying 
amounts of cellulase [13].

Wheat straw (WS) and rice straw (RS) are lignocel-
lulosic agricultural wastes that are abundantly available 
worldwide and are considered to be potential feedstocks 
for the production of ethanol. Approximately 850 million 
tons of WS and 669 million tons of RS are produced in 
Asia per annum. [14]. Therefore, these straw wastes are 
promising resources for the production of ethanol and 
cultivation of cellulase-producing fungi. Recently, herba-
ceous biomass solid among various special biomass solids 
was used as cellulase production medium nutrients by 
SSF [15–21]. In these studies, a general standard nutrient 
additive called Mandel’s medium containing nitrogen and 
various mineral salts was used with solid biomass. Scal-
ing up and manufacturing on a large scale with low cost 
and easy handling necessitate the use of the popular and 
abundant cellulosic biomass worldwide as well as limiting 
the additives into the biomass medium.

In this study, we used the poplar herbaceous cellulose 
biomass, wheat straw (WS), and rice straw (RS) as natu-
ral cellulosic substrates for cellulase production through 
SSF using Trichoderma reesei as cellulase producer. First, 
the fermentation parameters such as the initial medium 
moisture content, particle sizes, and carbon/nitrogen ratio 
in the medium were optimized, and the total cellulase 
titer and detailed activities, i.e., endoglucanase, carboxy-
methyl cellulase (CMCase), β-glucosidase, and xylanase 
activities, of the cellulolytic enzymes produced from WS 
and RS were evaluated. Next, under optimized condition, 
to reduce handling nutrient, elements in the WS and RS 
production medium were minimized. Finally, the detailed 
activities of cellulase produced from the minimized bio-
mass medium were evaluated, and the hydrolysis ability 
was tested.

2 � Materials and methods

2.1 � Cellulosic substrate materials 
for the production of cellulase

Cellulosic materials for the production of cellulase were 
WS and RS. The WS and RS were provided by a local 
farm in Tokushima City; they were cut to pieces measuring 
20 mm × 10 mm × 1 mm and then ground using a model 
D3V-10 cutter mill (Osaka Chemical Co. Ltd., Osaka, Japan) 
for 5 s to obtain particles ranging from 100 µm to 4 mm in 
size. Furthermore, 100 g of ground RS was washed with 2 L 
of ion-exchange water after being dried in an oven at 100 °C; 
the residue was ground for 15 s.

2.2 � Microorganism

SSF was carried out using Trichoderma reesei (T. reesei), 
which is commonly used for commercial cellulase production 
and has been researched extensively because of its high cel-
lulase production capability [22–24]. T. reesei ATCC 56765 
was purchased from the American Type Culture Collection. 
The strain was cultivated on potato dextrose agar (PDA) 
medium in Petri dishes at 28 °C for 1 week.

2.3 � Chemical analysis of wheat straw and rice straw

The cellulosic materials were analyzed for their chemical com-
positions as follows. The cellulose content in the sample was 
determined based on the monomer content (glucose) measured 
after hydrolysis (72 wt% H2SO4 followed by dilution). The sam-
ple was evaluated using the Klason lignin measurement method 
[25], where 1 g of the material was added to 15 mL of 72 wt% 
H2SO4 and stored at room temperature for 4 h. The residue was 
then placed in a 1 L conical flask containing 560 mL of distilled 
water and autoclaved for 1 h at 121 °C. After cooling, the solid 
and liquid portions were separated by centrifugation, and the 
glucose in the liquid was analyzed by high-performance liquid 
chromatography with a refractive index detector and a model 
HPX-87H column (Bio-Rad, Hercules, CA, USA) at 65 °C. The 
mobile phase was 5.0 mM H2SO4 at a flow rate of 0.6 mL/
min. The solid portion was washed with distilled water, dried 
at approximately 105 °C with a heater to a constant weight, 
and weighed as an acid-insoluble material (lignin). The amount 
of hemicellulose was calculated by subtracting the cellulose 
content from the total sugar content. The total sugar content 
was determined using the phenol–sulfuric acid method [26]. 
To determine the ash content, 5 g of the sample was placed in a 
sintered crucible, which was placed inside a muffle furnace at 
600 °C for 2 h followed by cooling in a desiccator. Ash content 
was calculated using the following formula:

Ash (%) = [(Weight of ash with crucible (g) – Weight 
of dry crucible (g)] / Weight of the sample] × 100

All analytical determinations were performed in tripli-
cate, and the calculations are shown.

The mineral K was measured by atomic absorption 
spectrometry. The minerals Ca, Mg, Fe, Zn, Mn, and P 
were measured by inductively coupled plasma optical 
emission spectroscopy. The minerals analyses were per-
formed by Japan Functional Food Analysis and Research 
Center (Fukuoka, Japan).

2.4 � Carbon‑to‑nitrogen ratio measurement

The total carbon and nitrogen of WS and RS samples 
were measured using the combustion method by MICRO 
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CORDER (JM10, J-SCIENCE LAB, Osaka, Japan). The 
total carbon and nitrogen content on the weight basis of 
samples was used to calculate the carbon-to-nitrogen 
(C/N) ratio. The C/N ratio of the medium was calculated 
using the following formula:

C/N ratio = [Weight of carbon in WS or RS (g) + weight 
of carbon in pepton, urea, and ammonium sulfate (g)] / 
[Weight of nitrogen in WS or RS (g) + weight of nitrogen in 
pepton, urea, and ammonium sulfate (g)].

2.5 � Inoculum preparation

Inoculum preparation was performed in 300 Erlenmeyer 
flasks containing 100 mL of Mandels and Weber growth 
medium [27] with slight modifications consisting of the 
following compositions (g/L): KH2PO4, 2.0; (NH4)2SO4, 
1.4; MgSO4.7H2O, 0.005; FeSO4.7H2O, 0.005; MnSO4.
H2O, 0.0016; ZnSO4.7H2O, 0.0015; CoCl2.6H2O, 0.004; 
CaCl2.2H2O, 0.3; urea, 0.3; peptone, 0.1; glucose, 5.0; 
and Avicel, 10. Five loopfuls of mycelial conidia cul-
tures from the PDA medium of the Petri dish were added 
and shaken at 140 rpm at 30 °C in an incubator shaker 
for 48 h. After incubation, the inoculum was placed in a 
test tube and separated by centrifugation (3500 rpm for 
15 min). The collected solid cells were used for SSF.

2.6 � Solid‑state fermentation

Dry substrate (5.0 g) was added to a 100 mL Erlenmeyer 
flask. The flask was autoclaved at 121 °C for 20 min for 
sterilization. After cooling, 0.06 g of the cells (dry cell 
weight) was suspended in the concentrated production 
medium (5 mL) and aseptically added to the substrates. 
The concentrated production medium had the follow-
ing composition (in g/L): KH2PO4, 20; (NH4)2SO4, 
14; MgSO4.7H2O, 0.05; FeSO4.7H2O, 0.05; MnSO4.
H2O, 0.016; ZnSO4.7H2O, 0.015; CoCl2.6H2O, 0.04; 
CaCl2.2H2O, 0.3; urea, 3.0; and peptone, 1.0. The moisture 
content was adjusted with 2.5 mL and 14 mL of sterilized 
distilled water to levels of 60% or 80%. The cultures were 
incubated at 30, 32, or 36 °C for 9 days. The incubated 
samples were collected at 24-h intervals and checked for 
cellulase and xylanase activities.

2.7 � Enzyme extraction

At the end of incubation, the fungal enzyme was extracted. 
For each 5 g of fermented substrate, 50 mL of sodium cit-
rate buffer (50 mM and pH 4.8) was added and agitated in 
a shaker for 1 h. The mixture was centrifuged at room tem-
perature (25 °C) at 3500 rpm for 15 min to collect the clear 
supernatant as a crude enzyme solution.

2.8 � Enzyme assays

The total cellulase activity was determined by filter paper 
unit (FPU) activity according to the standardized National 
Renewable Energy Laboratory analytical procedure [28]. 
The assay was carried out by adding 0.5 mL of enzyme 
solution to a test tube containing 1 mL of sodium citrate 
buffer (50 mM and pH 4.8) and a Whatman No. 1 filter paper 
strip (1 cm × 6 cm and 50 mg). The mixture was incubated 
at 50 °C for 60 min, and the released reducing sugar was 
determined using the 3,5-dinitrosalicylic acid (DNS) method 
[29]. One unit of the activity was defined as the amount 
of enzyme that releases 1 μmol of glucose per min under 
assay conditions. Endoglucanase activity, that is, carbox-
ymethyl cellulase activity (CMCase), was measured with 
1% (w/v) carboxymethyl cellulose in 50 mM sodium citrate 
buffer (50 mM and pH 4.8) [30]. The definition of activity in 
this case is similar to that of FPU activity. For the xylanase 
assay, suspension of beech wood xylan of 1% (w/v) in the 
buffer mentioned above was used as a substrate. One unit of 
xylanase activity was defined as the amount of enzyme that 
releases 1 μmol of xylose per min under assay conditions 
[31]. The β-glucosidase assay was carried out with 1 mL of 
p-nitrophenyl -β-D-glucopyranoside (pNPG, 2 mM, Sigma-
Aldrich) as substrate, which was digested using 0.1 mL 
of enzyme solution at 50 °C for 5 min. The reaction was 
stopped by adding 2 mL of sodium carbonate solution (1 M), 
and the amount of p-nitrophenol was determined by reading 
the absorbance at 405 nm [32]. One unit of β-glucosidase 
activity was defined as the amount of enzyme that liberated 
1 μmol of pNPG per min under assay conditions.

2.9 � Enzymatic hydrolysis of alkaline‑treated rice 
straw

Alkaline-treated RS was used as the substrate for the enzy-
matic hydrolysis test by producing cellulase from RS.

After grinding and washing with water treatment of RS, 
alkaline treatment was conducted at a ratio of 1:10 using 
3% (w/v) of NaOH, that is, 10 g of RS in 100 mL of 3% 
(w/v) of NaOH. The RS in the NaOH solution was then 
autoclaved at 121 °C for 30 min. Afterwards, the treated 
residue was neutralized to an approximate pH of 7.0 using a 
diluted HCl solution, washed with distilled water, and oven 
dried at 100 °C for 24 h and stored at room temperature 
(25 °C) prior to use.

The crude enzyme mixture produced by T. reesei ATCC 
56765 from RS medium was produced under optimal con-
ditions of an incubation temperature of 30 °C and sub-
strate moisture content of 60% and extracted after 6 days of 
growth. Commercial cellulases were used as controls. Acre-
monium cellulase (derived from Acremonium cellulolyticus, 
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269 FPU activity/g-enzyme) was purchased from Meiji 
Seika Pharma Co., Ltd. (Osaka, Japan).

Enzymatic hydrolysis was performed using 10 mL of 
0.1 M sodium acetate buffer (pH 5.0) at 50 °C in a rotary 
shaker operating at 160 rpm. The substrate concentrations 
and enzyme loading were 50 g/L and 26 FPU/g of dry sub-
strate, respectively. The hydrolyzed samples were obtained 
at 24-h intervals and centrifuged to remove the solid residue. 
The supernatant was analyzed for glucose using the mutar-
otase glucose oxidase method (Glucose C-II test, Wako 
Pure Chemicals Co., Ltd., Japan). All enzymatic hydrolysis 
experiments were performed in triplicate, and the means 
were calculated.

The hydrolysis yield (%) by enzymatic hydrolysis was 
calculated using the following equation:

(Amount of glucose produced (g)/Amount of cellulose in 
the substrate (g) × 1.1) × 100.

3 � Results and discussion

3.1 � Chemical composition of WS and RS

To confirm the chemical component in the experimental 
material, chemical analyses of WS and RS (washed with 
water) were performed. The amounts of cellulose, hemi-
cellulose, lignin, crude protein, and ash were determined. 
Moreover, elemental composition, i.e., carbon content and 
nitrogen content in the WS and RS washed with water were 
also determined. The results are summarized in Table 1. The 
cellulose contents of WS and RS were 35.9% and 35.1%, 
respectively. The carbon content (%) and nitrogen content 
(%) in the WS and RS washed with water were as follows: 
40.0 and 0.23, 41.1, and 0.55.

3.2 � Optimization of solid‑state fermentation 
conditions for cellulase production by T. reesei 
using wheat straw and rice straw

3.2.1 � Initial moisture content

For the assessment of the effective utilization of agricultural 
byproducts, WS and RS were used as solid substrate carbon 
sources for the production of cellulase.

Initial moisture content is an important parameter for 
cellulase production by SSF. In this study, initial moisture 
content of 60% and 80% using WS as incubation medium 
was investigated. Figure 1 shows the time course of cellulase 
activity as FPU activity during incubation. Many researchers 
observed that the optimum temperature for cellulase produc-
tion using T. reesei species was approximately 30 °C [33, 
34]. Verma et al. reported that temperatures above or below 
30 °C were somewhat unfavorable for T. reesei, cellulase 
producer, which might be due to their physiological nature 
and protein synthesis capability. At a higher temperature 
(35 °C), enzyme biosynthesis decreases owing to thermal 
deactivation. At a lower temperature (25 °C), the transport of 
nutrients in the cells is hindered, and the microbial enzyme 
production capacity decreased [6]. Therefore, subsequent 
experiments were performed at 30 °C. The maximum activ-
ity of 4.8 FPU/g-dry WS was obtained on day 9 under 60% 
of moisture content. Conversely, for the moisture content 
of 80%, although they have similar cellulase activity to that 
of moisture content of 60%, the activities were variable 
(large error bars). Many studies have reported on the ini-
tial moisture content of cellulase production by SSF using 

Table 1   Component and elemental analysis of wheat straw (WS) and rice straw (RS) washed with water

Component analysis (%) Elemental analysis (%)

Cellulose Hemicellulose Lignin Ash Crude protein Carbon Hydrogen Nitrogen

Wheat straw 35.9 ± 0.7 23.2 ± 1.6 20.1 ± 0.3 7.5 ± 0.01 1.4 ± 0.01 39.95 5.86 0.23
Rice straw (washed 

with water)
35.1 ± 0.3 31.7 ± 1.4 22.4 ± 0.4 19.2 ± 0.01 4.7 ± 0.01 41.09 5.94 0.55

Fig. 1   Effect of the initial moisture content on cellulase filter paper 
unit (FPU) activity using WS medium under SSF
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Trichoderma spp. Salomão et al. reported that relatively 
high enzymatic activities were obtained at an incubation 
temperature of 28 °C to 50% of initial moisture content of 
sugarcane bagasse solid medium using Trichoderma koningii 
[35]. Verma et al. also reported that optimal initial moisture 
content was approximately 60% using wheat bran as solid 
substrate for cellulase production by T. reesei and Neuros-
pora crassa co-culture [36].

3.2.2 � Particle sizes

The effect of the particle sizes of WS and RS on cellulase 
production by T. reesei were evaluated using powder particles 
(< 500 μm, sieved after grinding), powder and fiber particles 
mixed (100 μm to 4 mm, only grinding), and pieces (measur-
ing 20 mm × 10 mm × 1 mm) as substrates. With RS as a solid 
substrate, the residue after washing with water was used as 
substrate, because no production of cellulase was observed in 
cases where RS was not washed with water (data not shown). 
Figure 2 shows the time course of cellulase activity as FPU 
activity during incubation using WS and RS as substrates. For 
both WS and RS, FPU activity profiles with powder, and fiber 
particles and only powder particles were similar; however, 
with pieces, there was no bigger increase than those obtained 
with powder and fiber or powder particles.

A relatively small substrate size provides a relatively 
large surface area for growth and action of microorgan-
isms and is beneficial for heat transfer and uptake of oxygen 
[37]. Verma et al. reported that a particle size of 850 μm (in 
the case of wheat bran) was effective for cellulase activity 
[36]. Vanajakshi et al. also suggested that both interparticle 
porosity and surface area exhibit a high medium particle size 
range, which encourages the growth of microorganisms and 
cellulase production owing to more optimized mass and heat 
transfer [38]. A mixture of powder and fiber particles (100 
μm to 4 mm) was used throughout this study to simplify the 
preparation of the substrate because it is necessary to sieve 
the sample to produce powder particles (< 500 μm).

3.2.3 � Carbon‑to‑nitrogen ratio

According to the modified Mandel’s medium used in this 
study (standard medium), the C/N ratios of WS and RS were 
59.0 and 41.2, respectively. The compositions of different 
cultivation media and their C/N ratios of WS and RS medi-
ums are summarized in Table 2. In the nitrogen-reduced 
medium (C/N ratio; 14.2 and 13.1 for WS and RS), urea and 
ammonium sulfate were half of the standard medium. In the 
nitrogen-increased medium (C/N ratio; 86.7 and 52.7), urea 
and ammonium sulfate were six times higher than those of 
the standard medium. Figure 3 shows the time course of 
cellulase activity as FPU activity during incubation using 
WS and RS as substrates under various C/N ratios. Unstable 
cellulase production was observed at C/N rations of 14.2 
(WS) and 13.1 (RS). Conversely, no drastic increments 
were observed at C/N ratios of 86.7 (WS) and 52.7 (RS). 
These results showed that C/N ratios of 59.0 (WS) and 41.2 
(RS), i.e., standard medium composition, were favorable for 
the production of cellulase. It is important to calculate the 
C/N ratio using biomass solid substrate and other medium 
additives (Mandel’s medium), because carbon content and 
nitrogen content differ depending on the biomass solid sub-
strate. For example, Moran-Aguilar et al. used sugarcane 
bagasse and brewery spent grain as cellulase fermentation 
substrate by Aspergillus niger (A. niger), carbon content, 
and nitrogen content in the biomass substrates which are 
reported as 42.55% and 0.25%, 44.38%, and 3.61%, respec-
tively. Using these carbon and nitrogen contents, C/N = 149 
(sugarcane bagasse) and C/N = 12.1 (brewery spent grain) 
could be calculated [39]. Although the nitrogen content var-
ies greatly depending on the substrate, only a few studies 
have analyzed carbon and nitrogen contents of the substrates 
and calculated and discussed the C/N ratio values. Amaro-
Reyes et al. carried out co-culture cellulase fermentation of 
A. niger and T. reesei using Bermuda grass and corn cob 
mixture as solid-state substrate. Maximum FPU activity 
(23.2 FPU/g-substrate) was observed at C/N = 30, and no 

Fig. 2   Effect of substrate size of 
wheat straw (WS) (a) and rice 
straw (RS) (b) medium on cel-
lulase FPU activity under SSF
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significant activity difference was observed at C/N ratios of 
60 and 120. However, the lowest FPU activity was observed 
at a C/N ratio of 3 (half of the highest) [40]. Determining a 
suitable C/N ratio is essential to producing cellulase for each 
substrate. The growth of T. reesei on WS and RS medium 
during 9 days of incubation at optimal culture condition (ini-
tial moisture 60%, mixture of powder and fiber particles (100 
μm to 4 mm), C/N = 59.0 for WS and 41.2 for RS) is shown 

in Fig. 4. Both WS and RS medium growths of hyphae were 
observed within 4 days, forming white fluffy aerial mycelia. 
Finally, the mycelia turned greenish.

Furthermore, a cellulolytic enzyme system is com-
plex and comprises endoglucanase (CMCase), exoglu-
canase, β-glucosidase, and xylanase that acts synergisti-
cally to degrade cellulosic substrate [41, 42]. An efficient 
enzyme system should contain balanced activities of these 

Table 2   Compositions of 
different cultivation media and 
carbon/nitrogen ratio of wheat 
straw medium and rice straw 
medium

a C content (%) and N content (%) by elemental analysis were 42.61 and 14.77, respectively

Substance (mg/g-solid medium substrate) Standard medium 
(modified Mandel’s 
medium)

Nitrogen-
reduced 
medium

Nitrogen-
increased 
medium

Pepton a 5.0 5.0 5.0
Urea 15.0 7.5 90.0
(NH4)2SO4 70.0 35.0 420.0
KH2PO4 100.0 100.0 100.0
MgSO4・6H2O 0.25 0.25 0.25
CaCl2・2H2O 20.0 20.0 20.0
FeSO4・7H2O 0.25 0.25 0.25
MnSO4・H2O 0.08 0.08 0.08
ZnSO4・7H2O 0.07 0.07 0.07
CoCl2・6H2O 0.19 0.19 0.19
C/N ratio Wheat straw 59.0 14.2 86.7

Rice straw (washed with water) 41.2 13.1 52.7

Fig. 3   Effect of carbon/nitrogen 
(C/N) ratio of WS (a) and RS 
(b) medium on cellulase FPU 
activity under SSF

Fig. 4   Growth of Trichoderma 
reesei on WS or RS medium 
under optimal culture condition 
(initial moisture 60%, mixture 
of powder and fiber particles 
(100 µm to 4 mm), C/N = 59.0 
for WS and 41.2 for RS) at 
30 °C during 9-day culture 
period

Medium/Incuba�on 
period 3d 4d 5d 6d 7d 8d 9d

Wheat 
straw

Rice straw 
washed 

with water

1 cm
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cellulases; therefore, FPU (total cellulase titer), CMCase, 
β-glucosidase, and xylanase activities were evaluated in 
this study. Figure 5 shows the time course of the produced 
FPU, CMCase, β-glucosidase, and xylanase activities from 
WS and RS as the carbon source under optimized fermen-
tation conditions, initial moisture content of 60%, particle 
size ranging from 100 μm to 4 mm, and C/N ratio of 59.0 
(WS) and 41.2 (RS). With CMCase, the maximum activities 
of 246 U/g-WS and 205 U/g-RS were obtained on day 10. 
The β-glucosidase activity increased to 3.0 U/g-WS and 3.5 
U/g-RS on day 9; the xylanase activity increased to 2563 
U/g-WS and 2111 U/g-RS on days 9 and 10. These produc-
tion amounts were similar to that reported by Dhillon et al. 
using RS as the solid fermentation substrate by T. reesei 
Rut C-30 [43]; 16.1 FPU/g-RS of FPU activity, 58.2 U/g-
RS of CMCase, 12.6 U/g-RS of β-glucosidase activity, and 
1299 U/g-RS of xylanase activity were attained at 96 h of 
incubation time at 30 °C. Taherzadeh-Ghahfarokhi et al. also 
reported that 2.5 FPU/g-WS and 1.9 FPU/g-RS, 7.5 U/g-WS 
and 1.8 U/g-RS of CMCase activity, and 400 U-g-WS and 
200 U/g-RS of xylanase activity were obtained from WS and 
RS solid medium by T. reesei ATCC 13631 at 28 °C (data 
of β-glucosidase activity not shown) [15]. However, these 
activity values varied depending on the microorganism and 
fermentation parameters used. In this study, high CMCase 

activity and xylanase activity were observed compared to 
other studies.

3.3 � Easy‑to‑handle medium for cellulase 
production by T. reesei using wheat straw 
and rice straw

To reduce handling steps, the simplification of medium com-
ponents was carried out using WS and RS as solid fermen-
tation substrates under optimized fermentation conditions: 
initial moisture content of 60%, 100 μm to 4 mm of particle 
size mixed, and C/N ratio of 59.0 (WS) and 41.2 (RS). Fig-
ure 6 shows the time courses of cellulase activity as FPU 
activities during incubation using WS (a) and RS (b) stand-
ard medium (with Mandel’s medium), WS and RS standard 
medium without trace elements compounds (MgSO4, CaCl2, 
FeSO4, MnSO4, ZnSO4, CoCl2) in the Mandel’s medium, 
and WS and RS standard medium without trace elements 
and KH2PO4. Both WS and RS mediums without trace ele-
ment compounds, with similar activity production behavior, 
and with maximum FPU activities were observed to those of 
standard medium of WS and RS. Conversely, both WS and 
RS medium without trace element compounds and KH2PO4 
and with relatively low maximum FPU activities than that of 
the standard medium were observed. These results showed 

Fig. 5   Time profiles of the FPU, 
CMCase, β-glucosidase, and 
xylanase activity production 
derived from WS (a) and RS (b) 
medium under SSF optimized 
condition

Fig. 6   Time profiles of the FPU 
activity derived from standard 
biomass medium (with Man-
del’s medium), trace element 
eliminating medium, and trace 
element and KH2PO4 eliminat-
ing medium
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that trace element compounds in the Mandel’s medium could 
be removed from the WS and RS medium; however, KH2PO4 
must be added into the WS and RS medium. Wen et al. also 
reported that when dairy manure (with sufficient content 
trace elements) was used as cellulase production nutrients, 
the elimination of CaCl2, MgSO4, and other trace elements 
such as Fe, Zn, Co, and Mn from the original salt solution 
(Mandel’s medium) had no negative impact on the cellulase 
production, and KH2PO4 elimination did reduce cellulase 
production [44]. The contents of potassium and phosphorus 
from the manure were low. Therefore, metal elemental fea-
tures (except for Co) in WS and RS washed with water were 
determined and are presented in Table 3. Regarding trace 
elements such as Ca, Mg, Fe, Zn, and Mn, all the metals 
except for Ca present enough in the WS and RS as solid fer-
mentation substrate compared with standard medium (modi-
fied Mandel’s medium). Belén et al. reported that Fe, Mn, 
and Zn are regarded as cofactors in the growth and develop-
ment metabolism of the microorganism [45]. Shu et al. found 
Mn is crucial in cellular functions such as cell wall synthe-
sis, sporulation, and the production of secondary metabolites 
[46]. As T. reesei could utilize these trace elements from 
WS or RS, the elimination of trace elements via the stand-
ard Mandel medium had no negative influence on cellulase 
production. Based on the result, medium composition using 
WS and RS for the cellulase production can be simplified 
and cost-effective. Conversely, K and P were significantly 
less than those of the standard medium; their contents were 
13.3  mg/g-WS and 3.83  mg/g-RS and only 0.71  mg/g-
WS and 0.47 mg/g-RS, respectively. This necessitates the 
compensation of K and P using KH2PO4 into the natural 
WS and RS as cellulase fermentation medium. Generally, 
because KH2PO4 (with K2HPO4) is added to buffer the pH 
of the medium (in liquid medium case) [47], elimination of 
KH2PO4 may not directly affect the quality of secondary 
metabolites, i.e., cellulase ability. Therefore, in the subse-
quent hydrolysis ability test, cellulase hydrolysis ability and 
the detailed activities such as CMCase, β-glucosidase, and 
xylanase activities derived from standard Mandel’s medium, 

the medium without trace element, and the medium without 
trace elements and KH2PO4 were compared. The cellulase 
activity (FPU) of RS was slightly higher than that of WS; 
therefore, hydrolysis tests were carried out using cellulase 
obtained from RS.

3.4 � Hydrolysis ability test with cellulase produced 
from RS medium by T. reesei

Hydrolysis tests for cellulosic materials were performed 
using a cellulase solution prepared from RS via the stand-
ard Mandel’s medium (with trace elements), RS via a 
standard medium without trace elements, and RS via a 
standard medium without trace elements and KH2PO4, 
respectively, to confirm the cellulose in the RS biomass 
hydrolysis ability of the cellulase produced by T. reesei 
ATCC 56765 under SSF. Cellulase was extracted from 
each medium on day 6. As a reference for hydrolysis abil-
ity, commercial cellulases such as Acremonium cellulase 
(AC) was used. Before the hydrolysis test of the cellu-
lose in RS, to reduce the high lignin content, alkaline 
treatment with 3 wt% of NaOH solution was performed 
on RS at 121  °C for 30  min. The chemical composi-
tions of the raw and alkali-treated RS are summarized 
in Table 4. After the treatments, the content of lignin in 
the RS decreased to 1.5%; however, the cellulose content 
increased to 64.3%. Low lignin content is advantageous 
for enzymatic hydrolysis by cellulase [48, 49]. Figure 7 
shows the hydrolysis yield time profiles from the alkali-
treated RS at incubation times during 120 h by produced 
cellulase and commercial cellulase (AC). The substrate 
concentration and cellulase loading were 50 g/L and 26 
FPU/g-substrate, respectively. A similar high hydrolysis 
yield was observed, and almost 100% of hydrolysis yield 
were attained at 96 h for cellulose produced from RS via 
a standard medium without trace elements and RS via 
standard medium without trace elements and KH2PO4. 
With the cellulase dosage of 26 FPU/g-substrate, cor-
responding individual cellulase activities from cellulase 
produced from 3 kinds of medium and AC were sum-
marized in Table 5. The produced cellulase contained 
similar CMCase and higher xylanase activities than those 
of commercial cellulase AC. In contrast, AC contained 

Table 3   Metal elemental characterization of the raw wheat straw and 
rice straw washed with water

Substance 
(mg/g-raw 
material)

Standard medium 
(modified Mandel’s 
medium)

Wheat straw Rice straw 
(washed with 
water)

Ca 5.48 1.97 3.65
K 28.7 13.3 3.83
Mg 0.053 0.63 1.56
Fe 0.05 0.17 0.16
Zn 0.016 0.012 0.035
Mn 0.026 0.04 0.18
P 22.7 0.71 0.47

Table 4   Chemical composition of raw and alkaline-treated (3 wt% of 
the NaOH solution) RS

Holocellulose Lignin Ash

Cellulose Hemicellulose

Raw 35.1 ± 0.3 31.7 ± 1.4 22.0 ± 0.4 19.2 ± 0.01
Alkaline-

pretreated
64.3 ± 0.3 22.2 ± 0.3 1.5 ± 0.2 2.3 ± 0.01
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higher β-glucosidase of 1169 U/g-enzyme than that of 
produced cellulase from RS, 20–55.6 U/g-enzyme. Based 
on this result, it was confirmed that the cellulase qual-
ity (hydrolysis ability) derived from Mandel’s medium 
without trace element and KH2PO4 was similar to that 
derived from Mandel’s medium without trace element, 
and KH2PO4 had no effect on the quality of cellulase. 
However, although the cellulase produced exhibited low 
β-glucosidase activities, the actual hydrolysis yields of 
alkali-treated RS among the cellulase produced from 
RS medium and AC were similar. Hu et al. reported that 
cellulase activity produced via SSF from textile waste 
as a fermentable substrate comprised a CMCase of 254 
U/g-substrate and β-glucosidase of 31,500 U/g-substrate 
under 25 FPU/g-substrate, which were higher than those 
of a commercial cellulase, Celluclast 1.5 L from Novo-
zymes (USA), with a CMCase of 114 U/g-substrate and 

β-glucosidase of 1633 U/g-substrate under 25 FPU/g-
substrate. The actual hydrolysis yield of textile waste, 
cotton/polyester = 80/20, was lower (65%) than that of 
Celluclast 1.5 L (75%) at an incubation time of 72 h [21]. 
Kabel et al. reported that enzymatic hydrolysis is more 
dependent on the characteristics of the substrate than on 
measured standard enzyme activities [50].

4 � Conclusion

This study demonstrated that agricultural wastes such as 
WS and RS are potential substrates for cellulase produc-
tion through SSF using T. reesei. We developed a cellulase 
production medium that was easy to operate based on the 
amount of trace metal contents, i.e., ash, in WS and RS. 
Regarding the role of lignin in lignocellulosic materials, 
components besides cellulose, namely, lignin and hemi-
cellulose, are also presumed to have certain functions in 
cellulase production in the cellulase producer. Wang et al. 
reported that cellulase production was performed by A. niger 
and T. reesei using cotton or a cotton and polyester mix-
ture as carbon substrates. Where only cotton or the cotton 
and polyester mixture was used as substrates (no lignin and 
hemicellulose), cellulase activity was low at 1.5 FPU/g-cot-
ton by A. niger and 1.0 FPU/g-mixture by T. reesei. Alterna-
tively, cellulase activity from cotton medium with sawdust 
(0.1% w/v) or wheat bran (1% w/v) increased and was 8.5 
FPU/g-cotton and 3.4 FPU/g-cotton, respectively. Moreo-
ver, the cellulase activity from cotton and polyester mixture 
medium with either sawdust (0.1% w/v) or wheat bran (1% 
w/v) increased and was found to be 7.1 FPU/g-mixture and 
8.1 FPU/g-mixture, respectively [51].

Furthermore, the cellulase produced from easy-to-han-
dle RS medium was found to be efficient in hydrolyzing 
agricultural wastes indicating their potential for sustain-
able utilization for the remediation of cellulose biomass 
into valuable products. Scale-up experiments and cost and 
energy estimations are necessary components for the com-
mercialization of these processes. This will be the focus of 
the next study.

Fig. 7   Hydrolysis ability test of alkaline-treated rice straw by the pro-
duced cellulase from RS and the commercial Acremonium cellulase 
(AC) at a substrate concentration of 50 g/L and cellulase loading of 
26 FPU/g-substrate

Table 5   Enzyme dosages for the hydrolysis of alkaline-treated RS using commercial cellulase and produced cellulase from RS medium

Enzyme dosages Commercial 
cellulase 
(AC)

Cellulase from RS 
with standard Mandel’s 
medium

Cellulase from RS with Man-
del’s medium without trace 
elements

Cellulase from RS with Mandel’s 
medium without trace elements and 
KH2PO4

FPU (FPU/g-substrate) 26.0 26.0 26.0 26.0
CMCase (U/g-substrate) 2094 1038 2626 1669
β-glucosidase (U/g-substrate) 1169 20.0 55.6 34.0
Xylanase (U/g-substrate) 9724 15,951 27,370 14,020
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