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Abstract
Every year, the food industry generates a large amount of waste, which prompts researchers to come up with a solution 
to efficiently manage the issue to support zero-waste concepts. After oil extraction, many oilseed cakes remain in the oil-
processing industry as a waste. Converting this oilseed cake into value-added products would reduce environmental pollution 
and production costs. Oilseed cakes are high in fiber and contain a lot of non-starch polysaccharides. Azadirachta indica 
A. Juss neem oil cake (NOC) is a low-cost agricultural waste material produced during the oil extraction process of neem 
seeds. It is a dark brown powder that contains cellulose as well as other components such as hemicelluloses, proteins, and 
lipids. In this investigation, cellulose was extracted from the NOC, and comprehensive characterization was carried out. The 
polymer composite industry is in search of biofillers to incorporate with various matrices. As neem cake cellulose (NCC) is 
an entirely biodegradable material, it was considered for this study. To ensure its suitability in polymer composite industries, 
physicochemical, morphological, thermal, and spectroscopy analyses were carried out on NCC. Higher cellulose content 
(73.53%), better crystallinity (66.23%), lower density (1.59 g/cm3), considerable thermal stability (335.71 °C), kinetic acti-
vation energy (83.06 kJ/mol), particle size (17.93 µm), and good surface roughness (47.004 nm) make NCC suitable to be 
incorporated as a biofiller material in polymer matrices to manufacture eco-friendly composites.
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1 Introduction

In recent decades, cellulose has undoubtedly attracted the 
global market interest because it can be converted into 
micro- and nanomaterials with novel properties that are 
not found in bulk materials [1–3]. Cellulose is the most 

abundant organic compound on the planet. It is basically 
derived from natural or synthetic sources. Natural cellu-
lose is derived from plants, animals, and mineral sources. 
Synthetic cellulose is made from synthetic materials 
such as petrochemicals [4–7]. In its natural state, cel-
lulose has a semi-crystalline structure with morphology 
and dimensions that vary depending on the origin and 
environment condition. As a biopolymer derived from 
natural resources, cellulose is getting much attraction 
for its renewable applications [8–12]. More advanced 
chemical, mechanical, as well as biological treatments 
are being developed for deriving cellulose from plant bio-
mass [13–16]. Cellulose is being widely used in textile, 
pharmaceutical, chemical, paper, medical, and composite 
industries due to its biodegradability and biocompatibility 
[17, 18]. With a wider interest as a biomaterial, research-
ers have now proposed to use it as a material substitute for 
polymer matrix in various engineering areas [6, 19–21].

Cellulose is insoluble in water and most common sol-
vents, owing primarily to the strong intramolecular and 
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intermolecular hydrogen bonding between individual chains. 
It is the main component of plant cell walls, contributing to 
the physical stability [6, 7, 11, 22, 23]. In plant cell walls, 
cellulose is linked with hemicellulose and lignin content 
covalent bonding and Van der Waals force. The quantities 
of the three components vary from 40 to 50%, 15 to 30%, 
and 20 to 30%. The crystalline structure of cellulose is a 
tightly packed chain with Van der Waals contacts and mul-
tiple intramolecular and intermolecular hydrogen bonding 
interactions. Degradability, hydrophilicity, chirality, and 
chemical inconsistency are all features of the cellulose mol-
ecule structure [12, 14, 16, 24, 25].

In the recent years, many studies have been carried 
out for development of bio-degradable micro- and nano-
sized particles from a cellulose source for reinforcement 
in composites that would become a clear substitute for 
synthetic material derived composites used for struc-
tural applications [16, 18, 19, 26–28]. As a biofiller 

to composites, cellulose offers attractive features such 
as good stiffness, better aspect ratio, low density, eco-
friendly nature, and recyclability and ensures better 
mechanical properties than polymer composites [29, 30]. 
Apart from the above advantages, the production cost of 
biofillers is much lower than the synthetic counterparts 
[31, 32]. The major source for cellulose is wood, but its 
over exploitation is leading to deforestation and depletion 
of natural resources. According to literature, cellulose can 
be extracted from a variety of sources, including wheat 
straw, sugarcane straw, bagasse, hemp straws, flax straws, 
rice straw, rice husk, soybean hulls, jute, banana stems, 
pineapple leaf fiber, and palm oil residue as shown in 
Table 1. Research should also focus on finding alternate 
sources for cellulose extraction from biomass, agricul-
tural residues, and industrial wastes.

Oilseed cakes are the major residues left over in oil 
industries and are classified as agroindustrial waste or 

Table 1  Physical and chemical properties of cellulose extracted from biomass

SI no Cellulose S
Cellulose source

Chemical properties Physical properties Reference

Cellulose Hemi-cellulose Lignin Wax Ash Density Size

% % % % % g/cm3 µm

 1 NCC 96.53 2.58 0.87 - 0.02 1.59 12–14 Present study
 2 Groundnut shells 82.7 6.05 0.34 - - - - [51]
 3 Banana peel 74.24 ± 1.32 6.28 ± 0.08 10.18 ± 1.16 - 8.30 ± 1.23 - 19.2–30 [65]
 4 Banana bract 78.53 ± 1.63 3.43 ± 0.21 1.59 ± 0.34 - 14.85 ± 1.15 - 15–45 [65]
 5 Teff straw 89.9 ± 0.50 4.6 ± 0.20 3.1 ± 0.06 0.4 ± 0.01 0.6 ± 0.01 - 6.389 ± 2.24 [66]
 6 Enset fiber 95.7 ± 0.41 2.3 ± 0.18 0.7 ± 0.01 0.2 ± 0.01 0.7 ± 0.28 - 13.37 ± 2.45 [66]
 7 Sugarcane bagasse 90.8 ± 0.58 4.0 ± 0.38 2.8 ± 0.16 0.5 ± 0.01 0.7 ± 0.01 - 19.19 ± 5.18 [66]
 8 Coffee hull 79.9 ± 0.46 8.8 ± 0.03 7.9 ± 0.14 0.9 ± 0.45 1.0 ± 0.01 - 24.06 ± 7.37 [66]
 9 Peanut oil cake 82.3 9.4 7.6 - 0.5 1.58 15–25 [67]
 10 Ficus leaf 90.6 2.5 4.7 - 1.1 - [68]
 11 African napier grass 93.5 2.9 3.4 - - - 8.3 [69]
 12 Used disposal paper 

cups
90.2 4.2 1.8 3.7 - - 15–20

13.7 ± 
0.6 nm

[70]

 13 Walnut shell 79.24 ± 2.51 0.28 ± 0.10 6.18 ± 1.24 - 14.30 ± 1.41 - 152.74 ± 5.87 µm [71]
 14 Corncob 83.13 ± 2.63 1.59 ± 0.84 3.43 ± 1.17 - 11.85 ± 1.21 - 210.36 ± 7.49 µm [71]
 15 Sugarcane bagasse 85.57 ± 2.14 0.87 ± 0.21 4.76 ± 1.13 - 8.80 ± 1.06 - 218.65 ± 6.58 µm [71]
 16 Red banana tree, 

peduncles
89.5 8.2 2.3 - - - - [72]

 17 Millet 85.2 ± 1.9 6.6 ± 1.2 4.9 ± 1.7 - - - 10–12 nm [73]
 18 Rice husk 73.8 ± 0.3 19.2 ± 0.7 1.6 ± 0.5 - 0.14 ± 0.03 - - [74]
 19 Coffee husk 61.8 ± 2.6 27.2 ± 0.9 2.6 ± 0.4 - 0.49 ± 0.19 - - [74]
 20 Arecanut husk fibre 85.47 ± 1.63 - 2.3 ± 1.04 - - - 1 nm [75]
 21 Mengkuang

Leaves
81.6 ± 0.6 15.9 ± 0.6 0.8 ± 0.1 - - - - [40]

 22 Helicteres isora plant 94.3 ± 3.3 0.6 ± 2.3 1.4 ± 3.2 - - - - [76]
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by-products. The annual productivity of oilseed cake is 
estimated to be 0.145 million metric tonnes [33, 34]. Oil-
seed cakes can be classified as edible or nonedible. Edi-
ble oilseed cakes include mustard, sunflower, soybean, 
mahua, and peanuts. Jatropha, castor, neem, sesame, and 
simarouba, on the other hand, are considered nonedible 
oilseed cakes due to the presence of a high concentra-
tion of toxic compounds after the oil is extracted from 
the seeds.

Neem is a well-known source of nonedible oil. Oil can 
be extracted by passing or crushing the seed through a pro-
cess used at 40–50 °C. Neem seed oil can also be obtained 
by solvent-extraction of the neem seed, fruit, oil cake, or 
kernel. Most industries extract the oil remaining in the 
seed using hexane. Neem cake is a by-product obtained in 
the solvent extraction method for neem oil. Being a totally 
botanical product, neem cake contains 100% natural NPK 
content along with various micronutrients. It is being used 
as an organic fertilizer, organic pesticide, organic insecti-
cide, organic fungicide, etc. This is the first ever attempt 
made to derive cellulose from neem cake and to charac-
terize the same for studying possibilities of using it as a 
biofiller for natural as well as synthetic composites. The 
cellulose was extracted from neem oil cakes (NOCs) using 
a low-cost chemical method. The extracted cellulose was 
investigated for its chemical structure by Fourier transform 
infrared (FTIR) spectroscopy. Crystallinity and thermal 
stability were found out using X-ray diffraction (XRD) and 
thermogravimetric analysis (TGA). The morphology was 
analyzed using scanning electron microscopy (SEM) and 
atomic force microscopy (AFM). Owing to its enhanced 
properties, the cellulose extracted from NOC can be used 
as a biofiller. It offers great mechanical strength and appre-
ciable thermal resistance properties to the composite.

2  Materials and methodology

2.1  Materials

Neem cake was procured from a nonedible oil manufac-
turer located at Nagercoil, Kanyakumari district of Tamil 
Nadu, India. The direct purchase of neem cake from an 
oil mill guarantees that no preservatives were added. 
Chemicals such as hydrogen chloride (HCl), potassium 
chloride (KCl), hydrogen peroxide  (H2O2), and sodium 
hydroxide (NaOH) were purchased from Sigma-Aldrich. 
All the chemicals used in the experiment were of ana-
lytical grade and were used exactly as received, with no 
further purification.

2.2  Extraction of cellulose from neem cake

2.2.1  Pretreatment

Before pulverizing the NOC was dried in a hot-air oven at 
50 °C until a constant weight was attained. With the help of 
a pulverizing machine, the NOC was ground to fine powder 
with particle size in micro ranges. Before the experimental 
analysis, the powder was stored in dark bags and kept in a 
dry and dark environment [35–37].

2.2.2  Oil separation

Even after hot pressing or cold pressing with solvent 
extraction, the NOC will retain 10–20% of its oil content. 
This oil content removal is the first chemical procedure 
after pulverization. A pulp is created by combining oil cake 
powder and water in a proportionate amount. Then, 2 kg 
pulverized NOC powder is mixed up with 6 L water and is 
heated up to 80 °C for 2 h. The oil contents will be found 
suspended on the top layer of the solution, which is com-
pletely wiped off.

2.2.3  Lignin separation

The remaining solution, which is almost free of soap con-
tent, is mixed with 4 L water along with half liter HCL and 
100 g KCL. The new mixed solution is continuously heated 
up to 80 °C for 4 h. This helps to remove lignin and fatty-
acid contents and to separate mineral contents. This will 
ultimately break the hemicellulose bond with cellulose. The 
solution obtained is continuously washed in distilled water 
until the pH becomes neutral.

2.2.4  Hemicelluloses and phenolic content removal

The next procedure is to break up the chemical bondage 
between the cellulose, hemicellulose, and phenolic con-
tents. For that 500 ml HCL along with 250 g KCL diluted in 
250 ml water is mixed up for uniformity and is added with 
6 L water. The solution is kept idle for soaking up to 12 h. 
After that, the content is then taken for hydrolysis further 
until the pH becomes neutral. The end solution has hemicel-
luloses, pectin along with cellulose separated as component 
items.

2.2.5  Pretreatment/pre‑bleaching

First, 200 ml hydrogen peroxide and 20 g Na(OH) is mixed 
with remaining content in 1 L water and the solution is 
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heated continuously up to 80 °C for 2 h. After observing 
foaming, the heating process is stopped, and then, hydrolysis 
is done until the solution becomes neutral. Thereafter, only 
cellulose content is remained.

2.2.6  Bleaching process

First, 2 sodium hypochloride is added to the remaining 
mixture and the solution is heated for 2 h at a tempera-
ture range of 60–80 °C. At the end, pure white cellulose is 
obtained as a residue. Thereafter, further hydrolysis is done 
to ensure purity. The obtained cellulose is dried under ambi-
ent conditions for moisture removal. The complete process 
of extracting cellulose from neem cake cellulose (NCC) is 
given Fig. 1.

2.3  Characterization techniques

2.3.1  Physical composition

The density and particle size of the extracted cellulose 
(NCC) were investigated to ascertain the critical physical 
parameters that determine its light-weight applicability. The 
density of the extracted NCC was measured by a pycnometer 
using toluene [4, 38]. The density was calculated using the 
following equation:

(1)�NCC =
m

2
− m

1
(

m
3
− m

1

)

(m
4
− m

2
)
ρt

where ρNCC is the NCC density (in kg/m3); m1 and m2 are 
pycnometer masses (in kg), before and after NCC filling; 
m3 is the pycnometer mass with toluene (in kg); m4 is the 
pycnometer mass filled with NCC and toluene (in kg); and 
ρt is the toluene density (866 kg/m3) at room temperature. 
The particle size of the NCC was determined with the help 
of SEM images and by analyzing the micrograph in the 
ImageJ software. A set of sample values were pointed and 
its mean value in micrometer was recorded. The yield of 
cellulose from the neem cake was calculated using the fol-
lowing equation:

where W1 is the weight of neem cake sample before treat-
ment and W2 is the weight of sample after the treatment.

2.3.2  Chemical composition

The chemical composition of the extracted cellulose was 
determined using the standard TAPPI (Technical Asso-
ciation of the Pulp and Paper Association) method [39, 
40]. The lignin content was determined using the Kalson 
method and the TAPPI standard. The hollocellulose (cel-
lulose + hemicellulose) content was determined accord-
ing to TAPPI T 19 M-54. The α-cellulose was removed 
from hollocellulose by alkali extraction. The hemicellu-
lose fraction was calculated as the difference between the 
hollocellulose and α-cellulose contents. The percentage 

(2)PercentageofcelluloseyieldinNCC =
W

2

W
1

× 100

Fig. 1  Graphical representation of the process used to extract NCC
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composition of α-cellulose, hemicellulose, and lignin was 
determined and shown in Table 1. Moisture content was 
calculated by the statistical formula mentioned as Eq. (3) 
in which W1 represents the weight of undried cellulose 
sample containing moisture and W2 corresponds to the 
mass of moisture removed, dried cellulose.

2.3.3  Thermogravimetric analysis

A thermogravimetric analyzer is used to measure the 
NCC’s thermal performance. The TGA is carried out 
to predict the rate of change of weight with respect to 
temperature under the nitrogen environment. Cellulose 
extracted from NOC is subjected to thermal analysis 
using a thermogravimetric analyzer (model 6300; SIINT, 
Japan) under a chemically inert environment at a nitro-
gen flow rate of 20 ml per minute throughout analysis. 
Each set of samples was treated at 10 °C/min air. The 
change in masses was recorded for every 5 °C from 20 
to 400 °C to ascertain the thermal stability of the neem 
cake–extracted cellulose. The changes in the mass of vari-
ous chemical components of the fiber were documented in 
the form of TG/DTG curves and the thermal stability and 
maximum degradation temperature of the cellulose was 
labeled correspondingly. The kinetic activation energy 
(Ea) of the NCC was calculated using Broido’s equa-
tion to validate the NCC as reinforcement in a composite 
application[41–43].

where y is the normalized weight (wt/wi), wi is the starting 
sample weight, wt is the sample weight at time t, R (8.32 J/
mol K) is the gas constant, T is the temperature in Kelvin, 
K is the reaction rate constant, and Ea is the kinetic activa-
tion energy.

2.3.4  X‑ray diffraction analysis

X-ray diffraction is a solid-state technique that can pro-
vide quantitative and qualitative information about the 
chemical structure of NCC. The crystalline parameters 
have a direct influence on the polymer material’s tensile, 
thermal, and water absorption properties when they are 
used as fillers. The crystallographic structure of the cel-
lulose samples (crystallinity index and crystallite size) was 

(3)Moisture%inNCC =
(

W1 −W2

W1

)

× 100

(4)In

[

ln

[

1

y

]]

= −

(

Ea

R

)

[(

1

T

)

+ K

]

recorded using DSXRD (Bruker). The diffraction spectra 
were magnified in the 2θ plane at a scan range of 10°–80° 
(room temperature) with a setting of 40 kv using CuKα. 
Ni-filtered radiation at an intensity of 1.5413 Å was used. 
The crystallinity index CI (%) and crystallite size (CS) 
were examined through Eqs. (5) and (6) with the help of 
Origin 2021 software.

where Aamorphous is the area under amorphous curve region, 
Acrystalline is the area under crystalline curve region, and K 
refers to the Scherrer’s constant (0.89). The representations 
λ and β′ denote the wavelength of the X-ray and full-width 
at half-maximum of peak at 22.56°. D is the crystallite size 
(nm) and θ is the diffraction angle (degree).

2.3.5  FTIR analysis

Chemical nature, existence of functional groups, and chem-
ical bonds in the extracted cellulose were determined by 
FTIR spectroscopy [44, 45]. A spectrometer (FTIR-8400S; 
Bruker-Alpha, Germany) was used to perform the analy-
sis. The NCC samples were irradiated with infrared light. It 
calculates the absorbance or transmittance against the wave-
number based on the absorption, transmission, and reflec-
tion of infrared light over the sample. The spectral analysis 
was performed in an absorbance range of 500–4000  cm−1 
at a resolution of 2  cm−1 and scanning rate of 32 scans per 
minute. The FTIR spectra provide information on molecular 
vibrations, which aids in identifying the chemical and physi-
cal properties of the functional groups present in the sample.

2.3.6  SEM

SEM is a noncontact surface image capture technique used 
to measure NCC qualitatively (shape and structure) and 
quantitatively (size). The morphological and elemental com-
position analyses were carried out with the aid of a scan-
ning electron microscope (SEM JEOL, USA) under 15 kV 
accelerating voltage. A thin layer of gold-coated samples 
was used for the purpose of preventing the accumulation 
of electric charges during the examination and thus ensur-
ing the absolute conductivity of the materials. During the 
SEM image capture, an operating voltage of 10–15 kV was 

(5)CI(%) =
Acrystalline

Acrystalline + Aamorphous

× 100

(6)D =
kλ

βcosθ
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maintained [46–50]. The ImageJ image-processing soft-
ware was used for particle size analysis, and 19 particles 
were analyzed to extract the mean length (m) and shape 
descriptors.

2.3.7  EDX spectroscopy analysis

Energy-dispersive X-ray spectroscopy (EDX) is an 
approved element analysis technique for determining 
the chemical compositions of various elements such as 

carbon, oxygen, nitrogen, sodium, and magnesium pre-
sent on the surface of NCC and estimating their relative 
plentitude based on the intensity of the corresponding 
peaks [51, 52]. EDX was conducted on the cellulose 
samples for examining the presence of elements such as 
nitrogen, carbon, and oxygen. The test was performed on 
INCA Pental FETX3, which is equipped with an SEM 
machine. After analyzing the distribution of the ele-
ments present in the cellulose, their average values were 
considered.

Fig. 2  a TGA, b DTG, c Broidio’s graph of NCC
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2.3.8  Atomic force microscopy

Atomic force microscopy was performed to ascertain the sur-
face roughness (Ra) of the cellulose samples with the help of 
XE70 C (Park System, Korea). AFM was equipped with a 
piezoelectric scanner with a tip radius of less than 10 nm. The 
equipment provided micrographs with a resolution of up to 
1 nm. The obtained data were then analyzed to explain surface 
characteristics such as average roughness, roughness skew-
ness (Rsk), roughness kurtosis (Rku), 10-point roughness (Rz), 
maximum peak-to-valley height (Rt), and root mean square 
roughness (Rrms).

3  Results and discussions

3.1  Physical composition analysis

The evaluation of NCC was necessary for recommending its 
usage as a biofiller with polymer matrix composites. Plants 
cellulose is a combination of α- and β-cellulose and the den-
sity of 100% crystalline natural cellulose is between 1.582 
and 1.599 g/cm3 [53]. Using Eq. (1), it was found that the 
average density of the extracted NCC was 1.59 g/cm3, which 
correlated with the above findings. Alkali treatment elimi-
nates lignin, hemicellulose, pectin, waxes, and contaminants 
[54, 55]. The amorphous portions were eliminated, leaving 
crystalline regions to enhance cellulose density [56]. Owing 
to their ordered and dense molecular structure, crystalline 

areas may enhance stiffness, rigidity, and strength of the 
extracted NCC [57]. The bleaching treatment produced a 
cellulose-rich sample with a yield of 68.73 ± 1.13% com-
pared to the alkali treatment’s yield of 88% from the neem 
cake sample. The yield content of various lignocellulosic 
wastes is as follows: kenaf stem (58 wt%), wheat straw (43 
wt%), pineapple leaf (81 wt%), acacia bark (26 wt%), and 
banana rachis (48 wt%) [58–64].

3.2  Chemical composition analysis

Chemical composition and particle size of the extracted cel-
lulose are listed in Table 1. The NCC have a considerable 
amount of cellulose content (up to 96.53%). Chemical com-
position analysis was performed to confirm richness of the 
cellulose content of NCC. Pretreatments, alkali treatment, 
and bleaching treatment yield a higher cellulose content. 
They promote the removal of noncellulosic components 
(i.e., as hemicellulose and lignin) in the NCC sample. The 
noncellulosic components are eliminated based on molecu-
lar weight and intermolecular bonding. In alkali treatment, 
hemicellulose–lignin connection breaks and partial delig-
nification occur. An increase in NaOH concentration can 
break down cellulose molecules and change type I cellulose 
to type II cellulose. To avoid phase shift, mercerization is 
done with less alkali concentration (2%). The basic goal of 
pretreatment is to break the lignin structure in neem cake 
biomass and to make the residual polysaccharides more sus-
ceptible to additional treatments. The hydrophilic properties 
of neem cake and sodium hydroxide enhance the reaction 
rate and yield higher cellulose content. The alkali treatment 
increases interior surface area and decreases polymerization. 
It degrades lignin and carbohydrate bonds by saponifying 
intermolecular ester bonds. The lignin structure is broken 
by the glycosidic ether bond. The lignin degrades, making 
cellulose more fragile. Furthermore, bleaching removes the 
residual hemicelluloses, which cleaves the ester bond. On 
bleaching, lignin content further decreases. Delignification 
during bleaching is a vital step in cellulose extraction. Inside 
the cell wall, lignin acts as cement. By producing perhy-
droxyl anions that react with lignin’s carbonyl groups, per-
oxide bleaching removes lignin. As a result, intermolecular 
bindings are minimized and lignin is eliminated. Less lignin 
and hemicellulose content in NCC enhance the potential for 
large-scale cellulose synthesis.

3.3  Thermogravimetric analysis

The TGA/DTG was used to evaluate the thermal degradation 
behavior of raw NCC. Figure 2a and b shows the resulting 

Fig. 3  XRD spectrum of extracted NCC
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TGA and DTG curves. Because of the hydrophilic character 
of the cellulosic materials, NCC shows a slight weight 
loss at 100 °C due to evaporation of adsorbed moisture. 
In general, the thermal breakdown of lignocellulosic sub-
stance occurs in many steps due to the inclusion of vari-
ous components with distinct degradation temperatures. 
The degradation of lignocellulosic material (hemicellu-
loses) begins at a lower temperature, followed by an early 
stage of lignin molecule destruction and subsequent cel-
lulose decomposition. The extracted NCC components 
exhibit degradation peaks clustered in a single wide peak 
between 114.24 and 366.73 °C. Cellulose content in the 
NCC sample degraded in a single step between 300 and 
366.73 °C, with a DTG maximum peak at 360.4 °C. This 

Fig. 4  FT-IR spectrogram of extracted NCC

Fig. 5  a 2D Chemical structure 
of extracted NCC; b 3D struc-
ture of NCC cellulose

breakdown is caused by cellulose degradation mecha-
nisms such as dehydration, decarboxylation, depolym-
erization, and glycosyl unit disintegration. Moreover, the 
residue at 600 °C is found to 3.3%, which is very less, 
indicating complete elimination of noncellulosic compo-
nents during bleaching [55, 77]. Thermal stability of NCC 
was determined by estimating kinetic activation energy 
(Ea) using Eq. (4). Broidio’s figure (Fig. 2c) was used to 
interpolate kinetic activation energy, and Ea was found to 
be 83.06 kJ/mol, which was within the range for natural 
cellulosic fillers (60–170 kJ/mol). Thus, the extracted 
NCC had a relatively good thermal stability and could 
withstand polymerization process effectively when used 
as filler for polymer composite [47, 78, 79].

3.4  XRD analysis

Figure  3 shows the XRD spectra of the NCC. XRD 
analysis was carried out study the crystalline structure 
and crystallinity of cellulosic materials. The crystalline 
nature and the amount of crystallinity are shown by the 
sharpness and peak intensities [80]. All samples reveal 
the characteristic cellulose I structure, with crystalline 
peaks at 16.7°, 22.4°, and 34.6°, corresponding to (110), 
(200), and (004) reflection planes, respectively [81–83]. 
These peaks resemble the cellulose derivatives from lig-
nocellulosic sources [84]. CI was calculated using the 
Segal Eq. (4). The CI of the NCC sample was 71%. The 
higher CI of the extracted cellulose compared to other 
derivative of celluloses (Table 2) confirms the effective-
ness of hemicellulose depolymerization and delignifica-
tion [85]. This happens because molecules of noncel-
lulosic components (lignin and hemicelluloses) in the 
raw material are eliminated by chemical treatments (acid, 
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Fig. 6  a, b, and c SEM mor-
phology images of NCC at 
different magnifications
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alkali, and bleaching), which proved the effectiveness of 
treatment carried out in the cellulose extraction process. 
Using Eq. (5), we determined the crystallite size to be 
42.03 nm. Higher CS enhances the hydrophobic charac-
ter, which improves bonding capability if used as a filler 
for the polymer composite matrix [86].

3.5  FTIR analysis

FTIR spectroscopy is a common method used widely for 
knowing about the chemical structures of samples. The 
FTIR spectra of the chemically extracted NCC are shown 

in Fig. 4. The sample displayed a large peak between 2900 
and 3500  cm−1 that indicates the free O–H stretching vibra-
tion of cellulose’s OH groups [75]. The sample’s spectra at 
around 2917  cm−1 revealed the C–H stretching. The peak 
at 1370  cm−1 was associated to the C–H and C–O bending. 
Pre-alkalization and alkalization remove hydroxyl groups 
by reducing hydrogen-bonding vibration. This is evident in 
O–H stretching vibration peak at 3325  cm−1[77]. Absorp-
tion peaks at 1615 and 1370  cm−1 are due to cellulose’s 
C–C group [101]. The peak at 817  cm−1, whose functional 
group is C–Cl, indicates a minor impurity in the sample 
owing to bleaching treatment.

Fig. 7  a ImageJ thresholding capture of the micro-cellulose particles, b particle size data, and c particle size distribution
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The peak at 1734.52  cm−1 is attributed to hemicellu-
loses, pectin, and waxes, whose intensity was lower, con-
firming the effective removal of these compounds after 
chemical treatment [40]. As lignin and hemicelluloses are 
present at a lower percentage, the peak at 1045  cm−1 was 
caused by their ether linkage. The peak at 906.86  cm−1 
was attributed to β-glycosidic bonding of cellulose’s glu-
cose ring, perhaps due to acid treatment [73, 87]. Thus, 
the richness of the cellulose content in NCC proved the 
effectiveness of NaOH treatment and bleaching process in 
reducing the hemicellulose and lignin contents from the 
raw NOC. According to neem, there are an infinite num-
ber of possible chemical structures for extracted cellulose. 
Neem's medicinal properties can be found in every part 
of the plant. NCC chemical structure was outlined in 
Fig. 5a-2D and b-3D). The furanose formula explains 
this structure in detail. Each chain is linked by three 
 COOCH3 molecules. For every single chain, there is 

one chain with two  COOCH3 molecules on each end. 
It was only at the cyclic structure's outer edge that the 
furan molecule was linked together. Neem had a distinct 
aroma, but it was not present all the time. In terms of 
chemical structure, it falls into the category of semi-
aromatic. The presence of methyl groups in the ring adds 
complexity to the extracted NCC.

3.6  SEM morphology analysis

The SEM image of the chemically extracted cellulose is 
shown in Fig. 6. The micrographs clearly reveal the surface 
morphology of the cellulose. The samples were fragmented 
to micro-sized range due to the effect of chemical treat-
ments [102].

The cellulose exists as small, fine crystals as a result 
of the penetration of hydronium ions into the amorphous 

Fig. 8  a EDX-SEM image and b EDX spectra and c elemental composition of NCC
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regions of cellulose [103]. The noncellulosic components 
in NCC were dissolved by the bleaching as well as alkali 
and acid hydrolysis treatments. As a result, small pits and 
openings were seen, which increased the roughness of the 
extracted cellulose [73]. This roughness further makes 

a good reinforcing material in fabrication of polymeric 
composites. The intersection method was used to find the 
mean particle size distribution [104]. The analysis of SEM 
image using the ImageJ software revealed that the particle 
size was in the 17.93 µm range, as shown in Fig. 7.

Fig. 9  AFM outcomes of extracted NCC surface (a&b - 3D roughness view in horizontal and vertical probe move, c&d - 2D roughness view 
with observations in horizontal and vertical probe move)
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3.7  EDX analysis

NCC was analyzed for its elemental composition using 
EDX. From the spectra in Fig. 8, the presence of carbon, 
oxygen, and sodium corresponding to their binding ener-
gies can be identified. It is predominantly composed of 46.3 
wt% oxygen, 52.4 wt% carbon, and 1.3 wt% sodium. The 
elemental impurity (Na) was due to the usage of NaOH 
acid in the chemical process. Although NCCs were washed 
several times, sodium was found in negligible amount. 
EDX examination revealed that NCC was very pure and 
without any other elemental impurities. In addition to car-
bon and oxygen, several researchers have found residues of 
potassium, salt, sulfur, and chlorine in the EDX spectra of 
cellulose extracted from other natural plant sources. This 
implies that the chemical treatments are highly effective 
for the removal of hemicellulose and lignin, resulting in the 
production of cellulose with a high degree of purity.

3.8  AFM analysis

AFM was used to ascertain the morphological topogra-
phies of NCC, which could be used for the determination 
of surface roughness. Figure 9 clearly demonstrates the 2D 
and 3D surface images of the NCC sample. The average 
roughness value (Ra) of NCC is 47.004 nm. The nega-
tive skewness value (− 1.015) noted for NCC reveals the 
porous nature of the cellulose.

The surface kurtosis (Rku) value is 2.882, which is an 
indication of coarseness of NCC, which once again reveals 
NCC utilization as a biofiller [24, 30]. The other param-
eters were reported with values as average absolute height 
roughness (Rz = 187.856 nm), root mean square surface 
roughness (Rq = 55.921 nm), and the maximum peak val-
ley height (Rt = 231.10 nm). Better surface topographies 
are a clear indication for possibility of NCC being used as 
reinforcement in polymer composites in future.

4  Conclusion

In this study, a successful method was established for sci-
entific extraction of cellulose from NOC. The chemical 
composition analysis of the extracted cellulose reported 
high cellulose percentage and minimal hemicelluloses, 
lignin, and moisture, which eventually make NCC a suit-
able biofiller for reinforcement recommendations. Evidence 
from FTIR, SEM, XRD, and TGA revealed that cementing 
components such lignin, hemicellulose, and extractives 
had been removed. The XRD results confirmed that the 
newly extracted cellulose (NCC) possessed higher crys-
tallinity. The SEM, EDX, and AFM analyses successfully 

established the surface behavior of NCC, which was use-
ful for developing good interfacial bonding when incorpo-
rated with polymer matrices. The thermal stability of the 
NCC was found promising in comparison to the existing 
cellulose reported so far. The degradation temperature of 
NCC was 337.71 °C, which is a clear hint for its future 
application as a biofiller even with thermoplastics whose 
processing temperature is up to 400 °C. Thus, this novel 
characterization study on industrial discarded NOC seems 
promising scope of sustainable development of a new bio-
filler (NCC) for the production of low-cost eco-friendly 
composites with economically better performance for a 
variety of structural and semi-structural applications.
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