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Abstract
The composites are prepared by reinforcing with 7-mm-short treated coconut tree primary flower leaf stalk fiber (CPFLSF) and 
palmyra palm leaf stalk fiber (PPLSF) in the polyester matrix. Compression molding was used to fabricate the hybrid composite 
plates. The 7C10P20C (treated 7-mm coconut tree primary flower leaf stalk fiber/palmyra palm leaf stalk–reinforced polymer hybrid 
composite) showed the maximum tensile strength (47.14MPa), flexural strength (73.56MPa), and impact strength (10.56kJ/m2), 
respectively. Reinforcement of alkali-treated palmyra palm fibers enhanced the loss modulus, storage modulus, and damping factor 
(tanδ) for the 7C10P20C. The final thermal decomposition stage of the 7C10P20 hybrid composite takes place at 550°C with a 
maximum residual mass of 26%. The morphological study confirms the less pullout, fracture surface, and better bonding between 
the matrix and reinforcement of the 7C10P20C. A minimum amount of water was absorbed by the 7C10P20C during the water 
absorption test, due to the maximum hydrophobic nature. In the dynamic mechanical analysis (DMA), maximum storage modulus 
(E′) and loss modulus (E″) were observed in the values of 1392MPa and 259.2 MPa obtained for the 7C10P20 hybrid composite. 
The measured property results are compared with each other and with various natural fiber polymer composites and reported in this 
work. The results demonstrate that the produced composites are stable, with high tensile strength and bending rigidity, allowing 
material engineers to use the material in light-load applications.

Keywords  Coconut tree primary flower leaf stalk fiber (CPFLSF) · Palmyra palm leaf stalk (PPLSF) morphological study · 
Tensile strength · Flexural strength · Impact strength · Water absorption test

1  Introduction

In recent years, maintaining the global green balance has 
played an important role and environmental awareness is 
increasing day by day. Today, researchers are looking for 
alternatives to natural fiber–filled polymer materials that are 
lower in environmental impact, cheaper, and reliable; have 

feasible excellent mechanical properties, minimal density, 
and high stiffness; and are harmless [1, 2]. Due to the excel-
lent properties and cost ratio of unsaturated polyester, resins 
were used in many applications, such as sheet molding, bulk 
molding, and laser printer toners, which have good impact 
resistance, good wear resistance, good fatigue resistance, and 
higher stiffness temperature [3]. Many authors have docu-
mented the use of natural fibers such as banana, elephant 
grass, sisal, jute, vakka, bamboo, Roystonea regia, and 
coconut as reinforcement in composite materials [4]. Other 
than the commonly used natural fibers for reinforcement in 
polymer composites (kenaf, hemp, flax, ramie, bamboo, coir, 
bagasse, sugarcane) are finding applications in a variety of 
fields such as automotive, marine, sports, and structural [5–7]. 
In addition to that, the chemical treatment of natural fibers 
also improves the performance of composites. Among the 
chemical treatments, the alkali treatment is the most widely 
used natural fiber (such as alpha, bamboo, sisal, betel nut). 
Surface modification method and its reported that 6% NaOH 
treatment can improve the mechanical properties of sisal and 
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jute compounds [8]. Although there is a lot of literature on 
hybrid composites in the studies of banana/sisal, oil palm/jute 
fruit clusters, glass/sisal, and jute/coir fiber–reinforced hybrid 
composites, it has been proven that hybrids can provide good 
mechanical behavior [9]. There are several other case studies 
on the mechanical properties of coir fiber/glass, jute/basalt, 
jute/basalt/aluminum, and kevlar/jute [10, 11]. Based on 
these, it has been found that hybridization reduces the use of 
conventional synthetic fibers in a number of industrial appli-
cations to achieve desired properties [12]. The tensile strength 
of the hybrid composite (79.6 MPa) significantly increased 
with 15 wt% Jatropha Shell Powder loading of size 150–250 
m as compared to epoxy glass fiber composite [13]. Accord-
ing to studies of various natural fiber composites. Rambans 
(Agave) fiber composite had maximum tensile strength found 
to be 95.27 MPa with 4.7 J/m2 impact strength (35.7 MPa) 
[14]. Subsequently, with the addition of Vigna mungo powder, 
flexural and hardness properties were greatly improved [15]. 
Hemp/nettle-polyester hybrid composites with a higher weight 
percentage (9 wt%) showed the highest tensile (42.41 MPa), 
flexural (78.52 MPa), impact (22.72 kJ/m2), and harder value 
(46.7 HV) among these materials [16].

Based on the above discussion, the objective of the 
present work is to study the effect of alkali-treated 
7-mm-short coconut tree primary flower leaf stalk fiber 
(CPFLSF) and palmyra palm leaf stalk fiber (PPLSF) on 
the performance (static and dynamic mechanical, water, 
and thermal properties) of this polymer hybrid.

2 � Materials and methods

2.1 � Extraction of PPLSF and CPFLSF

The PPLSF were extracted from the leaf stalks of the pal-
myra palm tree (Borassus flabellifer) and CPFLSF were cut 

from the primary leaf stalk of the coconut tree (Cocos nucif-
era L.). Both leaf stalks’ skin and edges of the thorns were 
manually shaved and retted in water for 40 days. Further 
to retting, the fibers were removed from the stalk by using 
a wooden hammer. The fibers were then cleaned, washed, 
and dried in sunlight for 1 day to remove moisture and other 
impurities from the surface [14]. The extracted fiber after 
the above processes is shown in Fig. 1.

2.2 � Alkali treatment of fibers

Both CPFLSF and PPLSF were cleaned with water to 
remove impurities. The fibers were immersed in 6% of 
NaOH for 30 min [17]. Subsequently, the fibers were washed 
with distilled water several times and then immersed in 
very diluted HCL followed by cleaning with tap water and 
distilled water several times to remove the excess NaOH 
sticking to the fiber surface and they were finally dried at 
room temperature for 2 days [15]. The physical properties 
of PPLSF and CPFLSF are included in Table 1.

2.3 � Fabrication of hybrid composite

The chemicals such as unsaturated polyester resin, methyl 
ethyl ketone peroxide (catalyst), and cobalt octoate (accel-
erator) are used for the fabrication of composite. Before the 

Fig. 1   Extraction of PPLSF and CPFLSF. a) Fiber parts’ name. b) Leaf stalks. c) Retted fibers. d) Extracted fibers

Table 1   Physical properties of PPLSF and CPFLSF

S. No. Physical properties PPLSF CPFLSF

1 Density (g/cm3) 1.4 1.11
2 Diameter (μm) 150 79.08
3 Microfibril angle (degree) 7.19 8.15
4 Tensile strength (MPa) 276 265
5 Young’s modulus (GPa) 3.24 2.75
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preparation of the composite, the fibers were pressed by 
placing the fibers inside the die to form on a woven mat. The 
non-woven mat thus fabricated was placed inside the mold 
cavity and the prepared matrix was poured inside the mold 
and the die was closed and kept by applying a force of 1 ton 
by hydraulic compression to produce a hybrid composite 
[16]. The ratio of fiber and matrix was kept at 30:70 while 
fabricating all the composite plates. The prepared composite 
plates are shown in Fig. 2. Finally, the specimens were cut to 
the required size. The detail of the designation of CPFLSF/
PPLSF hybrid polyester composites is given in Table 2.

2.4 � Static mechanical test

Instron tensile tester was used for determining the tensile 
properties of the composites. ASTM: D638 (165 19 × 3 
mm3) standard was used for testing the composites for 
tensile properties with the crosshead speed of 5 mm/min. 
The flexural test for those specimens was conducted as per 
the ASTM D790-03 (127 × 12.7 × 3 mm3), using Kalpak 
Universal Testing Machine with a capacity of 20kN and 
with a crosshead speed of 2mm per minute. The compos-
ite was cut into the specimens as per ASTM: D256 (164 
× 13 × 3 mm3) for impact test [18]. For all tests, three 
specimens were tested and average values were reported.

2.5 � Density and void fraction

The Archimedes principle was used to calculate the hybrid 
composite’s actual density. This concept states that when 
a material is submerged in a liquid, the weight of the liq-
uid it displaces is equal to the apparent reduction in the 
material weight. Distilled water was chosen as the testing 
medium. The ASTM standard D792 specifies this proce-
dure. Using the following equation, the hybrid composite’s 
true density was determined.

where

ρa	� actual density of hybrid composite
ρw	� density of distilled water
Wa	� weight of the sample in air
Ww	� weight of the sample in water

The following equation, which was provided by Agar-
wal and Broutman, may be used to calculate the theoretical 
density (t) of the composite material.

where
Wf	� weight fraction for fiber
Wm    �weight fraction for matrix
ρf	� density of fiber
ρm	� density of matrix

The following equation can be used to determine the vol-
ume percentage of voids.

(1)�a =
�wWa

Wa −Ww

(2)�t =
1

(

Wf

�f

)

+ (
Wm

�m
)

(3)Vv =
(�t − �a)

�t
Fig. 2   Hybrid composite materials of a) 7C20P10C and b) 7C10P20C

Table 2   Composition and designation of the hybrid polyester composite

Name of the fiber Composite designation Composition of 
PPLSF

Composition of 
CPFLSF

Composition 
of resin

Alkali-treated 7mm with 20 wt% coconut tree primary 
flower leaf stalk fiber (CPFLSF)/10 wt% palmyra 
palm leaf stalk fiber (PPLSF)–reinforced polyester 
hybrid composite

7C20P10C 10% 20% 70%

Alkali-treated 7mm with 10 wt% coconut tree primary 
flower leaf stalk fiber (CPFLSF)/20 wt% palmyra 
palm leaf stalk fiber (PPLSF)–reinforced polyester 
hybrid composite

7C10P20C 20% 10% 70%
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where

ρt	� theoretical density of the hybrid composite
ρa	� actual density of the hybrid composite

2.6 � Water absorption of composites

The specimens for the water absorption test were cut and 
the water absorption test was performed in accordance with 
ASTM D570 standards. At regular intervals of time, the 
immersed specimens were taken out and the weight was 
noted [19]. The percentage of water absorption in the com-
posites was calculated by

where

WC	� water absorption of the composites
Wo	� initial dry weight of the composites
Wt	� wet weight of the sample after a specific interval of 

time in the water

2.7 � Dynamic mechanical analysis (DMA)

DMA was performed using SII (Inkarp) DMS 6100 make. 
A frequency of 1Hz and dual cantilever bending mode were 
used for the experiment. The specimen sizes of 50 mm × 50 
mm × 3 mm were cut from the fabricated composite plates 
and the test was conducted at room temperature. A heating 
rate of 2°C/min is used during the test [20].

2.8 � Thermogravimetric analysis (TGA) 
of composites

The thermal stability of the composites was determined 
using ASTM E 1131 standard. The weight of the specimen 
was analyzed by TGA/DTG using a PerkinElmer machine at 
a temperature range of 50–750°C at a heating rate of 10°C/
min and 20 ml/min nitrogen atmosphere [14].

2.9 � Scanning electron microscope (SEM) 
of composites

SEM was performed using SEM JEOL JSM 6390 at an 
accelerating voltage of 10KV. The surface morphology of 
the fractured surface of composite materials after tensile 
testing was examined using the machine [11].

(4)%WC =
WO −Wt

WO

× 100

3 � Result and discussion

3.1 � Tensile properties

Figures 3 and 4 illustrate the tensile strength and tensile 
modulus of the CPFLSF/PPLSF-reinforced polyester hybrid 
composites. The tensile strength of the composites increased 
with the increase of PPLSF weight percentage in the hybrid 
composite. As estimated, non-hybrid PPLSF–reinforced 
composites showed maximum tensile strength compared 
to the non-hybrid CPFLSF–reinforced composites. The 
non-hybrid PPLSF–reinforced composites showed a tensile 
strength of 45.13 MPa, which is 23.97% greater than the 
non-hybrid CPFLSF–reinforced composites. However, the 
7C20P10C which had the maximum amount of CPFLSF 
exhibited a tensile strength of 40.24 MPa. It is decreased 
by 10.86%, compared to the non-hybrid PPLSF–reinforced 
composites. The 7C10P20C tensile strength is 47.14 MPa, 
which marginally increased by 4.26% compared to the non-
hybrid PPLSF–reinforced composites.

Meanwhile, tensile modulus increased due to increased 
PPLSF content in reinforced hybrid composite. The maxi-
mum tensile modulus in the non-hybrid PPLSF–rein-
forced composites is 2.13GPa, whereas the non-hybrid 
CPFLSF–reinforced composite showed the lowest ten-
sile modulus. The 7C10P20C showed a tensile modulus 
of 2.67GPa, which is higher by 26.21% and 20.21% of 
7C20P10C and the non-hybrid PPLSF–reinforced compos-
ite, respectively.

Due to the higher mechanical properties of PPLSF over 
CPFLSF, the combination of PPLSF in the composites is 
helpful to improve the tensile properties of the hybrid com-
posites. This can be attributed to the optimum L/D ratio 
and stiffness of PPLSF, which leads to improvement in the 
tensile strength of the hybrid reinforced composite. When 
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Fig. 3   Tensile strength of CPFLSF/PPLSF hybrid–reinforced composites
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the amount of PPLSF is increased, better bonding between 
the matrix and reinforcement occurs to transfer the load to 
the PPLSF [14]. In the hybrid reinforced composite, it is 
observed a considerable reduction in the breaking elonga-
tion. The reason was the microcracks are induced at fiber 
ends due to the high-stress concentration and because of the 
better interfacial strength between the matrix and PPLSF. 
Consequently, increasing PPLSF initiated the reduction in 
breaking elongation values in the hybrid composite.

3.2 � Flexural properties

Figures 5 and 6 show the hybridization of CPFLSF with 
PPLSF leading to the enhancement in the flexural properties 
of the composites. As the PPLSF weight ratio is increased, 
the flexural strength also increased considerably. Based on 
the law of mixture phenomena, increasing the quantity of 
fiber with high mechanical properties, the bending strength 
increases linearly. Compared to non-hybrid PPLSF, the flex-
ural strength of the 7C10P20C increased by 3% (73.56MPa). 
On other hand, associated with non-hybrid PPLSF, the 
flexural strength of 7C320P10 hybrid–reinforced compos-
ite decreased by 6.68%. While the flexural strength of the 
7C20P10C hybrid composite was 66.58 MPa, the 7C10P20C 
strength was 73.56 MPa and 7C10P20C increased by 9.48% 
compared with that of 7C10P20C.

In terms of the flexural modulus, a similar tendency to the 
flexural strength was observed. The non-hybrid PPLSF and 
CPFLSF composites showed the maximum and lowest flex-
ural modulus compared to the hybrid reinforced composites. 
In comparison with the non-hybrid PPLSF–based compos-
ites, the 7C10P20 hybrid composites had shown a significant 
improvement in the flexural modulus. The flexural modulus 
of 7C10P20C is 4.98 GPa, and for the hybrid composites, 
it increased by 3% compared to non-hybrid PPLSF–based 
composites. Increasing the CPFLSF content in the hybrid 

composites resulted in the flexural modulus of 4.07 GPa 
and it led to the decrease in the flexural modulus of 15.3% 
compared to non-hybrid PPLSF–based composites. Further-
more, the 7C10P20C had revealed the highest improvement 
up to 18% in the flexural modulus when compared to the 
7C20P10C.

As stated before, the extreme weight ratio of PPLSF led 
to an increase in mechanical properties. Instead, the inten-
tion why PPLSF increases bending resistance more effi-
ciently than CPFLSF is that PPLSF has good mechanical 
properties than CPFLSF. Apart from all contexts, the fiber-
matrix interfacial adhesion, types of fiber, and weight ratio 
are accountable for increasing the flexural properties of the 
hybrid composite [10].

3.3 � Impact properties

The Charpy impact test was done to attain the impact 
strength of CPFLSF/PPLSF hybrid–reinforced composites 
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Fig. 4   Tensile modulus of CPFLSF/PPLSF hybrid–reinforced composites
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Fig. 5   Flexural strength of CPFLSF/PPLSF hybrid–reinforced composites
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with several fiber ratios and Fig. 7 illustrates the impact 
strength of the hybrid reinforced composites. The 7C10P20C 
had shown the maximum impact strength of 10.21 kJ/m2 
which is increased by 3.314% compared to the non-hybrid 
PPLSF–reinforced composites (10.21kJ/m2). On the other 
hand, the non-hybrid CPFLSF–reinforced composite had 
illustrated the impact strength was 8.25 kJ/m2. The impact 
strength of 7C10P20C increased by 21.25%. However, the 
7C10P20C has shown the highest impact strength of 10.56 
kJ/m2, when compared to the 7C20P10C, the impact strength 
higher by 7.88%.

In the hybrid reinforced composite, the energy absorp-
tion and impact strength were considerably improved for 
an increase in the PPLSF weight ratio due to the maximum 
cellulose content, which provides the higher strength to 
the PPLSF. Based on the results obtained from the hybrid 
composite, the impact properties are highly dependent upon 
the fiber-matrix interfacial bonding characteristics. Table 3 

shows the comparison between the mechanical properties 
of the hybrid CPFLSF/PPLSF–reinforced composites with 
other short natural fiber hybrid composites [2].

Although the mechanical properties of the fibers listed in 
Table 3, the 7ATC10P20C sample exceeds the other natu-
ral fiber composites. The low-cost, lightweight, bio-based 
polyester composites have gained more attention due to their 
renewability and biodegradability. Moreover, 7ATC10P20C 
has shown that the mechanical properties of the natural fiber 
composites are similar or even better than the CPFLSF, jute, 
straw, sisal, banana, coir, hemp, and kenaf fiber–reinforced 
composites. Natural fibers have other advantages such as 
availability, low cost, good thermal and acoustic insulation 
properties, energy recovery, reduced tool wear in processing 
operations, degradability, and irritation of the respiratory 
tract.

However, another important observation is that natu-
ral fiber–reinforced composites (CPFLSF and PPLSF) are 
reported to be more expensive than other synthetic fibers 
and have the same mechanical properties. Therefore, select-
ing the most suitable natural fiber for a specific application 
requires a thorough analysis followed by a decision-making 
process. Despite all these problems, there are still several 
markets and industries that have interesting applications for 
natural fibers.

3.4 � Density and void fraction analysis

Table 4 illustrates the theoretical and actual density and void 
fraction of hybrid composites for different weight percent-
ages. The predicted density was higher than the measured 
density, as can be shown in Table 3. This can be due to the 
pores and spaces that were created during the manufacture 
of the composite.
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Fig. 7   Impact strength of CPFLSF/PPLSF hybrid–reinforced composites

Table 3   Mechanical properties of 7ATPPLSFC and 7ATCPFLSFC with different natural fiber composites

Composite Tensile strength
(MPa)

Tensile modulus (GPa) Flexural strength
(MPa)

Flexural modulus 
(GPa)

Impact strength (kJ/m2)

7ATC10P20C 
(present work)

47.14±1.743 2.67±0.121 73.56±2.05 4.98±0.219 10.56±0.565

PPLSF 36.13 2.13 71.35 4.81 10.21
CPFLSF 34.31 1.81 58.43 3.23 8.25
Jute 34.78 1.88 66.25 3.69 8.67
Straw 32.67 1.62 47.10 2.17 2.65
Sisal 28.55 1.49 53.42 4.25 9.61
Banana 17.69 1.03 33.51 1.59 9.36
Coir 18.61 1.16 31.15 1.50 3.91
Hemp 34.63 2.56 60.51 3.47 7.36
Kenaf 32.14 2.48 57.35 2.99 3.24
Ramie 32.66 1.58 55.64 3.89 9.32



Biomass Conversion and Biorefinery	

1 3

3.5 � Water absorption properties

The water uptake of the hybrid CPFLSF/PPLSF–reinforced 
composites with two comparative fiber weight ratios was 
determined. Even though, the wetting property of materi-
als is purely based on the chemical treatment of the fiber 
and moisture sensitivity of the material. Tables 5 and 6 
show that 7C10P20C hybrid composites significantly have 
reduced moisture uptake, compared to the 7C20P10C. Fig-
ures 8 and 9 show the moisture uptake percentage of the 
hybrid reinforced composites with immersion time. Based 
on the plotted curve, the water absorption uptake percent-
age is increased with the increase of soaking time in the 
case of the hybrid reinforced composite. Compared to the 
water absorption uptake properties of the non-hybrid PPLSF 
composite, the 7C10P20C increased linearly but significant 
change only was observed [21]. 7C20P10C composites the 
water absorption uptake properties increased linearly and 
a fast diffusion rate of water into the composites occurred, 
which was observed in an increase in water absorption per-
centage. However, the water diffusion into the composites 
saturated once the saturation point was reached. It is con-
cluded that the water absorption properties of CPFLSF/
PPLSF-reinforced hybrid are comparatively less [18].

3.6 � Dynamic mechanical analysis (DMA)

3.6.1 � Storage modulus (E′)

Figure 10 shows the storage modulus of the two types of 
hybrid reinforced composite made of CPFLSF/PPLSF such 
as 7C20P10Cand 7C10P20C. The results illustrate that, ini-
tially, the storage modulus (E′) values are maximum for both 

the hybrid reinforced composites. Furthermore, increasing 
the temperature gradually, the storage modulus (E′) value is 
observed to be reducing. When compared with non-hybrid 
reinforced composite, the storage modulus (E′) exhibits 
almost the same behavior as the non-hybrid reinforced 
composites with increasing temperature. Moreover, a signifi-
cantly maximum storage value (E′) of 1392MPa is obtained 
for the 7C10P20 hybrid composite, due to the better effect of 
fiber on the cross-linking to transferring stress [22]. PPLSF 
had a rough structure along the surface of the fiber due to 
the chemical treatment and hydrophobic ability which rises 

Table 4   Theoretical and actual density and void fraction of hybrid 
composites

Composite Theoretical den-
sity (gm/cc)

Measured den-
sity (gm/cc)

Volume frac-
tion of voids 
(%)

7C20P10C 1.093 1.081 1.097
7C10P20C 1.099 1.075 2.183

Table 5   Weight of the hybrid composite for every 30 min

Time period (minutes) 7C20P10C 7C10P20C

30 2.418 2.442
60 2.438 2.444
90 2.447 2.452
120 2.46 2.471
150 2.467 2.479
180 2.49 2.484

Table 6   Weight percentage of the hybrid composite for every 30 min

Time period (minutes) 7C20P10C 7C10P20C

30 3.253907 1.252177
60 4.107951 1.335102
90 4.492271 1.666805
120 5.047399 2.454598
150 5.346315 2.786301
180 6.328465 2.993615

Fig. 8   Water absorption weight of 7C20P10C and 7C10P20C for every 
30 min

Fig. 9   Water absorption weight percentage of 7C20P10C and 7C10P20C 
for every 30 min
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interlocking between reinforcement and matrix providing 
better stress transfer between them [11]. Much less energy 
is stored since the CPFLSF fiber can move with the force 
giving a rapid decline in storage modulus [23].

3.6.2 � Loss modulus (E″)

Figure 11 shows the variation in the loss modulus (E″) for an 
increase in temperature for the 7C20P10C and 7C10P20C. 
The 7C20P10C and 7C10P20C had a peak value of 259.2 
MPa and 231.4 MPa in the temperature range of 60 to 
200°C. The maximum loss modulus was absorbed for the 
7C10P20C, because of energy dissipation as per the heat 
cycle under the deformation practiced in viscoelastic mate-
rial. The loss modulus graphs expose that the hybrid com-
posites with PPLSF lead to an increase in the modulus peak 
[4].

3.7 � Damping factor (tanδ)

Damping factor (tanδ) can be related to the impact resist-
ance of a composite material. Figure  12 illustrates the 
damping factor (tanδ), and characteristics of 7C20P10C 
and 7C10P20C. From the curve, the 7C10P20C showed the 
lower peak value of damping factor = 0.184, which indicates 
the good interfacial bonding between the matrix and fiber 
due to the chemical treatment of the fiber. Comparing both 
the hybrid composites, the damping factor value is found to 
change significantly. However, the higher peak value of the 
damping factor provides poor interfacial bonding between 
the matrix and fiber [6].

3.8 � Thermogravimetric analysis of composite

The thermal decomposition for PPLSF/CPFLSF-rein-
forced composites is shown in Figs. 13 and 14. From the 
observation of TGA, the 7C20P10C and 7C10P20C had 

three-stage decomposition. The initial decomposition was 
at 100 to 250°C, which was related to the degradation of 
water and other volatile mixtures in the hybrid reinforced 
composite. Then, the second stage of decomposition was 
at 300 to 450°C. In this region, the thermal degradation 
happened due to the decomposition of hemicelluloses and 
lignin of PPLSF/CPFLSF. The final thermal decomposi-
tion stage of 7C20P10C and 7C10P20C happened in the 
temperature range between 500 and 600°C, with residual 
content of 18% and 26%.  Because of the  thermal decom-
position of cellulose and end with the decomposition 
matrix [16].

The peak region of the DTA curves specifies the deg-
radation temperatures of the 7C20P10C and 7C10P20C. 
From the DTA curves, the peak region for 7C20P10C and 
7C10P20C is at 415 °C and 425°C, which displayed stages 
of degradation in the composite with the highest rate of 
decomposition at 1.2%/min and 1.4%/min, respectively. 
Compared to the non-hybrid PPLSF composite, the DTA 
of the hybrid composite is significantly improved at the 
end temperatures as shown in Fig. 14.
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3.9 � Scanning electron microscope

Figure 15(a–b) show the SEM of tensile fractured sur-
faces of the 7C20P10C and 7C10P20C. Poor adhesion 
between the fiber and matrix as well as matrix cracks was 
observed in the 7C20P10C due to the maximum weight 
ratio of CPFLSF. However, 7C20P10C the failure had 

occurred due to fiber tearing and the CPFLSF pullout 
from the matrix (Fig. 15(a)) [19]. The alkali treatment 
increased fiber-matrix adhesion and also reduced fiber 
pullouts resulting in increased mechanical properties of 
the 7C10P20C (Fig. 15(b)). In the 7C10P20C, PPLSF had 
maximum tensile properties and provide a better stress 
transfer compared to7C20P10C.

In hybrid composite material, the load was carried by 
CPFLSF; then, it was transferred to PPLSF without affect-
ing the matrix in the tensile specimen [24]. The highest 
strain rate is attained by CPFLSF, so the failures occur in 
the CPFLSF; after that, PPLSF took the load and effec-
tively transferred the load, which enhances the properties 
of 7C10P20C [19].

4 � Conclusions

The alkali-treated randomly distributed CPFLSF/PPLSF-
reinforced polyester hybrid composites were fabricated and 
investigated for static, dynamic mechanical, thermal, and 
water absorption properties. From this research work, the 
following conclusions are arrived.

1.	  The randomly distributed alkali-treated CPFLSF/
PPLSF–reinforced hybrid composites showed that the 
7C10P20C exhibited the maximum tensile strength of 
47.14MPa, flexural strength of 73.56MPa, and impact 
strength of 10.56kJ/m2. The SEM analysis also con-
firmed the evidence of less pullout and fracture. The 
improvement in strength is due to the presence of the 
palmyra palm leaf stalk fiber in the hybrid composites.

2.	  The dynamic mechanical analysis of CPFLSF/
PPLSF–reinforced hybrid composites showed that the 
7C10P20C exhibited the maximum storage modulus (E′) 
of 1975MPa and loss modulus (E″) of 251.4MPa and 
low damping factor (tanδ) of 0.21.

Fig. 13   Thermogravimetric analysis curve of CPFLSF/PPLSF hybrid–
reinforced composites

Fig. 14   Differential thermogravimetric analysis curve of CPFLSF/
PPLSF hybrid–reinforced composites

Fig. 15   SEM image of tensile 
test fractured composite 
surfaces of a 7C20P10C and b 
7C10P20C
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3.	  Water absorption was found to significantly reduce in 
7C10P20C compared to the 7C20P10C.

4.	  7C20P10C and 7C10P20C exhibited thermal decompo-
sition in the temperature range between 500 and 600°C 
with a residual mass of 18% and 26%, respectively. Due 
to its comparable behavior to synthetic fiber compos-
ites, hybrid reinforced composites have a wide range of 
potential uses.
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