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Abstract
A novel xylanase gene (denominated xynDRTY1) was identified from Tengchong hot spring by a metagenomic approach. Its 
amino acid sequence was 73.43% identical to a hypothetical protein from Bryobacterales bacterium. The codon-optimized 
XynDRTY1 gene was synthesized and overexpressed in Escherichia coli. The XynDRTY1 was purified by using Ni–NTA 
affinity chromatography. It exhibited activity with natural glycosides, such as beechwood xylan (21.2 ± 3 U/mg) and oat spelt 
xylan (8.2 ± 0.3 U/mg). Its optimum pH was determined to be 6.0 and optimum temperature of 65 ℃, along with its stabil-
ity over 140% and 110% relative enzyme activity after incubation at 60 ℃ for 20 min and 120 min, respectively. Based on 
these findings, we believe that XynDRTY1, as thermostable xylanase, may prove useful for biotechnological applications.
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1 Introduction

Xylan, as the main constituent of hemicellulose, consists of 
xylose monomers connected by beta-1,4-glycoside linkages. 
Its contents are different in various plants, such as 30–35% 
in hardwoods, 15–30% in graminaceous plants, and 7–12% 
in gymnosperms [1]. At present, xylan is widely used in the 
production of biofuels and bio-based chemicals [2]. Xyla-
nase can hydrolyze xylan into xylo-oligosaccharides for 
application in various industries such as pharmaceuticals, 
animal feed, paper, biofuels, and waste treatment [3]. In 
many application processes, the thermal stability of xylanase 
is required. The use of thermophilic xylanase is conducive 
to reducing costs and improving efficiency.

However, existing xylanases, which are mainly derived 
from fungi, exhibited low thermal stability, like xylanases 
from Trichoderma reesei lost activity when the temperature 

was over 55 ℃ [4]. In a typical high-temperature environ-
ment [5], hot springs are an important source of various 
thermophilic xylanases [6]. While less than 1% of identified 
prokaryotes can be cultured in the existing laboratory pure 
culture techniques [7, 8]. At present, with the development 
of metagenomic sequencing technology, a large number of 
novel glycoside hydrolase sequences have been obtained, 
but their potential functions have not been fully verified [9].

In the present study, a novel xylanase gene (xynDRTY1) was 
isolated from metagenomic data of Diretiyan hot spring in the 
Rehai area of Tengchong County, south-west of China. This 
gene sequence was synthesized artificially, and the recombi-
nant vector was constructed and imported into Escherichia 
coli. The activity of recombinant enzymes was determined by 
allogenic expression and protein purification. The results show 
that it is thermophilic xylanase and has potential in food, feed, 
papermaking, and lignocellulosic ethanol.

2  Materials and methods

2.1  Sample collection and metagenomic 
sequencing

Sandy soil sample was collected from Diretiyan hot spring 
in the Rehai area of Tengchong County, Yunnan Province, 
south-west of China. Coordinates are latitude 24.95002°N 
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and longitude 98.43729°E. The surface temperature of 
geothermal water was around 72 ℃ with pH 2.5. Samples 
were quickly frozen on dry ice for laboratory DNA iso-
lation and metagenome sequencing. These activities did 
not require specific permissions. DNA isolation was per-
formed with the power soil Kit ( MOBIO DNeasy Power-
Soil Kit, USA) according to the operation manual. HiSeq 
2500 instrument was used for metagenome sequencing at 
the GENWIZ in Suzhou. De novo assembly was performed 
with the Velvet assembly program version 1.2.08 [10]. The 
IMG server (https:// img. jgi. doe. gov/ cgi- bin/ mer/ main. cgi) 
was used for investigating the sequences. To further ana-
lyze the possible functions of individual genes and ORFs, 
the COG [11], the KEGG [12], and the Pfam [13] data-
bases were employed.

2.2  Prediction of xylanase sequence, gene 
synthesis, and sequence analysis

Based on the functional prediction, a xylanase gene sequence 
(named xyndrty1) was isolated from the metagenomic data-
base. The nucleotide sequence of the xylanase gene was sub-
mitted to GenBank under accession number MW131968. 
The xynDRTY1 gene was codon-optimized and synthesized 
according to E. coli base preference (Supplementary Fig. S1) 
and cloned to the pUC18 vector. BLASTx and BLASTp pro-
grams (http:// blast. ncbi. nlm. nih. gov/ Blast. cgi) were used to 
align DNA and protein sequences of xyndrty1, respectively. 
Signal peptides were predicted using SignalP (http:// www. 
cbs. dtu. dk/ servi ces/ Signa lP/). The primary structures of 
the amino acid sequences were deduced and analyzed using 
EXPASY tools (http:// web. expasy. org/ protp aram/). Multiple 
alignments with the protein sequence of the closely related 
(retrieved from the NCBI database) were conducted using 
Clustal X [14]. Phylogenetic analyses were performed using 
the MEGA 7 software package [15]. Phylogenetic trees were 
constructed using the maximum likelihood (ML) method 
with a Poisson correction model. The sequence of Xyn-
DRTY1 was compared among the protein structure data of 
the protein data bank (http:// www. rcsb. org/). A structural 
model of XynDRTY1 was generated with the MODELLER 
package [16] using endo-β-1, 4-xylanase (PDB ID, 1VBU; 
sequence identity, 29.13%) from Thermotoga maritima as 
the template. Multiple sequence alignment was performed 
by Clustal W and Clustal X version 2.0 [17], and the figure 
was produced by using Espript 3 [18] (http:// espri pt. ibcp. fr/ 
ESPri pt/ cgi- bin/ ESPri pt. cgi).

2.3  Cloning, expression, and purification 
of xyndrty1

The full-length xylanase gene was moved out from the 
pUC18 vector by PCR using the following primers: 

xynDRTY1-F (CAT CAT CAT CAT CAT CAT GAA  GTC 
GCG AAA TGC AGC GAT ATTG) and xynDRTY1-R 
(GTG CTC GAG TGC GGC CGC AAG TTA GTC CAG ACG 
AAT ACG AACA). The PCR was performed by Trans-
StarFastPfu Fly DNA Polymerase (TransGen Biotech, 
China). Underlined sequences represent the homologous 
recombinant fragment with the pET28a vector (Novagen, 
USA), which had been previously digested using BamH 
I and Hind III. The PCR program consisted of denatura-
tion at 95 ℃ for 3 min, followed by 30 cycles at 98 ℃ for 
20 s, 65 ℃ for 30 s, and 72 ℃ for 45 s, and then a final 
incubation at 72 ℃ for 5 min for the final extension. 
The PCR product was inserted into the pET28a using 
the pEASY-Uni Seamless Cloning and Assembly Kit 
(TransGen Biotech, China) to yield the expression plas-
mid pET28a-xynDRTY1. Escherichia coli DH5α and E. 
coli BL21 (DE3) for xylanase gene clone and expression, 
respectively. E. coli strains were grown on LB medium 
with 50 μg/mL Kanamycin. DNA isolation and purifica-
tion kits were purchased from Sangon (China).

The recombinant plasmid was transformed into E. coli 
BL21 (DE3) for xynDRTY1 expression. Transformants 
were cultured in 200 mL of LB broth containing 50 µg/
mL kanamycin at 37 ℃ with shaking at 200  rpm. To 
induce expression of the recombinant xylanase, 0.2 mL of 
100 mM IPTG (isopropyl β-D-1-thiogalactopyranoside) 
was added to the cell suspension when absorbance 
(600 nm) reached 0.7. Afterward, the suspension was incu-
bated at 25 ℃ with shaking at 200 rpm for 4 h. Induced 
cells were harvested by centrifugation at 10,000 × g, 4 ℃ 
for 15 min, and cell lysis was done by ultrasonication. 
After centrifugation, cell-free extracts were purified using 
a Ni-chelating affinity column (Histrap, TransGen Biotech, 
China) according to the method previously reported by Yin 
et al. (2017) [19]. Purified xylanase was loaded at 10% 
SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis). Protein bands were stained by Coomas-
sie brilliant blue dye R-250. Protein concentrations were 
determined with Bradford Protein Assay Kit (Order NO. 
C503031, Sangon Biotech, China) using bovine serum 
albumin as the standard.

2.4  Xylanase assay

The recombinant XynDRTY1 activity was assayed by 
spectrophotometry at 540 nm using beechwood xylan 
(Sigma, USA) as a substrate described by Yin et  al. 
(2016) [20]. Reducing sugars were determined by the 
DNS (3, 5-dinitrosalicylic acid) method [21] with xylose 
as standard. One unit (U) of XynDRTY1 activity was 
identified as the amount of enzyme releasing 1 µmol 
reducing sugar per min.

https://img.jgi.doe.gov/cgi-bin/mer/main.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://web.expasy.org/protparam/
http://www.rcsb.org/
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
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2.5  Biochemical characterization

Optimum pH was determined by incubating the purified 
XynDRTY1 in various buffers ranging from pH 3.0 to 9.0 
(citrate buffer, pH 3.0–8.0; borate buffer, pH 7.6–9.0). Opti-
mum temperature was determined by measuring xylanase 
activity at various temperatures (30–80 ℃) at optimum 
pH. To assess thermostability and pH stability, the residual 
xylanase activity was measured after incubating the puri-
fied XynDRTY1 at different temperatures (60 ℃, 65 ℃, and 
70 ℃) for different times (0 min, 20 min, 40 min, 60 min, 
80 min, 100 min, and 120 min) and pH 3.0 to 9.0 for differ-
ent times (12 h and 24 h), respectively.

To evaluate the influences of metal ions and chemical 
reagents on XynDRTY1 activity, 10 mM of various metal 
ions such as KCl,  MgSO4,  FeSO4,  FeCl3,  CaCl2,  NiSO4, 
 CoCl2,  BaCl2,  MnCl2,  AgNO3, Pb(NO3)2,  CuSO4,  ZnSO4, 

and  AlCl3, 1% of detergents, SDS, Tween 20, Tween 60, 
and Tween 80, 1% of enzyme inhibitor EDTA (ethylene 
diamine tetraacetic acid), DTT (Deloitte Touche Tohmatsu) 
and PMFS (phenylmethylsulfonyl fluoride), 10% of ionic 
liquid (1-allyl-3-methylimidazolium chloride), and alcohols 
(methyl alcohol, ethyl alcohol, and isopropyl alcohol), were 
added individually to the reaction system. Control conditions 
were tested using the same process described above without 
any additives to the reaction mixture.

To investigate the substrate specificity of XynDRTY1, 
beechwood xylan, oat xylan, beta-(1,3;1,4)-glucan, avi-
cel, CMC (carboxyl methyl cellulose), soluble starch, and 
pNPX (p-nitrophenyl β-D-xylopyranoside) were used as 
substrates (1%, w/v) to measure enzymatic activity. The 
kinetic constants of XynDRTY1 were determined using 
different concentrations of beechwood xylan (0.1 to 20 mg/
ml) at optimum pH and temperature for 5 min. The Km 

Fig. 1  Sequence analysis 
of GH10 xylanase Xyn-
DRTY1. A, The structural 
domain and tertiary structure 
of XynDRTY1. B, Phyloge-
netic dendrogram obtained by 
maximum likelihood analysis 
based on amino acid sequences 
showing the phylogenetic posi-
tion of XynDRTY1 with related 
xylanase. Bootstrap values 
(expressed as a percentage of 
1000 replications) are given at 
nodes
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(Michaelis–Menten constant) and Vmax (maximum velocity 
of the reaction) were calculated by the Lineweaver–Burk 
plot.

2.6  TLC analysis

The reaction mixture, which consisted of 1% beechwood 
xylan and 10 μg purified enzyme, was incubated at 65 ℃ 
for 2 h, respectively. The hydrolytic products of beechwood 
xylan were characterized by TLC (thin-layer chromatogra-
phy) with silica gel 60 plate (Merck, Darmstadt, Germany). 
The solvent was 1-butanol/acetic acid/water (2:1:1, v/v/v). 
Sugars were detected by treating at 120 ℃ for 10 min after 
spraying the plates with freshly prepared 5% (v/v)  H2SO4 in 
ethanol. Xylose (X1), xylobiose (X2), xylotriose (X3), and 
xylotetraose (X4) were used as sugar standards.

2.7  Statistical analysis

Unless otherwise stated, all assays were carried out in trip-
licate, and the average was used in all analyses. The results 
were analyzed by SPSS 20.0 and expressed as means ± SEM. 
Statistical analyses were performed by using one-way 
ANOVA, followed by Tukey’s test for comparison of mul-
tiple treatment groups. In all comparisons, p values < 0.05 
were considered statistically significant.

3  Results and discussion

3.1  Cloning and molecular analysis 
of the XynDRTY1 gene

DNA samples obtained from the sandy soil of Diretiyan hot 
spring (72 ℃, pH 2.5) were subjected to sequencing, which 
generated a total of 5.2 Gbp with 30,917 contigs of > 500 bp 
in length. Similarity search for beta-xylanase in the contigs 
revealed a new candidate xylanase gene sequence, which 
denominated xynDRTY1. Nucleotide sequence analysis 
of the complete XynDRTY1 gene revealed 1221 bp ORF 
encoding a xylanase protein of 406 amino acid residues. 
A signal peptide sequence of 31 amino acids was found 
at the N-terminal end by using SignalP 5.0 server, which 
indicated that xylanase is a secreted protein. The deduced 
protein without signal peptide consisted of 375 amino acids 
with a theoretical calculated molecular size of 43.85 kDa 
and theoretical pI of 6.48. The amino acid sequence of Xyn-
DRTY1 showed 75.40%, 63.32%, and 63.04% identity to 
hypothetical protein (GenBank: HFE91178.1) from Bryo-
bacterales bacterium, endo-1,4-beta-xylanase (GenBank: 
MBI5280435.1) from Candidatus Solibacter usitatus, and 
endo-1,4-beta-xylanase (GenBank: MBI5083254.1) from 
Acidobacteria bacterium.

As observed in Fig. 1, XynDRTY1 has a catalytic domain, 
which was similar to the GH10 family domain of endo-β-
1,4-xylanase from Cellvibrio japonicus. Like other GH10 
xylanases, its tertiary structure shows a (β/α)8 or TIM-
barrel folding [22, 23]. A phylogenetic analysis of protein 
sequences revealed XynDRTY1 clustered with hypothetical 
protein (GenBank: HFE91178.1) from the Bryobacterales 
bacterium. This indicated that the hypothetical protein (Gen-
Bank: HFE91178.1) was a potential endo-1,4-beta-xylanase. 
Multiple sequence alignments of XynDRTY1 with the clos-
est structure-resolved xylanase were performed (Supple-
mentary Fig. S2). Two putative catalytic residues (E188 and 
E291) were found in XynDRTY1 [22].

Fig. 2  SDS-PAGE analysis of the recombinant XynDRTY1 pro-
duced by E.  coli BL21. Lane 1, protein molecular weight marker, 
mass indicated on the left; lane2, total protein in IPTG-induced E. 
coli BL21/pET28a-xynDRTY1; lane 3, purified XynDRTY1
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3.2  Heterologous expression and purification 
of XynDRTY1

Xylanase gene without signal sequence was successfully 
cloned into pET28a C-His as a fusion protein with His-tag 
which was further confirmed by sequencing. The recom-
binant xylanase (XynDRTY1) was purified by  Ni2+-NTA 
resin affinity chromatography. The purified protein showed 
a single band of ~ 44 kDa against the protein marker on 10% 
SDS-PAGE (Fig. 2).

3.3  Effect of temperature and pH on XynDRTY1

The optimal reaction temperature for XynDRTY1 activ-
ity was 65 ℃, and over 50% of the maximal activity was 
observed at 55 to 70 ℃ (Fig. 3A). Optimum pH for Xyn-
DRTY1 activity was pH 6.0, and over 70% of the maxi-
mal activities were kept between pH 4.6 and 7.0 (Fig. 3B). 

Thermostability analysis showed that XynDRTY1 retained 
100% activity after heat treatment at 60 ℃ for 2 h, and its 
half-lives at 65 ℃ and 70 ℃ were about 38 min and 5 min 
(Fig. 3C). Interestingly, its activity was increased to 140% 
after incubation at 60 ℃ for 20 min. The pH stability analy-
sis revealed that it retained more than 60% of its initial activ-
ity at pH 3–9 and more than 80% at pH 6–7 after incubation 
at 25 ℃ for 12 h and 24 h (Fig. 3D). Thermostable xylanases 
have advantages since the various industrial processes need 
to go through high-temperature processes [24]. However, 
most of the reported GH 10 xylanases cannot tolerate a tem-
perature of over 50 ℃ [25]. For example, Xyn10A (GenBank 
NO., AGA16736) from Bacillus sp. SN5 lost more than 90% 
enzyme activity after incubation at 50 ℃ for 20 min [26]. 
Novel thermostable xylanase (GenBank NO., MH685571) 
from camel rumen metagenome retained less than 50% of 
its maximum activity after incubation at 50 ℃ for 40 min. 
In comparison to other xylanases, XynDRTY1 exhibited 

Fig. 3  Effects of temperature and pH on the activity and stability 
of the recombinant XynDRTY1. A, Temperature effect on the activ-
ity of XynDRTY1. B, pH effect on the activity of XynDRTY1. C, 
The effect of temperature on stability at different temperatures (60 ℃, 

65 ℃, and 70 ℃) for 0, 20, 40, 60, 80, 100, and 120. D, The effect of 
pH on stability. The primary activity was taken as 100%. Each value 
in the figure represents the mean ± SD (n = 3). 100% = 21.2 ± 3 U/mg
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thermostability and wide pH range finds. These indicate 
that XynDRTY1 has great potential application in various 
industrial processes.

3.4  Effect of metal ions and chemical agents 
on XynDRTY1

As shown in Supplementary Table S1, XynDRTY1 activity 
was activated by  Fe3+ (115.2 ± 0.5%), slightly deactivated by 
 K+,  Mg2+,  Fe2+,  Ca2+,  Ni2+,  Ba2+,  Pb2+,  Zn2+, and  Al3+ and 
strongly inhibited by  Co2+ and  Ag2+ at 10 mM metal ions. 
It almost lost all activity at present of 10 mM  Cu2+ or  Mn2+. 
Metal ions such as  Co2+,  Mn2+, and  Cu2+ have an inhibitory 
effect on the activity of the majority of GH10 family xyla-
nases [27]. Tween 20, Tween 80, and PFMS had no influence 
on xylanase activity at the concentration of 1%, but were 
slightly inhibited by EDTA and Tween 60. Organic solvents 
and SDS can inhibit most enzyme activity of xylanases [20]. 
Like most xylanases, XynDRTY1 was highly suppressed by 
1% SDS and 10% methyl alcohol. While it still retained over 
60% of the maximal activities in the presence of 10% ionic 
liquid and isopropyl alcohol, and over 45% of the maximal 
activities in the presence of 10% ethyl alcohol and 1% DTT. 
These suggested that  Co2+,  Ag2+,  Cu2+,  Mn2+, SDS, and 
methyl alcohol should be avoided during the application of 
XynDRTY1.

3.5  Substrate specificity and kinetic analysis 
of XynDRTY1

Substrate specificity of XynDRTY1 was shown in Table 1. 
It exhibited activities for beechwood xylan (21.2 ± 3 U/mg), 
oat xylan (8.2 ± 0.3 U/mg), and avicel (1.2 ± 0.3 U/mg), but 
no activity for beta-1,3;1,4-glucan, CMC, soluble starch, and 
pNPX. The Km, Vmax, and Kcat of recombinant XynDRTY1 
for beechwood xylan were 15 ± 0.4 mg/ml, 48.8 ± 3 μmol/
min/mg, and 38.2 ± 2.3  S−1, respectively. In general, xyla-
nases from the GH10 exhibited not only activities for differ-
ent source xylan but also a variety of substrates like avicel 

and CMC [28]. This indicates that XynDRTY1 is a multi-
functional enzyme.

3.6  TLC analysis of Beechwood xylan hydrolysis 
by XynDRTY1

As shown in Fig. 4, hydrolytic products of beechwood xylan 
with XynDRTY1 were analyzed by TLC. The result showed 
that the major hydrolytic products by XynDRTY1 were X1, 
X2, and X4. Many studies have shown that xylooligosac-
charides, as an emerging prebiotic, play an important role 
in promoting the growth of probiotics and balancing the sta-
bility of human gut microbiota [29, 30]. This indicates that 
XynDRTY1 has potential application value in the production 
of prebiotics.

4  Conclusions

In summary, a novel xylanase gene (xynDRTY1) encoding 
thermostable GH10 xylanase was synthesized and heterolo-
gously expressed in E. coli BL21 (DE3). To our knowledge, 
this is the first report of metagenome-derived xylanase iden-
tified from Diretiyan of Tengchong hot spring. A detailed 
enzymatic characterization of XynDRTY1 was performed. 
XynDRTY1 was found to be thermophilic and thermostable. 
Furthermore, XynDRTY1 exhibited the activity of endo-
1,4-beta-xylanase. Overall, in this work, XynDRTY1 had 
different specificities and characteristics, rendering it an 
ideal candidate for use in the hydrolysis of lignocellulose 
and the production of prebiotics.

Table 1  Substrate specificities of XynDRTY1

Substrate Special 
activity  
(U/mg)

Beechwood xylan 21.2 ± 3
Oat xylan 8.2 ± 0.3
Beta-1,3;1,4-glucan 0
Avicel 1.2 ± 0.3
CMC 0
Soluble starch 0
pNPX 0

Fig. 4  Thin-layer chromatog-
raphy (TLC) of hydrolyzation 
products of xylo-oligosaccha-
rides by XynDRTY1. Lane 
1, standards: xylose (X1), 
xylobiose (X2), xylotriose (X3), 
and xylotetraose (X4); lane 
2, beechwood xylan without 
enzyme; lane 3, beechwood 
xylan hydrolysis by purified 
XynDRTY1
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Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13399- 022- 03296-1.
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