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Abstract
Nowadays, commercial natural fibers cannot meet the increasing industrial demand. In order to meet this demand, recom-
mending a new natural fiber for the composites industry is very important. In this paper, Carex panicea fibers were character-
ized for the first time and introduced as a potential natural fiber. Physical, chemical, thermal, mechanical, and morphological 
properties of the Carex panicea fibers were characterized using scanning electron microscopy, Fourier transform infrared 
spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. Carex panicea 
fibers consist of 65.70% cellulose and 27.8% hemicellulose content. The density and crystallinity index of the fiber were found 
as 1.247 g/cm3 and 56.42%, respectively. Tensile strength and Young’s modulus of fibers were determined as 143 ± 41 MPa 
and 5.5 ± 1.86 GPa, respectively. Carex panicea fibers are thermally stable up to 219.4 °C. Carex panicea fibers are potential 
bio-degradable reinforcement material for light-weight polymeric composites with relatively enhanced mechanical proper-
ties and decomposition temperature.
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1 Introduction

Recently, with the increasing environmental awareness and 
economical concerns, the utilization of renewable and eco-
friendly resources became important [1–4]. Today, petro-
leum-based fibers are used as reinforcement for the manufac-
turing of polymer matrix composites, and these composites 
are utilized in many applications such as aerospace, auto-
mobile, and military [5–9]. While petroleum-based fibers 
possess high mechanical and physical properties, they have 
also negative impacts in terms of environmental and eco-
nomic aspects [10–13]. Nowadays, the advancement of sus-
tainable green technology has increased in the composite 
industry. However, ensuring high demand for natural fiber-
reinforced composites by using commercial plant fibers is 
difficult. Therefore, the industry has sought a new plant fiber 

with desired thermal, physical, and mechanical properties 
[1, 14, 15]. To overcome the drawbacks of petroleum-based 
fibers and to meet the industrial reinforcement demand for 
composites, scientists try to replace man-made fibers with 
eco-friendlier natural fibers [16]. The utilization of natural 
fibers may help to protect the environment by reducing waste 
disposal, usage of hazardous material for the production of 
petroleum-based fibers, and increasing the usage of renew-
able sources [17].

Cellulose-based natural fibers can be extracted from dif-
ferent plants such as jute [18], kenaf [19], and hemp [20]. 
These fibers are considered to be a potential alternative to 
traditional petroleum-based and other synthetic fibers due to 
their attractive properties such as low density, biodegradabil-
ity, renewability, cost-effectiveness, and abundancy around 
the world [3, 17, 21, 22]. Also, natural fibers can provide 
comparable mechanical properties to artificial fibers such 
as relatively high mechanical strength, stiffness, and modu-
lus [10, 11, 23]. Researchers currently have focused on the 
identification and characterization of new natural fibers due 
to the increasing demand in the composite industry. Within 
this framework, new natural fibers such as Leucas aspera 
[24], Conium maculatum [25], Eleusine indica [2], Hiero-
chloe odarata (Dalmis et al. 2020), Ellettaria cardamomum 
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[26], Purple bauhinia [27], Trachelospermum jasminoides 
[28], Cordyline australis [29], Lavender stem [30], Atriplex 
halimus [31], Coccinia grandis L. [32], Lygeum spartum 
L. [33], Cissus vitiginea [34], Grewia damine [35], Grewia 
flavescens [35], Chrysanthemum morifolium [36], Vachellia 
farnesiana [37], and Althea officinalis L [38]. fibers were 
identified and characterized. In order to give desired proper-
ties to fibers, many modification and treatment studies have 
been carried out such as Inula viscosa [39], Symphirema 
involucratum [40], and Agave Americana [41].

Recently, researchers and experts have focused on 
the characterization of new cellulosic fibers because 
they represent alternatives to traditional reinforcements 
[42–51]. Carex panicea, also known as grass like plant, 
comes from Cyperaceae family. While Carex panicea 
is native to Europe, they have spread around Asia and 
America [52, 53]. The availability and abundancy 
of Carex panicea plants around the world make 
them attractive candidate as reinforcement for green 
composites. According to literature, Carex panicea fibers 
have not identified yet and within this framework, Carex 
panicea fibers were extracted and characterized for the 
first time as an alternative reinforcement material for 
composites. Physical, chemical, thermal, morphological, 
and mechanical properties of the Carex panicea fibers 
were characterized by the help of Archimedes density 
method, determination of chemical composition, Fourier 
transform infrared spectroscopy (FTIR), X-ray diffraction 
analysis (XRD), X-ray photoelectron spectroscopy (XPS), 
thermogravimetric analysis (TGA), scanning electron 
microscope (SEM), and tensile tests.

2  Materials and methods

2.1  Fiber extraction

Carex panicea plants were harvested from Uzunalan, Çan-
akkale that is located in the west coast of Turkey. Images of 
Carex panicea plants and fiber extraction steps were given 
in the schematic diagram in Fig. 1. Conventional water fiber 
extraction technique is utilized to obtain fiber from the stem 
of Carex panicea plants. As a preparation for fiber retting, 
plants were cleaned and rinsed with distilled water for sev-
eral times and cut into pieces to facilitate the extraction. 
For 6 weeks, the plants were placed in a plastic barrel filled 
with tap water and covered to enable microbial breakdown in 
order to facilitate fiber extraction from the plant. Fibers were 
then carefully removed from the stem, combed with a metal 
comb. Fiber separation process by metal comb was carried 
out under an aqueous medium. The obtained fibers about 
200-µm diameter were washed until cleared completely and 
rinsed in distilled water. To remove excess moisture, the fib-
ers were oven-dried for 24 h at temperature of 60 °C. Mois-
ture content and moisture regain of the Carex panicea fiber 
were found to be 11.3% and 11.8%, respectively.

3  Characterization of fibers

3.1  Density measurement

The density of Carex panicea fibers was identified by using 
ASTM D8171-18 Method B (Eq. 1). The method is based 

Fig. 1  The schematic diagram of the fiber extraction with the Carex panicea plant image
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on Archimedes law, and approximately 1 g of fiber speci-
men, coiled like a ball, with three replications according to 
standard was used for measurements. Specimens were dried 
at 40 °C for 24 h in a low temperature oven and weighed 
by using a precision balance (Mettler Toledo ME 204 with 
density Kit). After dry weights were taken, specimens were 
immersed in a baker for 24 h, which is containing boiling 
water. Then submerged weights of fibers were measured.

where d is the density of fibers,  Wd and  Ws are dry weight, 
and weight of samples submerged in water, respectively.

3.2  Chemical analysis

The chemical composition of Carex panicea fibers was 
determined by the method explained in details in related 
previous studies [36, 54]. Prior to chemical analysis, Carex 
panicea fibers were oven-dried at temperature of 105 °C for 
4 h and then kept in desiccator to avoid humidity.

3.3  Fourier transform infrared (FTIR) analysis

ATR-FTIR spectra were recorded of fibers recorded using 
the Perkin Elmer Spectrum BX instrument. Measurement 
was conducted in the range of 650–4000  cm−1 wave number 
with a resolution of 2  cm− 1.

3.4  Thermogravimetric analysis (TGA)

To identify the thermal behavior of Carex panicea fiber, 
thermogravimetric analysis was utilized. Shimadzu DTG-
60H instrument was utilized and analysis was recorded from 
room temperature to 800 °C under nitrogen atmosphere at 
a heating rate of 10 °C/min. Approximately 15 mg sample 
was implemented for measurement.

3.5  X‑ray photoelectron spectroscopy (XPS) analysis

X-ray photoelectron spectroscopy (XPS) was conducted to 
determine the surface chemistry of Carex panicea fibers. 
Measurement was performed with Thermo Scientific instru-
ment using Al-Ka X-ray source (1486.7 eV) between 1350 
and 10 eV with a resolution of 1 eV. The surface of sam-
ples was cleaned with Ar gas prior to the analysis that was 
recorded with 20 scans.

3.6  X‑ray diffraction analysis

X-ray diffraction method was performed to identify the 
crystallite index (CI) and crystallite size of Carex panicea 

(1)d =
W

d

W
d
−W

s

fibers. A copper X-ray tube was used as the radiation source 
(λ-Cu-Kα1 = 1.54 Å) and power was kept at 40 kV–30 mA 
during scan. XRD pattern was obtained between 5 and 65° 
range with 2°/min scan rate.

Dried fibers were powdered in order to obtain sufficient 
intensity as a pattern, and CI was determined by using an 
empirical formula suggested by Segal et al. (1959) (Eq. 2). 
Three replications of XRD pattern were obtained and mean 
values of intensities were calculated to produce a more reli-
able pattern.

where  I200 is the maximum intensity of cellulose crystal, 
which is (200) lattice plane, and  Iam is the intensity of 
amorphous peak, which is located between 18 and 19°. The 
intensity of amorphous peak is determined by taking the 
minimum intensity between highest two peaks represented 
in the cellulose pattern [55].

3.7  Tensile test

A universal testing machine (Instron 4411) was used for the 
tensile test of Carex panicea fibers with 1 kgf load cell. The 
loading rate was 1 mm/min with a gauge length of 20 mm. 
Pneumatic grips which were used for clamping the fiber have 
of 0.5 MPa pressure. Tensile tests were conducted following 
ASTM D 3822 standard. Ten fiber specimens were tested to 
check repeatability.

3.8  Morphology analysis

Detailed morphological characterizations were carried out 
by scanning electron microscope (SEM) images taken from 
longitudinal and cross-sectional parts of the Carex panicea 
fiber. Observations were performed using a JEOL-JJM 6060 
model SEM device. The surfaces of the Carex panicea fib-
ers were coated by Au–Pd alloy using sputter coating before 
characterization in order to avoid the electron beam charging 
effect.

4  Results and discussion

4.1  Fiber density

The density of Carex panicea fibers was found as 1.247 g/
cm3. As a candidate reinforcement, the low density of fib-
ers triggers an increase in specific strength and results in 
lighter component production. When compared, the density 
of Carex panicea fibers is a little lighter than many common, 
and industrial natural fibers, such as kenaf (1.4 g/cm3), flax 
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(1.50 g/cm3), hemp (1.48 g/cm3), jute (1.46 g/cm3), and sisal 
(1.45 g/cm3) [56] that can be advantageous. Fiber density 
plays a vital role in the design of lightweight components 
[3].

4.2  Chemical composition

Determination of fiber composition is significant due to its 
possible effects on chemical structure, physical properties, 
and mechanical performance of fiber and further reinforced 
composites. Cellulose contents of Carex panicea and other 
cellulosic natural fibers are listed in Table 1. The cellulose 
may be the most important component of the fiber which 
determines tensile strength and stiffness based on its high 
crystallinity. Carex panicea presents comparable cellulose 
content with recently characterized lignocellulosic fibers. 
Hemicellulose fraction (27.8%) is higher than that of many 
cellulosic fibers such as Acaicia niotica L. (14.14%) [1], 
Cajanus cajan (10.43%) [57], Acacia concinna (12.78%) 
[11], and purple bauhinia (9.17%) [27]. Hemicellulose can 
influence thermal resistance and water absorption of cel-
lulosic fibers. The thermal resistance of fibers can be also 
affected by the lignin component. The fraction of lignin and 
the rest of the other constituents of Carex panicea was deter-
mined to be 6.5% which act as an adhesive to keep elemen-
tary cellulose cells together. However, lignin may deteriorate 
the interphase adhesion between components of polymeric 
composites [58].

4.3  FTIR analysis

To identify the main components of Carex panicea fibers 
(cellulose, hemicellulose, and lignin) and functional 
groups in fiber, FTIR spectroscopy was conducted. 
FTIR spectrum of Carex panicea fiber was recorded in 
the range of 4000–650   cm−1 and given in Fig. 2. The 
band located at 895  cm−1 is associated with the O-C-O 
stretching vibrations of cellulose [64–66]. The broad 

band at 1030   cm−1 indicates C-O and C-H stretching 
vibrations of fiber. The peak at 1160  cm−1 is related to 
the C–O antisymmetric bridge stretching of cellulose 
[36, 67]. The band at 1244  cm−1 can be assigned to C-O 
vibrations of acetyl groups in hemicellulose [68, 69]. 
The peaks at 1316 and 1371  cm−1 correspond to C-O 
and O–H bending vibrations of cellulose [67, 70, 71]. 
The bands located at 1422 and 1451  cm−1 correspond to 
 CH2 bending vibrations and C-H deformation in groups 
of methyl, methoxyl, and methyl in lignin, respectively 
[54, 72, 73]. The band observed at 1506   cm−1 is 
associated with the C = C ring stretching of aromatic 
lignin in f iber [25, 74]. The absorption band at 
1633  cm−1 corresponds to absorbed water in fiber [75, 
76]. The band at 1730  cm−1 is related to the carbonyl 
groups of lignin [31, 77, 78]. The broad band at 3338 
is related to the –OH, and 2920  cm−1 and 2853  cm−1 
are related to the C-H stretching vibrations in cellulose 
and hemicellulose, respectively [79, 80]. FTIR results 

Table 1  Cellulose content of 
Carex panicea and other some 
novel fibers

Fiber Cellulose (wt%) Hemicellu-
lose (wt%)

Density (wt%) References

Carex panicea 65.70 27.8 1.25 In current study
Grewia damine 57.78 14.96 1.38 [35]
Albizia amara 64.54 14.32 1.04 [59]
Cardiospermum halicababum 59.82 16.75 1.14 [10]
Heteropogon contortus 64.87 19.34 0.60 [60]
Conium maculatum 49.50 32.2 - [25]
Aristida adscensionis 70.78 10.5 0.79 [61]
Cereus hildmannianus 58.40 17.14 1.364 [62]
Piliostigma racemosa 60.30 0.27 1.371 [63]
Cortaderia selloana grass 53.70 14.43 1.261 [2]

Fig. 2  FTIR spectra of Carex panicea fiber
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of Carex panicea agree with the most common natural 
fibers such as hemp [20], jute [81], and kenaf [19].

4.4  Thermogravimetric analysis

Thermogravimetry is a helpful characterization technique 
for understanding of the thermal behavior of cellulosic 
fibers. Because the production of polymer-based compos-
ites includes relatively high processing temperatures, the 
determination of the onset temperature of fibers is signifi-
cant to benefit from fiber properties at a maximum rate 
[36, 82–85]. TG/DTG curves of Carex panicea fiber are 
shown in Fig. 3. As presented in Fig. 3, the first mass 
loss was observed between 25 and 100 °C with 5.36% 
due to the dehydration of water in fibers [86, 87]. The 
second mass loss occurred between 220 and 310 °C with 
13.84% can be related to the degradation of hemicellulose 
in fibers [88]. The third and the major weight losses were 
recorded between 300 and 370 °C which indicates decom-
position of cellulose in fiber with 36.53% [89, 90]. The 
temperatures of 219.4 °C and 351.59 °C were determined 
as onset decomposition temperature  (Tonset) and maximum 
degradation temperature  (Tmax), respectively. Comparison 
of  Tonset and  Tmax temperature of most utilized and some 
recent natural fibers were listed in Table 2. Compared to 
most utilized natural fibers such as kenaf (219 °C) and jute 
(205.1 °C), wood pine (234 °C), bagasse (222.3 °C), and 
cotton stalk (221.6 °C), Carex panicea is a proper rein-
forcement for polymeric composites due to high decom-
position onset temperature [91]. The analysis was recorded 
up to 800 °C and after major decomposition, 28.905% 
mass loss was observed related to the residual content of 
fibers [92]. This weight loss may correspond to oxidative 
degradation of residues and lignin in the fiber [93].

4.5  XRD analysis

XRD pattern of Carex panicea fibers shows two main peaks 
(see Fig. 4.), first a broad peak at 15.96°, and a second peak 
at 22.21°. The first peak is formed by overlapping of two cel-
lulose peaks that belongs to (110) and ( 110 ) lattice planes, 
and the second peak is formed by cellulose (200) lattice 
(French 2014; Kılınç et al. 2018).

The crystallinity index (CI) and crystallite size (L) of 
Carex panicea fibers were found as 56.42% and 7.6 nm, 
respectively. CI of Carex panicea fibers generally lower than 
many plant fibers (Table 3). The low crystallinity of fibers 
can be also a sign of a low-strength material. The decrease 
in the strength of fiber can be explained with the absence of 
crystalline microfibrils cellulosic and chains which cannot 
align regularly to form an ordered structure [99]. On the 
other hand, the crystallite size of Carex panicea fibers shows 
similarities with other natural fibers [36], which is a measure 
of coherency at the related XRD plane (200).

Fig. 3  TGA/DTG curves of the Carex panicea fiber

Table 2  Comparison of thermal properties of Carex panicea fiber 
with other natural fibers

Plant name Tonset (°C) Tmax (°C) Reference

Carex panicea 219.4 351.59 Current study
Kenaf 219 364 [94]
Jute 205 365 [94]
Wood pine 234 328 [91]
Cotton stalk 221.6 345.2 [95]
Citrullus lanatus - 325 [96]
Leucas aspera - 325 [97]
Shwetark stem 225 350 [98]

Fig. 4  X-ray diffraction pattern of Carex panicea fiber
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4.6  XPS analysis

Atomic concentrations for carbon and oxygen on the surface 
of Carex panicea were obtained to be 81.86 and 14.10%, 
respectively. The oxygen/carbon ratio of Carex panicea was 
determined as 0.17 which is in comparison with some lig-
nocellulosic fibers (Table 4). It is clear that Carex panicea 
has a relatively hydrophobic surface character presenting 
dramatically lower O/C as compared with most of com-
monly used and recently characterized cellulosic fibers as 
tabulated in Table 4. This finding may indicate its potential 
as a reinforcement material in highly non-polar polymers 
considering possible surface compatibility. To determine 
the functional groups of Carex panicea, deconvolution of 
C1s and O1s peaks was conducted. C1s and O1s spectra 
of Carex panicea are depicted in Fig. 5a and b. The peaks 
located at 286.5 eV and 532.7 eV can be associated with 
C–O–C bonds [104]. The ratio of C–C/C-H (284.7 eV) 
and C–O–C (286.5 eV) groups was calculated as 69.44 and 
30.56%, respectively. The major peak at 284.7 in C1s spectra 
representing C–C/C-H and also C–O–C bonds can affirm the 
presence of cellulose in fiber [104, 105].

4.7  Tensile properties

Stress–strain behavior of Carex panicea fibers is presented 
in Fig. 6. Tensile strength, Young’s modulus, and elongation 
at break data are listed and compared with the other natural 
fibers in Table 5. The standard deviation is quite large which 
is common for natural cellulosic fibers. As seen in the graph, 

Table 3  The crystallinity indexes of some common natural fibers 
with Carex panicea fibers

Plant name Crystallinity index Reference

Carex panicea 56.42 Present study
Coir 49.60 [100]
Kenaf 62.90 [101]
Sisal 66.95 [100]
Jute 67.69 [100]
Bamboo 78.92 [102]
Hemp 64.87 [103]
Flax 79.13 [100]
Cotton 58.00 [25]

Table 4  O/C ratio of Carex panicea and some natural cellulosic fibers

Fiber O/C Reference

Carex panicea 0.17 Present study
Conium maculatum 0.22 [25]
Althea officinalis L 0.26 [82]
Ferrula communis 0.27 [106]
Flax 0.28 [100]
Coir 0.29 [107]
Kenaf 0.37 [108]
Chrysanthemum morifolium 0.41 [36]
Hierochloe odarata 0.48 [73]
Centaurea solstitialis 0.54 [54]
Luffa cylindrica 0.61 [109]

Fig. 5  The high-resolution XPS spectra of a C1s and b O1s peaks 
belong to the Carex panicea fiber

Fig. 6  Stress–strain curve of Carex panicea fiber
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fibers exhibit linear characteristic like other cellulosic natu-
ral fibers. On the other hand, a sudden load drop indicates 
the brittle nature of the fibers. It is clear that Carex panicea 
fiber has higher tensile strength than the Juncus effuses L. 
[110], Piassava [111], Chrysanthemum morifolium [36], 
and Phoenix dactylifera L. [112]. Young’s modulus of fiber 
(5.5 ± 1.86 GPa) is comparable with other natural fibers such 
as Juncus effuses L. [110], Phoenix dactylifera L. [112], and 

Piassava [111]. Due to its linear orientation and high degree 
of polymerization, cellulose can govern the tensile proper-
ties of the fibers (Kathirselvam et al., 2019).

4.8  Morphological characterizations

General and detailed scanning electron microscope images 
of the Carex panicea fiber are presented in Fig. 7 in order 

Table 5  Mechanical properties of Carex panicea fiber and some natural cellulosic fibers

Fiber name Tensile strength (MPa) Young’s modulus (GPa) Elongation at break (%) References

Carex panicea 143 ± 41 5.5 ± 1.86 2.738 ± 0.71 Current study
Juncus effuses L 113 ± 36 4.38 ± 1.37 2.75 ± 0.6 [110]
Phoenix dactylifera L 117 ± 35 4.3 ± 1.4 3.13 ± 0.70 [112]
Chrysanthemum morifolium 65.12 ± 25.04 1.55 ± 0.76 4.51 ± 0.95 [36]
Luffa cylindrica 385 ± 10.52 12.2 ± 1.02 2.65 ± 0.05 [109]
Jute 249 ± 89 43.9 ± 12.3 00.6 ± 0.2 [111]
Piassava 131 ± 36 3.8 ± 00.9 11.4 ± 3.6 [111]
Grewia damine 375.6 ± 16.58 126.2 ± 11.93 2.99 ± 0.273 [35]
Albizia amara 640 ± 13.4 - 1.57 ± 0.04 [59]
Heteropogon contortus 476 ± 11.6 48 ± 2.8 1.63 ± 0.06 [60]
Cereus hildmannianus 2897.47 ± 23 2.98 ± 0.2 1.24 ± 0.8 [62]
Piliostigma racemosa 32 2 1.2–3.2 [63]
Coccinia indica 75 - 4.25 [43]
Manau rattan 273 ± 52.88 7.80 ± 1.70 9.40 ± 3.67 [12]

Fig. 7  SEM images of the 
Carex panicea fiber taken from 
a and b longitudinal and c and 
d cross-sectional surfaces, 
respectively
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to interpret fiber morphology. Both longitudinal and cross-
sectional SEM images are presented due to the fact that they 
provide different information. The fiber sample has about 
200-µm diameter according to Fig. 7a. In addition, some 
impurity residues take attention on Carex panicea fiber sur-
face (see Fig. 7a and b). It can be seen that these impurities 
on the surface cause the formation of an indented surface 
morphology (Fig. 7b). Thus, Carex panicea fiber endorses 
a high surface area for locking polymer matrix as an additive 
for composites.

As can be observed from cross-sectional images in Fig. 7c 
and d, Carex panicea fiber consists of many elementary fib-
ers as other natural fibers [25]. The empty nutrition/water 
channels at the center of elementary fibers are called as 
lumen [113]. Lumen diameters of the elementary fibers 
of Carex panicea appear to be very variable according to 
the Fig. 7c and d. It can be concluded from SEM images 
that Carex panicea fibers have about 1–2 µm lumen wall 
thickness, low lumens about 5 µm lumen diameter while 
large lumens have a diameter of 50 µm. Combination of 
the large and small diameters of lumen causes low density, 
high insulation, and absorbance properties. Among these 
properties, Carex panicea fiber is striking for its very thin 
wall thickness. For example, Carex panicea fiber has lower 
wall thickness than curaua, jute, sisal, and Chrysanthemum 
morifolium fibers [36, 111].

5  Conclusion

In this study, Carex panicea fibers were characterized as new 
potential natural fiber reinforcement for polymeric compos-
ites. The obtained physicochemical characterization results 
of Carex panicea stem fibers have low density, compara-
ble cellulose content and crystallinity index, better surface 
hydrophobicity, better thermal stability, relatively high ten-
sile properties, and similar surface morphology. According 
to the results:

• The density of fibers are calculated as 1.247 g/cm3 which 
is lower than the most utilized synthetic fibers and this 
indicate lighter composite production.

• Thermal analysis shows that fibers thermally stable up to 
219.4 °C without any degradation. Considering relatively 
high manufacturing temperature of polymer composites, 
thermal analysis indicates suitability of Carex panicea 
fibers for polymer composite production.

• XPS results show that with very low O/C ratio (0.17), 
Carex panicea fibers have hydrophobic surface charac-
teristics. Tensile strength and Young’s modulus of fibers 
were determined as 143 ± 41 MPa and 5.5 ± 1.86 GPa, 
respectively.

• SEM images show that Carex panicea fibers consist of 
many elementary fibers bonded together. According to 
these results, Carex panicea fibers can be a potential 
natural fiber as an alternative to synthetic fibers, which 
can be utilized in polymer composites.
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