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Abstract
The goal of the current work was to investigate the antibacterial, antibiofilm, anticancer, and antioxidant opportunities of 
silver and gold nanoparticles (AgNPs and AuNPs) synthesized utilizing a new fungus strain called Fusarium pseudonygamai 
TB-13c. With the aid of UV, HR-TEM, FTIR, SEM, and XRD, the NPs’ creation was examined. For AgNPs and AuNPs, 
the mycosynthesized NPs’ highest peak plasmon band was seen at around 420 and 540 nm, respectively. AgNPs ranged 
in size from 5 to 20 nm, whereas AuNPs ranged in size from 8 to 60 nm. AgNPs and AuNPs were spherical in form. For 
AgNPs, the angles were 38.42°, 44.56°, 64.66°, and 77.75°; for AuNPs, the angles were 38.56°, 44.74°, 64.87°, and 77.85°.  
The antibacterial efficiency of AgNPs and AuNPs was evaluated against Klebsiella pneumoniae, Pseudomonas aeruginosa, 
methicillin-sensitive Staphylococcus aureus (MSSA), and methicillin-resistant Staphylococcus aureus (MRSA). In particular, 
AgNPs outperformed AuNPs in their ability to combat pathogenic microorganisms. Furthermore, antibiofilm study that shown 
AuNPs had activity more than AgNPs. Interestingly, applying the DPPH procedure these noble metallic NPs had antioxidant 
activity, which the IC50 for AgNPs was 38.2 μg/ mL and 180 μg/ mL for AuNPs. The modification in the cells was evident 
in the cytotoxicity evaluation findings as change of their usual shape, partially or completely loss of monolayer, granulation, 
and shrinkage, or cell rounding with IC50 for normal vero cell were 695.34 μg/mL and 631.66 μg/mL for AgNPs and AuNPs, 
respectively, whilst IC50 for cancer cell (Mcf7) was 204.07 μg/mL for AgNPs and 206.95 μg/mL for AuNPs. The combined 
results show that there is a clear and flexible biological use for less toxic chemotherapeutic agents.
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1  Introduction

Nanotechnology represents use of a tiny molecule with a 
unique size ranged from 1 to 100 nm [1–4]. Nowadays, 
nanotechnology is interfered in several applications as bio-
logical, pharmaceutical, photocatalysts, information technol-
ogy, electrocatalysts, chemical science, physics, wastewa-
ter treatment, infection control, and cotton textiles [5–14]. 
Additionally, biotechnological applications, particularly 
those related to antibacterial, anticancer, biocompatibil-
ity, and anti-inflammatory properties, are growing. Three  

methodologies are available for generating nanoparticles 
[15–21]. Chemical, physical, and biological however the 
most recommended is green synthesize due to a lot of rea-
sons as good defined size, clean, ecofriendly, cost-effec-
tive, safe, and shape nanoparticles synthesized [22–31]. 
The biological production of nanoparticles involves sev-
eral types of living creatures, including plants, fungi, 
algae, bacteria, and viruses [32, 33]. However, fungi have 
more advantages due to fungal metabolites contain large 
number of proteins and enzymes which are highly effec-
tive in fabrication of nanoparticles, easily in downstream 
handling and scaling up, tolerance to metallic materials, 
economic facility, and production of huge biomass by 
several species of fungi [34–37]. There are many fungi 
has affinity to synthesize AgNPs and AuNPs extracellu-
larly such as Trichoderma saturnisporum, Phanerochaete 
chrysosporium, Fusarium oxysporum, Coriolus versicolor, 
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and Pleurotus sajorcaju [38–41]. Helminthosporium 
tetramera, Penicillium fellutanum, Schizophyllum radia-
tum, and Fusarium keratoplasticum were rapidly produced 
silver nanoparticles [42–46]. Also, nano-sized gold particles 
produced by different species of Fusarium oxysporum and 
Penicillium aurantiogriseumm [47, 48]. In addition to, Asper-
gillus sydowii has ability to synthesize AuNPs from action 
of cell-free filtrate within a minute [49]. The most main 
problem that has a negative impact to the medical field is 
the infectious diseases that lead to the death of many people 
worldwide [50]. Nowadays, increasing resistance of microbes 
to traditional drugs is due to using antibiotics without lack-
ing to the patients and generations of microorganisms with 
a development of virulence factors of pathogenic [51, 52]. 
Also, Au-NPs and Ag-NPs are highly displayed antibacterial 
properties for causative disease of Gram-negative bacteria 
as Shigella dysenteriae, Pseudomonas aeruginosa, Entero-
bacter aerogenes, Klebsiella pneumonia, Salmonella typh-
imurium, Proteus mirabilis, and, E. coli. Along with, Gram-
positive pathogenic bacteria include Enterococcus faecalis, 
Staphylococcus epidermidis, Bacillus subtilis, Staphylococ-
cus aureus, and Streptococcus pyogenes [53–57]. Moreover, 
bacteria have been developed additional strategies, including 
biofilm formation, to evade the actions of many inhibitors. 
Biofilms are abiotic or biotic substances which are a com-
munity of living microorganisms that establish a strong con-
nection between them and the surface that are connected [58, 
59]. This connection is mediated by substances secreted by 
microorganisms present in the biofilm [60, 61]. Additionally, 
the presence of biofilm matrix around the bacterial cells is 
the other reason to resistance of bacteria to well-known anti-
microbial agents. So, non-traditional antibiotics have a great 
interest by many researchers to in resolve this challenge by 
production of novel nano antibiotics compound which can be 
overcoming resistant of pathogenic microorganisms [62, 63]. 
Furthermore, medical transplantation has a bad effect due to 
presence of bacterial, so sterilization and uses of materials 
have antibiofilm activity are some ways to limit formation of 
biofilm [64]. Furthermore, the common components inter-
fere in the composition of biofilm are extracellular polymeric 
molecules as proteins, polysaccharides, and extracellular 
DNA [65]. Additionally, bacterial biofilms indicate a pos-
sible alteration in its structure and function when exposed to 
biomolecules [58]. Obviously, development of a novel com-
pounds has ability to destroy and prevent bacterial biofilm 
through a recent mode of action is the resolving of these 
problems [66–68]. Cancer seems to be nowadays the second 
major incidence of dying in developed nations, giving it a 
severe health issue. It is a multi-step process that is defined 
by aberrant cell proliferation and is brought on by altera-
tions in the genetic makeup and modified by environmental 
variables [69]. There are many different cancer medicines 
in use today, and significant improvements are continually 

being studied. Nanotechnology has just come to light as a 
reasonable alternative for a number of challenges, and it has 
been thought to bring about a fundamental alteration in the 
identification, management, and therapy of malignancy [70].

In the current work, AgNPs and AuNPs were mycosyn-
thiezed using Fusarium pseudonygamai, as well as their 
nanostructures were characterized by several analyses. More-
over, this study aimed to assess mycosynthesized AuNPs and 
AuNPs in various biomedical applications including antimi-
crobial, antibiofilm, anticancer, and antioxidant efficacies.

2 � Materials and methods

2.1 � Materials

Silver nitrate (AgNO3) and chloroauric acid (HAuCl4) were 
purchased from Sigma-Aldrich, USA, for chemicals and 
used as precursors for preparation Ag-NPs and Au-NPs. 
Other chemicals, culture media, and reagents used in this 
study were purchased from Modern Lab Co., India, in ana-
lytical grade without any purification required.

2.2 � Isolation and identification of fungal isolates

From several agricultural soil sites in Qalyub, Egypt, 15 
soil samples have been taken. After successive dilutions of 
the soil samples, the inoculum was plated on potato dex-
trose agar (PDA) and incubated at 28 ± 2 °C for 3–4 days 
to isolate the fungi. Chloramphenicol (10 µg/mL) added to 
the medium after autoclaving assisted in preventing bacte-
rial contamination. Purity of the fungal growth was evalu-
ated, and the isolated fungus was injected in the cultural 
slant for conservation at 4 °C for additional investigation. 
Molecular identification using genomic DNA as well as its 
region amplification, first most efficient fungal strain, was 
genetically identified. For the ITS-based sequencing, 0.1 g 
of fungal mycelium genomic DNA was extracted. The Gene 
Jet Plant genomic DNA purification Kit (Thermo) #k0791 
procedure has been used to extract the DNA. ITS1 and ITS4 
have been the primers employed. The Maxima Hot Start 
PCR Master Mix (Thermo) #k0221 by Sigma Scientific Ser-
vices Company (Cairo, Egypt) was used in the following 
amplification (PCR) procedure: Thermo’s Maxima Hot Start 
PCR Master Mix, 0.5 µM from each primer, as well as 1 µL 
of isolated fungal genomic DNA, were all added to a 50 µL 
PCR mixture. In a DNA Engine Thermal Cycler, the PCR 
was carried out with a hot start at 94 °C for 3 min, followed 
by 30 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 
approximately 60 s, then a further 10 min at 74 °C of exten-
sion. Using forward and reverse primers and an ABI 3730 1 
DNA sequencer, the specimens subsequently processed by 
GATC Company (Germany).
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2.3 � Screening of biosynthesis AgNPs and AuNPs 
using fungal isolates

On an orbital shaker, 1 mM of silver nitrate (AgNO3) was 
combined with cell-free filtrate and incubated at 28 ± 2 °C 
for 24 h (120 rpm). After the incubation period was through, 
the color change could be seen for up to 72 h. After that, the 
samples were separated and dried at 150 °C for 48 h. Eventu-
ally, the bio-transformed product was collected and submit-
ted for more investigation. The same procedures for chloro-
auric acid (HAuCl4) were used to create gold nanoparticles 
instead of silver nitrate.

2.4 � Biosynthesize of AgNPs and AuNPs by fungal 
isolate TB‑13c

Fungal isolate TB-13c was cultivated for three days at pH 
6.0, 28 ± 2 °C, and 140 rpm shaking inside a 250-mL flask 
that contain 100 mL of Czapek Dox (CD) broth medium. 
Then, fungal biomass subsequently was filtered and rinsed 
repeatedly by sterile D H2O water to eliminate any medium 
constituents. The resulting suspension of the fungal biomass 
in sterile distilled water (1:10) was then agitated for couple 
of days at 28 °C at 150 rpm, whilst also collecting the fun-
gal biomass using filter paper. The synthesis of AgNPs and 
AuNPs utilized the cell-free filtrate in the manner described 
below. Before incubating with cell-free filtrate at 28 ± 2 °C 
for 72 h on an orbital shaker (150 rpm) in the dark, 1 mM of 
AgNO3 and HAuCl4 were combined, and the pH was then 
adjusted at 10 for AgNPs and 5 for AuNPs. Following the 
incubation time, AgNPs and AuNPs showed a brown and 
violet colors, respectively. The latter was separated and dried 
for 48 h at 150 °C. Eventually, the bio-transformed product 
was gathered and submitted for more research.

2.5 � Characterization of AgNPs and AuNPs

AgNP and AuNP biosynthesis were detected using to detect 
an intense absorption peak associated with surface plasmon 
excitation, to acquire the optical UV–Vis absorption prop-
erties, use the JASCO 730 double beam spectrophotometer 
at wavelengths 200–700 nm. AgNPs and AuNPs that were 
synthesized from biological materials were measured using 
a transmission electronic microscope (TEM) (JEOL-2100). 
In order to achieve this, standard copper grids being given 
a drop of NP-containing solution to apply, which was fol-
lowed by a full night of vacuum drying before the grids 
were put into a specimen container. Additionally, using 
Fourier transform infrared (FTIR) spectroscopy (JASCO, 
FT/IR- 6100), several functional groups found in biofab-
ricated NPs molecules were examined. AgNP and AuNP 
samples were blended with KBr before being crushed firmly 
into discs. To get FTIR spectra, these discs were scanned 

between 400 and 4000 cm−1. The morphological properties 
and constituent structures of mycosynthesized AgNPs and 
AuNPs were examined using SEM coupled to a JEOL JSM-
6510 LV energy-dispersive spectroscope (EDS) instrument. 
The crystal structures of silver and gold NPs were described 
by XRD analysis (XRD, X PERT PRO-PAN Analytical).

2.6 � Antimicrobial activity

The MIC values of two different substances (AgNPs and 
AuNPs) were examined against a multidrug resistant strains 
(MRSA, MSSA, P. aeruginosa, and K. pneumonia) using 
the broth microdilution technique. AgNPs and AuNPs were 
prepared at various concentrations (1000, 500, 250, 125, 
62.5, 31.25, and 15.75 μg/mL). Test samples (100 μL) of 
various concentrations were added to 100 μL of double-
strength Mueller Hinton (MH) broth-filled sterile microti-
ter plate wells. In all wells save the negative control one, 
bacterial cell suspension (20 μL) corresponding to (OD 
comparable to 0.5 McFarland standard) was administered. 
To test whether MH broth could adequately support bacte-
rial growth, bacterial solution was added to positive con-
trol wells. The MH broth and sterile distilled water used 
in the negative control wells were used to ensure sterility. 
The plates were incubated for 24 h at 37 °C. After that, the 
plate subsequently re-incubated again for 6 h with 30 µL of 
resazurin solution (0.02 percent wt/v) (HiMedia) added to 
each well to detect bacterial growth. Bacterial growth was 
indicated by a shift in color from blue to red. Growing the 
strains properly was shown by a change in the color of the 
growth control wells to red, and the absence of contamina-
tion was indicated by no change in the color of a sterile 
control well. The experiment is performed three times, and 
mean values were reported.

2.7 � Biofilm inhibition in vitro

With minor modifications, the microtiter plate (MTP) 
approach was used to assess the capacity of AgNPs and 
AuNPs to prevent or lessen the aggregation of biofilms in 
clinical species S. aureus and Pseudomonas aeruginosa 
(recognized as a prolific biofilm-producing strain) [71]. In a 
nutshell, tryptic soy broth media (TSB) with 1% glucose was 
added on a flat-bottomed MTP along with gradient concen-
trations of AgNPs and AuNPs. Test organisms were cultured 
overnight using a 1:100 dilution to achieve an inoculum size 
of 1.5 108 CFU/mL, which was subsequently loaded onto 
MTP and incubated at 37 °C for 48 h. In order to evaluate 
growth density, spectrophotometry was used (O.D. 620 nm), 
and following that, planktonic cells were removed from all 
of the MTP wells without causing any damage to the biofilm 
that had already grown. Furthermore, to remove the residue 
cells of floated unbounded cells, these wells were washed by 
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phosphate‐buffered saline (PBS) at pH 7.4, three times. For 
fixation of biofilm, methanol 95% was added in equal vol-
ume 200 μL to all wells. After that, 200 μL of 0.3% crystal 
violet (CV 0.3%) was added to the same wells, then incuba-
tion of the plates at 20–25 °C for 15 min. Additionally, the 
excess of CV stain was gently removed by sterile distilled 
H2O. Lastly, CV stain bounded with biofilm, at this point 
was examined then photographed using an inverted micro-
scope (Olympus Ck40) × 150. Adding 200 μL of 30% acetic 
acid to each well allowed for the quantitative measurement 
of biofilm development, and the microplate reader (Tecan 
Elx800) was used to measure the color at 540 nm. Results 
from treated and untreated wells were contrasted.

2.8 � Anti‑oxidant activity

2.8.1 � DPPH screening

The DPPH (2, 2-diphenyl-1-picrylhydrazyl) technique was 
used to test the antioxidant capacity of AgNPs as well as 
AuNPs [72]. The amounts of DPPH radicals that were scav-
enged at various nanoparticle concentrations (1000 µg/mL, 
500 µg/mL, 250 µg/mL, 125 µg/mL, 62.5 µg/mL, 31.25 µg/
mL, and 15.62 µg/mL) were measured. Antioxidant activity 
of standard and NPs was determined as DPPH scavenging 
activity (%): [((control absorbance − extract absorbance)/ 
(control absorbance)) × 100].

2.9 � Cytotoxicity and anticancer potential

2.9.1 � Cell culture

The human mammary gland, breast, produced from a met-
astatic location, normal Vero cells (kidney of an African 
green monkey), and cancer cells (Mcf7-HTB-222) were 
purchased from ATCC.

2.9.2 � MTT assay

A full monolayer sheet formed after 24 h of incubation 
at 37 °C with 1 × 105 cells/ml (100 μL) in the 96-well 
tissue culture plate. After a confluent sheet of cells had 
grown, the 96-well microtiter plates’ growth material 
was decanted, and the cell monolayer had been twice 
rinsed with washing media. In RPMI medium contain-
ing % serum, two-fold serial dilution of the sample was 
created (maintenance medium). Three wells served as 
the control wells and received just maintenance medium, 
while 0.1 ml of each dilution was tested in various wells. 
The plate was tested after 37 °C of incubation. The physi-
cal characteristics of cytotoxicity, such as problems such 
as loss of the monolayer, rounded, shrinking, or cellu-
lar granulation, were examined in the cells (5 mg/mL in 

PBS) of MTT solution has been created (BIO BASIC 
CANADA INC). To every well, 20 μL of the MTT solu-
tion was then added. To completely blend the MTT 
through into medium, put on a shaker and shake for five 
minutes at 150 rpm. Permit the MTT to metabolize for 
four hours in an incubator (37 ºC, 5% CO2). Get rid of 
the media (if required, dry plate on paper towels to get 
rid of any leftovers. In 200 μL of DMSO, resuspension 
of formazan (MTT metabolic product). For 5 min, shake 
at 150 rpm to properly combine the formazan and sol-
vent. At 620 nm, remove background when reading opti-
cal density. Cell number and optical density ought to be 
closely connected [73].

3 � Results and discussion

3.1 � Screening of various soil fungi for biosynthesis 
of AgNPs and AuNPs

The most potent microorganism in the soil is fungi, 
which have a good potential for biofabriacted of metal-
lic nanoparticles. The aim of our study is the isolation 
of different soil fungi species for mycosynthesize of sil-
ver and gold nanoparticles. In addition, this study aimed 
to evaluate both AgNPs and AuNPs in various biologi-
cal activities including antimicrobial, antibiofilm, anti-
cancer, and antioxidant efficacies. Among which, 15 
soil samples were collected from various site in Qalyub 
governorate, Egypt. All the samples of soil were cul-
tivated on Potatoes Dextrose Agar (PDA) medium, 30 
individual fungal strains were isolated. Furthermore, 
screening for the capability of 30 isolates for synthesize 
of AgNPs and AuNPs were applied. Of them, 11 isolates 
showed positive synthesize for both nanoparticles; 5 of 
these species did so in less than eight hours. In addition, 
only 11 isolates produced AgNPs and only one species 
produced AuNPs. Out of the 14 species of Aspergillus 
that were continuously studied, 5 species continuously 
generated extracellular AgNPs and AuNPs, 5 isolates 
only produced AgNPs, and 1 species created gold NPs. 
Followed by Fusarium species, out of 6 strains tested, 4 
have a better response for the mycosynthesis of AuNPs 
and/ or AgNPs, and alone one strain mycosynthesized 
AgNPs. Of the 4 species screened, 2 species of Penicil-
lium have synthesized AgNPs and one biofabriacted the 
two nanoparticles. Three Trichoderma species was the 
two strains had been synthesized AgNPs and one with 
strong synthesize both of AgNPs and AuNPs. AgNPs 
did synthesize by one Mucor isolates from two isolated. 
Finally, the only species of Rhizopus was isolated not 
give any response to both metal nanoparticles. In cur-
rent study, only one fungal isolate (TB-13c) showed 
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high potency to produce AgNPs and AuNPs. During this 
whole study, Fusarium spp. (TB-13c) was identified 
as suitable strains for the extracellular fabrication of 
metallic nanoparticles depending on the particles dura-
bility and quicker rate of production (Fig. 1). Similar 
to this, several studies have used Fusarium spp. as pro-
spective candidates for the formation of either silver or 
gold nanoparticles [41, 47, 74].

Molecular techniques were used to identify the fungal 
isolate Fusarium pseudonygamai TB-13c. Using PCR as 
well as sequential methods, the ITS segment of a filamen-
tous fungi was discovered. We created a phylogenetic tree 
utilizing something such as a greatest probability approach 
to compare our ITS sequence to earlier identified sequences. 
According to Fig. 2, the outcomes demonstrated a 100% 
agreement between the sequenced ITS segment and the 
structure of Fusarium pseudonygamai TB-13c.

Fig. 1   Morphological identification of Fusarium pseudonygamai TB-13c: A growth area on PDA; B colony opposite color; C and D conidi-
ophore and conidia under optical microscope, respectively

Fig. 2   Phylogenetic tree incor-
porating the fungal strain TB-
13c ITS sequences matching 
NCBI sequences, identified as 
Fusarium pseudonygamai 
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3.2 � Characterization of AgNPs and AuNPs

As NPs develop, their colors change, becoming brown for 
AgNPs and pinkish violet for AuNPs, respectively. UV–vis 

range significantly supports its manufacturing. Absorbance 
spectroscopy mostly in UV–vis spectrum, from 300 to nm 
wavelength, is referred to as UV–vis spectroscopy. This 
method is important when figuring out how NPs develop, 
aggregate, and remain stable. Noble nanoparticle such gold 
and silver have higher absorption wavelengths (max) that 
are between 500–550 nm and 400–450 nm, respectively. 
Consequently, we could verify that perhaps the correct NPs 
have indeed been generated whenever we notice the highest 
value in particular wavelength areas. There is a chance that 
NP will aggregate over time, which would also cause max 
to adjust more towards the relatively long wavelength range. 
The production of these AgNPs and AuNPs were primarily 
verified by UV–vis spectroscopy, with maximal assimilation 
occurring at 420 and 540 nm, respectively (Fig. 3).

TEM examination is the most efficient method for deter-
mining the morphological characteristics of mycosynthe-
sized NPs, such as their shape and size. In Fig. 4A TEM 
image displayed well-distributed, almost spherical AgNPs, 
and in the center right corner displayed the SAED struc-
ture. AgNPs exhibited a particle size range of 5–20 nm, 
as seen in Fig. 4B. In contrast, AuNPs were spherical and 
8–60 nm in size (Fig. 4C). Interestingly, the SAED pattern Fig. 3   UV–vis spectrophotometer of the mycosynthesized AgNPs 

and AuNPs

Fig. 4   A TEM image of AgNPs, 
B SAED patterns of AgNPs, C 
TEM image of AuNPs, and D 
SAED patterns of AuNPs
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of AuNPs was also seen in Fig. 4D. The myco-fabricated 
NPs matched those from earlier research in regards to size 
and form [38, 40].

Figure 5 shows the XRD patterns of AgNPs and AuNPs. 
Four different diffraction peaks may be seen in each spec-
trum. Peaks are seen in the case of AgNPs at four values: 
38.42°, 44.56°, 64.66°, and 77.75°. Peaks throughout AuNPs 
were shown at 2θ values: 38.56°, 44.74°, 64.87°, and 77.85°. 
These 4 peaks correspond to reflections from of the planes 
(111), (200), (220), and (311) of a face-centered cubic phase 
of AgNPs and AuNPs. The peak matching to the (111) plane 
is much stronger in both situations than the peaks belong-
ing to the (200), (220), and (311) planes. This suggests that 
the nanoparticles may be predominantly oriented all along 
(111) planes. Consequently, the XRD investigation obvi-
ously demonstrates that the produced AgNPs and AuNPs 
are crystalline. These findings are consistent with previous 
research [75, 76].

In the research lab, substances can be examined using 
FT-IR. The absorbance peaks in an infrared spectrum, pri-
marily reflect on the vibrational frequencies between both 
the atomic bonds of the specimen undergoing examination, 
serve as the sample’s fingerprint. Due to the unique atomic 
bonds that each substance has, no two compounds with the 
same infrared spectrum are exactly comparable. As a result, 
infrared spectroscopy can be useful for qualitative investiga-
tion and improved identification of various materials. The 
peak sizes also fall within the range that reveals the quantity 
of substance present. Advanced software algorithms make 
this spectroscopy a great tool for quantitative analysis [77]. 
The metal–oxygen resonance is responsible for the peaks 
inside the area between 400 and 700 cm−1 of the FT-IR spec-
trum seen in Fig. 6. In this study, the formation of silver 
nanoparticles can be confirmed by the presence of a peaks 
at 510, 620 and 832 cm−1 belong to bending vibration of 
Ag–O. The occurrence of those same peaks with a little 

Fig. 5   XRD pattern of AgNPs 
and AuNPs biosynthesized by 
Fusarium pseudonygamai 
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variance in the wavenumber has previously been described 
[78–80]. FT-IR analysis has been used to investigate the 
existence of secondary metabolites that cap and reduce sil-
ver nitrate precursor to AgNPs. The occurrence of several 
functional groups in Fusarium pseudonygamai extract was 
correlated with the presence of various IR bands. In this 
study, the IR spectra investigated for the silver nanoparticles 
revealed the absorption peaks at (I) 2851 and 2198 cm−1 
(OH group of alcohols and phenols); (II) 1596 cm−1 and 
1351 cm−1 (C = O stretching of carboxylic acid group); (IV) 
1025 cm−1 (C–OH vibrations of the protein/polysaccharide). 
Additionally, Ag–O was assigned the characteristic bands at 
832,620, and 510 cm−1. The above peaks were confirmed in 
the previous studies [81, 82]. Additionally, the O–H stretch-
ing vibration of the hydroxyl groups in alcohol and phenol 
is seen in the FTIR spectra of AuNPs with what appears to 
be a unique band at wavenumber 3073 cm−1. The band at 
1630 cm−1 is due to asymmetric CH2 stretching. The band at 
1534 cm−1 display aromatic rings. The aromatic ring and 
OH assignments do certainly imply the polyphenolic attach-
ment towards the gold surface. Furthermore, the distinctive 

band for Au-O was designated at 1022 cm−1. It follows that 
the various metabolites present in the filtrate of the fungal 
strain play a major part in the production and size reduction 
of Ag and Au into a well-stabilized nano-form.

SEM image confirmed the existence of nanoparticles 
ranging in size from 10 to 61 nm for AgNPs as shown in 
Fig. 7A. The existence of metal Ag and Au was substantiated 
by EDX spectrum analysis, which exhibited peaks within 
their typical energy levels. The identification lines presented 
for the principal emission energies for Ag correlate to the 
peaks observed in the spectrum, providing confidence that 
Ag was accurately characterized wherein the peak situated 
approximately 3 and 4 keV (Fig. 7B). The nanoparticles 
revealed that spherical AuNPs with sizes ranging from 15 
to 70 nm (Fig. 7C). Those maxima are directly related to the 
Ag characteristic. Similarly, an absorption peak obtained 
at ∼2 keV which is specifically related to characteristic of 
AuNPs obtained in the spectrum (Fig. 7D). The mass of 
Ag was 23.76% with atom of 6.18%, whereas for gold, it 
is 61.97% with atom of 10.17%. The Au-NPs and Ag-NPs 
were discovered to really be crystalline exhibiting oval as 
well as spherical shapes, correspondingly. SEM examina-
tion normally provides an in-depth picture resolution of 
something like the particles by assigning a focused beam 
of electrons over the surface and finding secondary or back-
scattered electron signal. In comparison, EDX also was uti-
lized to offer atomic identification and concentration profiles 
information. SEM–EDX was used to investigate the surface 
analysis, topology, structural organization, and energy dis-
semination of biologically synthesized nanoparticles in our 
work. Previous research found polydisperse AgNPs acquired 
with high-resolution pictures, indicating excellent crystallin-
ity of the nanoparticles and a strong signal in the Ag area, 
verifying the production of AgNPs [83]. These study have 
established that metallic Ag nanocrystals have a characteris-
tic optical maximum absorption about 3 keV cause consider-
able plasmon resonance.

3.3 � Minimum inhibitory concentration of AgNPs 
and AuNPs

The actions of AgNPs and AuNPs against harmful micro-
organisms are among their major benefits. As a result, the 
antibacterial effectiveness of mycosynthesized both AuNPs 
and AgNPs against pathogenic Gram-positive (MRSA and 
MSSA) and Gram-negative (P. aeruginosa and K. pneumo-
nia) bacteria was initially examined. Inhibitory effects of 
various doses of AgNPs and AuNPs (15.62–1000 μg/ mL) 
were studied (Fig. 8). The results indicated that the MIC for 
AgNPs was 62.5 μg/ mL against MSSA, K. pneumoniae, 

Fig. 6   FTIR spectra of fungal filtrate, AgNPs and AuNPs biosynthe-
sized by Fusarium pseudonygamai 
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and P. aeruginosa and 125 g/ mL against MRSA, whereas 
the MIC for AuNPs was 1000 μg/mL versus MRSA, MSSA, 
and K. pneumoniae and 500  μg/mL for P. aeruginosa. 

Additionally, AgNPs outperformed AuNPs in their ability to 
combat both Gram-positive as well as Gram-negative harm-
ful microorganisms. According to another study, nanopar-
ticles inhibit bacterial growth by binding with phosphorous 
moieties in DNA. This inhibits DNA replication, which low-
ers enzyme activity [84]. Additionally, it can prevent the 
generation of ATP, which results in cell death, and block the 
respiratory enzymes of bacterial cells. Additional alterations 
included membrane detachment, cytoplasmic shrinkage, and 
finally membrane of cell rupture [85, 86].

3.4 � Anti‑biofilm of AgNPs and AuNPs

The antibiofilm efficacy of nanoparticles in this study 
shown variable effects against various bacteria. Accord-
ingly, when used at concentrations below the MIC value, 
AuNPs showed the greatest efficacy against the develop-
ment of biofilms caused by S. aureus and P. aeruginosa. 

Fig. 7   SEM–EDX spectrum of mycosynthesize AgNPs (A and B) and SEM–EDX spectrum of mycosynthesize AuNPs (C and D)

Fig. 8   Antibacterial activity of AgNPs and AuNPs against different 
pathogenic bacteria
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Fig. 9   Light inverted microscopic images of S. aureus biofilm grown 
with various concentrations of AuNPs: a 0.0  mg/mL represents the 
positive control; b negative control; c, d, and e 3.0 and 2.0  µg/mL 
above the MIC value; e 0.5 µg/mL; f 0.125 µg/mL; 0. 062 µg/mL; h 

0. 031; i 0.04 µg/mL; and j 0.02 µg/mL. At concentrations from 0.04 
and 0.02 µg/mL, (i and j) bacteria have manifested as dispersed cells 
and are unable to assemble to form a typical biofilm
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Against P. aeruginosa, AuNPs at 250, 125, 62.5, 31.25, and 
15.62 μg/mL decreased the production of biofilm by 89.24, 
87.28, 86.3, 78.97, and 78.48%, respectively. Additionally, 
at concentrations below the lethal dosage without impairing 
bacterial growth, Au-NPs demonstrated significant biofilm 
prevention agent against S. aureus, with proportions of 92.9, 
75.6, 75.1, 67.3, and 63.8%, respectively. Through inverted 
microscopy techniques, the impact of nanoparticles on the 
surface structure of the biofilm matrix was investigated. The 
results showed that the positive control sample had a bio-
film matrix, while Au-NPs-treated wells showed less surface 
colonization and biofilm matrix in S. aureus. By dissolving 
the micro-colonies inside the specimen that was permitted 
to be treated in the range of 3000 to 0.02 µg/mL, the light 
microscopic images showed that the AuNPs had completely 

dispersed the biofilm Fig. 9. According to their respective 
quantitative and qualitative analyses, AuNPs reduced the 
growth of both S. aureus as well as P. aeruginosa biofilms 
during the initial stage. In contrast, AgNPs had a little inhib-
ited effect against P. aeruginosa and S. aureus which inhib-
ited up to 43.7% at 15.6 µg/mL, and 41.3% at 7.8 µg/mL for 
P. aeruginosa and no inhibition against S. aureus under MIC 
value. Another study found that AuNPs produced also with 
fungal strain Laccaria fraterna reduced biofilm growth in 
almost the same way. Our results were likewise phenotypi-
cally like that of Rajkumari et al. [87]. Utilizing Baicalin 
conjugated nanoparticles, they contributed to a reduction 
biofilm forming capability. The results of our crystal violet 
technique for biofilm inhibition corresponded to those of 
Khan et al. [88]. Past study by Estevez et al. showed that 

Fig. 10   Effect of AgNPs (a) 
and AuNPs (b) on normal Vero 
cells at different concentra-
tion imaged by light inverted 
microscope
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AgNPs can diffuse into the matrix and damaged cells in the 
biofilm’s intern al layer [89].

3.5 � Cytotoxicity of AgNPs and AuNPs

The shape of cells the first and most noticeable finding aris-
ing from exposure to nanoparticles or other toxic compounds 
is a change in cell shape and otherwise morphology of the 
cell in culture. As a result, the light inverted microscope 
may be developed to monitor damage to cellular shape and 
morphology as a result of AgNPs and AuNPs exposed dos-
age (Figs. 10 and 11). The normal cell line expanded con-
tinuously across the plates and displayed epithelial shape. 
Cells after treatment to various concentration of AgNPs or 

AuNPs eventually lost unique phenotypic characteristics. 
Additionally, at high concentrations of AgNPs and AuNPs, 
the cells exhibit full or partial breakdown of monolayer, cell 
granulation, rounding, or shrinkage as compared to control 
sample. The light inverted microscope picture demonstrated 
unequivocally that the damage induced in cell morphology 
is dosage dependent for AgNPs and AuNPs.

3.6 � MTT assay

The fundamental step in toxicology which explains the 
cellular reaction to a toxin is called a viability test. They 
often provide details on cell metabolism, cell growth, and 
induce apoptosis [90]. The MTT test is really a sensitive 

Fig. 11   Effect of AgNPs (a) 
and AuNPs (b) on cancer cells 
(Mcf7) at different concentra-
tion imaged by light inverted 
microscope
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colorimetric technique measuring determining the total 
number of viabilities in cell multiplication and cytotoxic 
activity experiments. Moreover, Fig. 12 shows cell death 
including both healthy and malignant cells significantly 
dose-dependent also when subjected to various quantities 
of either AgNPs or AuNPs. In specifically, our IC50 of Vero 
cell was 695.34 μg/mL for AgNPs and 631.66 μg/mL for 
AuNPs. AgNPs’ IC50 for cancer cell (Mcf7) was 204.07 μg/
mL, whereas AuNPs’ IC50 was 206.95 μg/mL. In particu-
lar to maintain the protection of humans, it is thus strongly 
advised that the therapy with AgNPs and AuNPs be car-
ried out at concentrations lower than 695.34 μg/mL and 
631.66 μg/mL, respectively. Employing unique and diverse 
malignant cells, different studies have thoroughly investi-
gated the cytotoxic effects of AgNPs as well as AuNPs [91, 
92]. A parallel recent study showed that AgNPs and AuNPs 
had an antitumor impact on carcinoma cell lines. AgNPs and 
AuNPs were reported to have IC50 values of 100 and 200 μg/
mL, respectively [92]. As a result, our investigation demon-
strated more toxicity on carcinoma cell lines compared to 
the earlier findings [91, 92]. Applying AuNPs for medical 
purposes, Hamed as well as some co-workers showed anti-
cancer properties versus carcinoma cell lines [93].

3.7 � Antioxidant activity

Antioxidants are effective against reactive oxygen species 
(ROS), byproducts of biological activities [94]. Free radi-
cals, which cause a range of diseases, may also be reduced 
by antioxidants [95]. Antioxidants were already considered 
as bioactive molecules provided; they show anticancer, anti-
bacterial, anti-inflammatory, anti-mutagenic, anti-tumor, 
and anti-carcinogenic and properties. As shown in Fig. 13, 
the antioxidant activity of AgNPs and AuNPs was evalu-
ated in this study using DPPH methods at a range of doses 
(1000–15.62 μg/mL). Results revealed that AgNPs had the 
strongest antioxidant activity comparing to AuNPs. AgNPs 
had an IC50 of 38.2 μg/mL as opposed to 180 μg/mL AuNPs. 
According to Pu et al., spherical AuNPs have stronger anti-
oxidant potential than irregularly or polygonal ones [96]. 
In previous research, AgNPs showed strong DPPH efficacy 
with just an IC50 value of 30.04 μg/mL [97]. Our results 
confirm the outstanding antioxidant properties of AgNPs 
and AuNPs that have been previously described [98, 99].

Fig. 12   Cytotoxicity (A) and 
antitumor activity (B) of AgNPs 
and AuNPs
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4 � Conclusion

The novel fungus Fusarium pseudonygamai is used in the 
present discovery to synthesize AgNPs and AuNPs, which 
is a very effective and environmentally beneficial process. 
The generation of AgNPs and AuNPs with sizes between 
5–20 nm for AgNPs and 8–60 nm for AuNPs was medi-
ated by Fusarium pseudonygamai filtrate. Different analyti-
cal methods were used to analyze the produced AgNPs and 
AuNPs, and they were discovered that the particles were 
extremely stable. Effective antibacterial, antibiofilm, anti-
oxidant, and anticancer properties have been demonstrated 
by the biosynthesized AgNPs and AuNPs. On Mcf7 cells, 
these AgNPs and AuNPs had strong cytotoxic properties. In 
the world of medical biotechnology, this alternative biosyn-
thesis process for AgNPs and AuNPs would compete with 
the widely used chemical approaches.
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