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Abstract
Ensete ventricosum (false banana) is a common food source for a considerable section of Ethiopia’s population in the central, 
southern, and southwestern areas. Ensete ventricosum pseudo-stem fiber is a type of agro-industrial waste that is widely 
available across the country. It has a limited number of known conventional applications and merits further investigations. 
One of the activities that prompted the completion of this study was the upgrading of Ensete ventricosum pseudo-stem fiber 
to value-added products such as cellulose nanocrystals. The goal of this study was to extract cellulose nanocrystals from 
Ensete ventricosum pseudo-stem fiber using sulfuric acid hydrolysis. An acid-catalyzed reaction technique using 1:20 mL 
cellulose to  H2SO4 (51.1%) ratio and hydrolysis period of 52 min at 51 °C reaction conditions was used to separate cellulose 
nanocrystals from Ensete ventricosum pseudo-stem fiber cellulose. Thermal stability, crystallinity, surface charge, shape, 
size, and functional changes were all assessed in the cellulose nanocrystals that resulted. It had a better crystallinity index 
(78.0%), an average particle size of 66.7 nm, a yield of 39.78%, good thermal stability (> 300 °C), and a morphologically 
comparable rod-shaped structure. As a result, it is feasible to conclude that Ensete ventricosum pseudo-stem fiber offers a 
lot of potential for isolating cellulose nanocrystals for various applications.
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1 Introduction

The period of petroleum and petroleum-based products 
to meet world economic requirements is shortened due to 
finite petroleum resources, increased costs, rapid popula-
tion growth, and decisive environmental impacts [8]. Agro-
waste and forest leftovers can be used as viable alternatives 
to petroleum and petroleum-based goods since they are 
natural, renewable, abundant, sustainable, and ecologi-
cally benign [34]. The world’s attention has now switched 
entirely to the development of suitable materials, chemicals, 
and raw materials derived from sustainable and renewable 
sources [94]. Agro-wastes, which are the largest source, are 
underutilized and discharged into the environment as waste, 
and are the logical alternatives to petroleum and petroleum-
based products [22]. These lignocellulosic biomass wastes 

are a valuable resource that can be found in abundance in all 
parts of the world, and they have the potential to support the 
long-term development of materials like nanocrystals and 
nanocomposite, as well as the production of liquid and gase-
ous bioenergy like biofuels, biodiesels, and bioethanol [65]. 
As a result, lignocellulosic biomasses are the most plentiful 
renewable feedstocks for cellulose manufacturing [19, 99].

Lignocellulosic biomass from various sources has 
emerged as the most promising and possible renewable raw 
resource for the production of cellulose. Because of their 
availability and low cost, several plant sources with vary-
ing quantities of cellulose have recently been employed for 
cellulose extraction [2]. Corn straw, banana leftovers, forest 
trash, wood chips, wheat straw, and flax fiber are the most 
common plant sources for cellulose extraction [6, 24, 35],Q. 
[104].

Because of their higher crystallinity index and huge 
volumes of cellulose, fibrous agricultural wastes are a pre-
ferred source of cellulose for the production of cellulose 
nanocrystals [6, 17, 19, 21]. One of these fibrous sources of 
raw materials for cellulose extraction is Ensete ventricosum 
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pseudo-stem fiber (EVPSF). It could be used to isolate cellu-
lose nanocrystals as a more preferred new cellulosic source.

Ensete ventricosum, often known as false banana, is a 
plant that belongs to the genus Ensete, which is part of the 
Musaceae Ensete family and the Scitamineae order (A [1, 
16],Nurfeta, Eik, et al., 2008; [101]. Although Ensete ven-
tricosum shows morphological similarities to banana plants, 
banana plants belong to the Musa genus, which is linked 
to Ensete ventricosum. The Ensete ventricosum plant is 
widely farmed in central, eastern, and sub-Saharan African 
countries, and it is one of Ethiopia’s primary food crops, 
consumed by about 20% of the population in the country’s 
southern, southwestern, and central regions [15, 67, 68, 95, 
101]. The leaf lamina, leaf midribs, pseudo-stem, and corm 
are the four fractional portions that make up the dry mat-
ter of Ensete ventricosum (Nurfeta, Eik, et al., 2008). As a 
byproduct of the Kocho production process, a large amount 
of EVPSF was discharged in the environment [13, 101]. 
This fiber is a lignocellulosic biomass source for cellulose 
extraction [13, 94, 101]. EVPSF has cellulose content rang-
ing from 58.75 to 64.9% wt., hemicellulose content rang-
ing from 17.82 to 27.88% wt., and lignin content ranging 
from 6.33 to 11.35% wt. [14, 27, 94] with a crystallinity 
index of 64.9% [94]. EVPSFs are currently utilized to manu-
facture sacks, bags, ropes, cordage, mates, and sieves, as 
well as used as construction tying materials in lieu of nails 
[94]. High cellulose content, low hemicellulose, lignin, and 
extractives, and a high crystallinity index are just a few of 
the benefits of this fiber. It is also underutilized, renewable, 
inexpensive, agro-waste, readily available, and plentiful. As 
a result, it could be a viable cellulosic biomass for the pro-
duction of cellulose nanocrystals (CNCs).

CNCs are created using various types of acid hydrolysis, 
such as hydrochloric acid, sulfuric acid, and various organic 
acids [64, 98]. Sulfuric acid hydrolysis is a common method 
for producing CNCs from biomass resources. Sulfuric acid is 
the most preferred and widely used acid for acid hydrolysis 
extraction of CNCs due to its strong isolation properties, 
ability to form a stable colloidal system, and esterification of 
hydroxyl groups by sulfate ions [23, 50]. The acid is hydro-
lyzed with less organized regions such as amorphous and 
aromatic polymers in this method, but the alpha cellulose is 
tightly bound, limiting access to the crystalline region and 
leading to acid resistance (Nagarajan, Balaji, Thanga Kasi 
Rajan, et al., 2019).

CNCs with nanometer-sized dimensions are natural-based 
materials with unique and potential properties [32],TAPPI 
International Nanotecnology Division & [90]. These crys-
talline materials have a rod-like structure, nanoscale width 
and length, and a high crystallinity index [46]. When com-
pared to their natural cellulosic fiber counterparts, cellulose 
nanocrystals exhibit superior mechanical strength, stiffness, 
biodegradability, and specific surface area. They also offer 

superior qualities when compared to other materials such as 
steel wires, Kevlar, synthetic polymers, cellulose nanofibril, 
and cellulose nano-whiskers, which are employed in a vari-
ety of applications [10, 47, 58]. Many researchers reported 
cellulose nanocrystal applications in food packaging, medi-
cal tools, drug delivery, nanocomposite in polymers, bio-
sensors, cosmetics, and pharmaceuticals, as well as applica-
tions in other areas of nanotechnology [32, 47],Nagarajan, 
Balaji, Ramanujam, et al., 2019).

The purpose of this study was to extract cellulose 
nanocrystals from EVPSF cellulose using sulfuric acid 
hydrolysis. Excellent-quality cellulose was extracted under 
good and optimal process conditions by carefully removing 
wax, lignin, hemicellulose, and other trace components. The 
extracted cellulose was used to create cellulose nanocrystals 
in an acidic media by treating it with sulfuric acid. The cel-
lulose nanocrystals, cellulose, and raw fibers that resulted 
were all characterized.

2  Materials and methods

2.1  Materials

EVPSF that had been freshly extracted and used as a raw 
material for this study was obtained from local farms (End-
iber town, Gurage zone, South Nation, Nationality and 
People Region, Ethiopia). Thimbles for Soxhlet extrac-
tion, cellulose membrane (D9402, Sigma-Aldrich), sodium 
hydroxide (97%), sulfuric acid (97%), ethanol (97%), tolu-
ene (99%), sodium chlorite, sodium bisulphite, acetic acid 
(99.5%), hydrogen peroxide, and chloroform (99%) were all 
purchased on the global chemical market (Sigma-Aldrich, 
Fine Chemicals PLC, Addis Ababa, Ethiopia). All of the 
chemicals and reagents utilized in this study were analytical 
grade, which meant they did not need to be purified further.

2.2  Extraction of CNCs from EVPSF

2.2.1  Mechanical treatment

Fresh EVPSF was chopped into 4–10 mm and soaked in 
distilled water for about 24 h to remove water–soluble solid 
dirt and impurities. The cleaned fiber was then air dried 
for 5 days before being oven dried for 2 days at 80 °C. To 
obtain powder fiber, dried fiber is pulverized in a high-speed 
multi-purpose crusher (1000A, China) and sieved through 
40–60 mesh sieves [77]. Soxhlet extraction (Buchi E-816, 
Switzerland) was employed using an ethanol-toluene (1:2 
v/v) solvent with a fiber to solvent ratio of 1:10 w/v for two 
successive extraction cycles of 6 h each at 78 °C to remove 
extractive components of the fiber (wax, pectin, oil, etc.). 
Following a series of preliminary studies, the extraction 
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conditions such as solvent type and ratios, fiber to solvent 
ratio, and extraction temperature were identified. Finally, the 
dewaxed fiber was rinsed several times with distilled water 
to remove solvents, and then dried overnight in a 45 °C.

2.2.2  Alkali treatment

The alkali treatment was utilized to purify the cellulose by 
eliminating a substantial percentage of hemicellulose and 
partially removing lignin from EVPSF [32]. The ground and 
wax-free EVPSF was treated three times with an alkali solu-
tion of sodium hydroxide (4%) at a solid to liquid ratio of 
1:20 (w/v) with continuous agitation at 750 rpm for 3 h at 
75 °C. To remove sodium hydroxide that had adhered to the 
surface of the solid cake, it was filtered and washed many 
times with distilled water until a neutral pH was achieved. 
The concentration of  OH− ions reduces when an alkali is 
diluted with water. As more water is added, the pH of the 
alkali falls towards 7, making the solution less alkaline [71]. 
After filtering and washing, the solid residue was dried over-
night at 45 °C.

2.2.3  Oxidation treatment (bleaching)

Prior to bleaching, alkali-treated EVPSF was ground and 
then bleached twice under mechanical string at 55 °C for 
2:30 h using equal parts (v/v) of a 24% wt.  H2O2 solution 
and an aqueous solution of sodium hydroxide (NaOH) and 
glacial acetic acid (2.7% wt./v NaOH and 7.5 v/v% acetic 
acid) with a fiber to solution ratio of 1 g the bleached fiber 
was then cooled in the reactor, filtered, and washed many 
times with distilled water until it reached a neutral pH, and 
then dried in an air-circulated oven at 40 °C for 24 h. Follow-
ing a preliminary experiment and a review of the literature, 
all of the bleaching conditions were identified [100, 102].

2.2.4  Acid hydrolysis

An acid-catalyzed reaction technique was used to separate 
CNCs from EVPSF cellulose. The hydrolysis took 52 min at 
51 °C and used 51% sulfuric acid. A tenfold amount of cold 
distilled water was used to stop the hydrolysis process [48]. 
Hydrolyzed CNCs were washed and centrifuged at 4000 rpm 
for 20 min to separate excess sulfuric acid three times. To 
eliminate non-reactive salts and soluble sugars from the 
extracted CNCs, dialysis against distilled water was done 
repeatedly for 5 days [81]. Every day, the distilled water used 
in this process was changed. To achieve a uniform suspen-
sion, the CNC suspension was ultrasonicated for 10 min. The 
suspension of the CNC was then kept at 4 °C. This method 
was derived from past works and from trial and error experi-
ments (Johar et al., 2012a,[41, 49, 59, 83, 87].

2.3  Characterization of EVPSF and cellulose 
nanocrystals

2.3.1  Chemical composition of raw and treated EVPSF

The quantities of ash, moisture, extractives, acid-insoluble 
lignin, cellulose (β, γ, and α), holocellulose, and hemicel-
lulose in EVPSF were determined using various stand-
ards. Aldaeus and Sjoholm (2011) procedures were used 
to determine the moisture content of the fiber. Five grams 
of EVPSF were dried in an air-circulated oven (FD-56) 
at 105 °C until a consistent weight was achieved [4]. The 
result was calculated using Eq. (1). The ash content of 
the fiber was determined in accordance with the Techni-
cal Association of the Pulp and Paper Industry (TAPPI) 
standard and Silverio (2013) protocols [84, 89]. The 
Ensete ventricosum fiber sample was combusted using a 
muffle furnace (MF-106) at 525 ± 25 °C and the result was 
calculated as Eq. (2).

Extractives, acid-insoluble lignin, α, β, and γ cellulose, 
and holocellulose content were determined according to 
different TAPPI standards. T 204 cm-97 [18, 88],Tappi T 
204 cm-97, 1997) for extractives, T 222 om-02 [4, 92] for 
acid-insoluble lignin, T 203 (TAPPI 1999) for α, β, and γ 
cellulose, and American Society for Testing and Materials 
standard (ASTMS) D1104-56 for holocellulose contents, 
respectively.

2.3.2  Cellulose nanocrystals yield determination

CNCs suspension was freeze-dried to obtain powder CNCs 
and the yield of the process was calculated using Eq. (3).

2.3.3  Particle size analysis

The particle size distribution and average particle size of 
the obtained cellulose nanocrystals were determined by 
using dynamic light scattering technology [31]. About 
0.5  g of freeze-dried obtained cellulose nanocrystals 
were dispersed in 100 mL of distilled water and sonicated 
for 10 min using an ultrasonicator (Soniprep 150 plus) at 
16 kHz. Prior to analysis, 0.05 mL of sonicated suspen-
sion was further diluted in 50 mL of distilled water. Then, 

(1)%Moisturecontent =

(

Initialsampleweight − Driedsanpleweight

Initialsampleweight

)

∗ 100

(2)%Ash = (
Weightofash

Weightofash
) × 100

(3)%YieldofCNCs =

(

WeightoffreezedriedCNCs

weightofbleachedcellulose

)

∗
100
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measurement was conducted using a Zetasizer Nano par-
ticle analyzer (ZE-3600) with a calibration time of 60 s 
at room temperature with a noise ratio of 1.02 for each 
sample three times, and the mean data was recorded.

2.3.4  Zeta potential analysis

The zeta potential of suspension of cellulose nanocrystals 
was measured by a Zetasizer Nano particle analyzer (ZE-
3600) to determine the magnitude of the electrostatic force. 
The diluted suspension sample prepared under particle size 
analysis was used to record the zeta potential of cellulose 
nanocrystals obtained in this study.

2.3.5  Fourier transform infrared spectroscopy (FTIR)

Thermo Scientific (iS50 ABX) FTIR spectrophotometer was 
used to obtain spectra for raw EVPSF, extracted cellulose, 
and cellulose nanocrystals. The samples were ground and 
mixed with KBr to prepare pastilles [72]. The experiments 
were executed using infrared range of 4000–400  cm−1 with 
optical velocity of 0.15, resolution of 16  cm−1, and a total 
of 32 scans for each sample.

2.3.6  Thermogravimetric analysis (TGA)

Thermal analysis of the raw, treated fiber of EVPSF, and 
isolated cellulose nanocrystals was performed to determine 
the thermal stability of the samples on a high precision TGA 
analyzer (HTC_1). About 5 mg of all dried and ground sam-
ples were heated at a heating rate of 20 °C/min from room 
temperature to 700 °C under a nitrogen atmosphere in a 
platinum crucible for about 1 h.

2.3.7  X‑ray diffraction (XRD)

The degree of change in crystallinity index of all samples of 
raw and treated EVPSF and extracted cellulose nanocrys-
tals was calculated from the integrated area of XRD data. 
For this analysis, an X-ray diffractometer (XRD-7000 X-ray 
Diffractometer, Shimadzu Corporation, Japan) was used to 
obtain X-ray diffraction patterns of different powder samples 
that were scanned at room temperature between 2θ with a 
diffraction angle in the range of 10° to 80° and a step size 

of 0.02°. Then, the sample crystallinity index (%CI) was 
determined by Eq. (4) [82, 97]:

where I200 is the maximum peak intensity of diffraction 
at peak (2θ = 22.65°) corresponding to both the crystalline 
and amorphous regions, and Iam is the peak intensity of the 
amorphous region only at peak (2θ = 18).

2.3.8  Scanning electron microscopy (SEM)

A scanning electron microscope was used to evaluate the 
surface morphology of raw and treated fiber and cellulose 
nanocrystals from an Ensete ventricosum pseudo-stem by 
scanning the surface with a focused beam of electrons using 
SEM (JCM-6000Plus). Before analysis, the samples were 
gold coated (40–50 nm) and observed at a 500–10 µm work-
ing distance with an accelerating voltage of 15 kV under 
high vacuum.

3  Results and discussion

3.1  Chemical composition of EVPSF 
and determination of cellulose nanocrystal 
yield

Table 1 summarizes the results of determining the chemi-
cal compositions of EVPSF at the initial and final stages of 
each chemical pretreatment. Results for raw EVPSF showed 
higher holocellulose, 77.74% wt., and lower lignin, 6.68% 
wt., contents. These findings show that the fiber has a high 
potential for producing cellulose nanocrystals [42, 54, 86, 
96]. After pretreatment, the holocellulose of the fiber was 
increased to 86.67% wt., while hemicellulose and lignin 
were decreased to 2.16 and 1.01% wt., respectively. At the 
end of the bleaching process, 83.03% wt. alpha cellulose was 
obtained. The chemical composition for the present work is 
in good agreement with other researchers’ findings. Kar-
garzadeh et al. [42], who extracted CNCs from kenaf bast 
fibers, reported cellulose content after bleaching treatment as 

(4)CI =

(

1200−Iam

1200

)

%CI =
(

1200−Iam

1200

)

∗
100

Table 1  Chemical composition of EVPSF and isolated cellulose

Sample Chemical composition%

Moisture Ash Extractives Acid-insoluble lignin α-cellulose β-cellulose γ-cellulose Holocellulose Hemicellulose

EVPSF 7.72 4.3 3.567 6.677 54.3515 1.87266 1.25018 77.736 20.26166
Treated EVPSF 7.639 3.94 0.7134 3.57 76.108 1.66278 1.10852 84.13766 5.25836
Bleached EVPSF 7.639 3.97 0.7134 1.010333 83.026 0.88791 0.59194 86.66727 2.16142
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91.0% wt. [42]. Another researcher, Mariano et al. [54], also 
reported alpha cellulose as 72.43% wt. to isolate CNCs from 
sisal fiber [54]. The result of this study indicates that EVPSF 
is one of the cellulose sources to extract CNCs (Fig. 1).

3.2  Cellulose nanocrystals yield

At approximate optimum parameters’ conditions (51% wt., 
52 °C, and 51 min), CNCs extraction was performed three 
times. The mean yield of CNCs was recorded at 39.82% wt. 
This work’s yield is consistent with the yields of Mengkuang 
leaves (28%), Saharan aloe vera cactus fibers (32%), sisal 
(30%), and rejected fibers (36.6%) reported by Ilyas et al., 
K. J. et al., Gracia de Rodriguez et al., and Aguayo et al., 
respectively [3, 29, 36, 40].

3.3  Particle size and zeta potential analysis

As Fig. 2A illustrates, the particles are distributed under 
two different peaks. The first peak covers almost 75.40% 
of the intensity of the particle distribution, and the second 
peak covers the remaining 24.60%. Table 2 also summarizes 
the particle size for these two peaks as 66.8 and 0.68 nm, 
respectively. As an alternative, it can be possible to report 
particle size distribution by percent of volume. Accordingly, 
Fig. 2B shows the particle distribution under two different 
peaks. Peak 1 covers 89.45% of the volume, and peak 2 
covers the remaining 10.55% of the particle distribution by 
volume. The result for size in the case of volume distribu-
tion was recorded as 85.5 and 1.53 nm for peak 1 and peak 
2, respectively. In both cases, there is an extremely low size 
of particles due to the vigorous acid hydrolysis conditions 

Fig. 1  Schematic illustration for 
the raw material preparation, 
pretreatments, and process of 
isolating CNCs from EVPSF
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of the crystalline region [74]. The average particle size of 
the CNCs is highly dependent on acid hydrolysis param-
eters [74]. Acid concentration can greatly affect the hydro-
gen bonds between cellulose polymers and can decrease the 

size of the CNC particles. The role of ultrasonication is also 
very significant in obtaining cellulose nanocrystal dispersion 
with a uniform (narrow) size distribution [38, 85]. Table 2 
also contains results for hydrodynamic diameter (ZD), 

Fig. 2  Particle size distribution 
for CNCs by intensity (A) and 
volume (B)

Table 2  Particle size and their 
percent distribution in terms of 
intensity and volume

Size distribution by intensity Size distribution by volume

Size (d. nm) % 
intensity/
volume

St dev (d. nm) Size (d. nm) % 
intensity/
volume

St dev (d. nm)

Peak 1 66.80 75.4 5.366 85.50 89.45 4.484
Peak 2 0.6758 24.6 0.064 1.532 10.55 0.06417
Peak 3 0.00 0.0 0.0 0.00 0.0 0.0
z-average (d. nm) PDI Intercept Result quality
5151 0.17 0.774 Good
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polydispersity index (PDI), and the quality of the results. 
The average size result obtained in this study is a good result 
and indicates the isolation of CNCs from EVPSF’s cellu-
lose is a promising alternative. Depending on the source of 
cellulose, pretreatment methods, and isolation techniques, 
nanoparticles widely vary in their size [12, 29, 38, 70, 
75]. Zhang et al. [103] reported the average particle size 
of CNCs isolated from lemon seeds as 100–350 nm,Asrofi 
et al. [9] reported the size of CNCs from water hyacinth 
fiber as 25 nm,Mandal and Chakrabarty [51] extracted CNCs 
from helicteres isora plant and reported the particle size as 
(10–100) nm,and Feng Jiang and You-LO Hsieh (2012) 
reported the diameter of cellulose nanocrystals from rice 
straw extracted by acid hydrolysis as 3.96–6.74 nm. The 
findings for particle size in this study agreed with those 
reported previously[9, 20, 51],H. [103].

CNCs extracted from EVPSF’s cellulose using sulfuric 
acid hydrolysis at a given condition were shown to have 
a − 39.47 mV zeta potential (ζ). The negative charge of the 
product was an expected result due to the presence of sulfate 
groups, which are created by the sulfuric acid hydrolysis 
process and have the potential to create anion on the surface 
of CNCs [42, 85]. This zeta potential result is in the range 
of desired results since it has the potential to stabilize CNCs 
suspension in water solution [38, 42, 80, 85]. The negative 
charge on the surface of particles ensures stable dispersibility 

(avoiding agglomeration problems by electrostatic repulsion 
force) of CNC suspensions in water [7, 83]. Smyth et al. 
[85] reported zeta potential for CNCs extracted from corn 
(Zea mays) agricultural residue using two different sulfuric 
acid conditions as − 28.3 ± 1.1 and − 43.0 ± 0.6 mV,Prasanna 
and Mitra [74] also reported zeta potential for CNCs, which 
were extracted from Cucumis sativus peels, as <  − 30 mv; 
and Feng Jiang and You-LO Hsieh (2012) also reported zeta 
potential for rice straw as − 67 to − 57 mV. Thus, my finding 
is in good agreement with these results and suggests that 
EVPSF CNCs extracted at optimized sulfuric acid hydroly-
sis conditions are stable enough to be dispersed in water for 
different applications.

3.4  Functional group analysis

The effectiveness of chemical pretreatment in the extrac-
tion of CNCs from EVPSF’s cellulose using acid hydrol-
ysis was confirmed by FTIR spectra. Figure 3 reveals the 
recorded spectra and characteristic bands for raw, alkali-
treated, bleached Ensete fiber, and isolated CNCs. Gener-
ally, 3277.00–3348, 2922.65–2924, 1740, 1600–1634.74, 
1414.16, 1315.45–1327.48, 1018.75–1028.75, and 899  cm−1 
were obtained as characteristic bands of FTIR spectra for 
raw, alkali-treated, and bleached EVPSF, and the iso-
lated CNCs. The presence of a stretching vibration of the 

Fig. 3  FTIR spectra for raw, 
alkali-treated and bleached 
fiber, and extracted CNCs
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O–H group, which is related to the intramolecular hydro-
gen bond of cellulose, resulted in the characteristic band 
3277.00–3348  cm−1 [41, 57]. As Fig. 3 clearly illustrates, the 
transmittance for this region gradually changes as chemical 
treatment of the fiber proceeds. Initially, the transmittance 
showed an increment due to alkali treatment and increase in 
cellulose content. At the end of chemical pretreatment, the 
transmittance decreased and the peak became sharper due to 
the removal of amorphous parts of cellulose. Totally speak-
ing, in this broad band region, cellulose and CNCs show 
similar peaks except for a slight difference in peak intensity. 
The peak at 2922.65–2924 was assigned to C-H and  CH2 
stretching vibrations for the aliphatic (methyl and methyl-
ene) group [41, 94]. This characteristic band indicates the 
presence of cellulose in Ensete ventricosum lignocellulosic 
biomass. After each chemical treatment, these peaks become 
sharp, and this situation indicates an increase in cellulose 
content [45]. The presence of a significant peak at about 
1740  cm−1 is due to the C = O stretching of acetic and uronic 
ester groups of hemicellulose or ester linkage of the car-
boxylic groups of ferulic and p-coumaric acids of lignin [5, 
79, 80]. This peak was gradually removed as it moved from 
raw to bleached fiber of the Ensete ventricosum pseudo-stem 
and finally disappeared completely from the final product, 
CNCs. Chemo pretreatments caused the disappearance of 
hemicellulose and lignin [5, 79]. 1634.74  cm−1 represents 
OH bending of adsorbed water (Hemmati et al., 2018a), 
whereas 1414.16 and 1327.74   cm−1 represent  CH2 scis-
soring of cellulose, hemicellulose, and lignin, and stretch-
ing of the C-O ring of syringyl of lignin and condensed G 
ring of lignin in EVPSF, respectively [95],H. [103]. Peak at 
1315.45  cm−1 is associated with rocking vibration of  CH2 in 

alcohol group of cellulose [73], whereas peak at 1002  cm−1 
illustrates the C–O–C pyranose vibrating stretching ring of 
cellulose [76]. Peak at 899  cm−1 depicts the normal cellulose 
structure with β-glycosidic bonds between glucose units in 
cellulose structure (Hemmati et al., 2018a,[94]. FTIR spec-
tral result for the present work is in a good agreement with 
many research findings partially or fully [6, 37],Johar et al., 
2012b,[52, 56, 72].

3.5  Thermal stability analysis

A thermal stability analysis was performed for raw, alkali-
treated, bleached fiber of the Ensete ventricosum pseudo-
stem and isolated cellulose nanocrystals using a TGA ana-
lyzer (Fig. 4). Figure 4 and Table 3 illustrate the TGA and 
DTG curves for all samples with their patterns of weight loss 
and thermal deterioration that occur at the maximum tem-
perature of the samples. As the figure revealed, the weight 
loss during the thermal deterioration of samples occurs at 
three different temperatures. In the temperature range of 
room temperature to 150 °C, all samples showed an initial 
small mass loss (< 10%), which was directly related to free 
moisture evaporation and removal of low molecular weight 
components (Hemmati et al., 2018a; [55]. Cellulosic com-
ponents were degraded in the second stage (185–400) °C 
of thermal degradation by depolymerization, dehydration, 
and glycosidic unit decomposition in almost all samples 
[43, 60, 66]. At this stage, TGA and DTG curves clearly 
showed that there was a difference between thermal degra-
dation and weight loss patterns for raw, alkali-treated, and 
bleached Ensete fiber and isolated CNCs. The onset tem-
perature (185.63 °C) of thermal deterioration of CNCs is 

Fig. 4  TGA and DTGA curves 
of raw, alkali-treated, bleached 
EVPSF, and extracted CNCs
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lower than bleached cellulose (247.5 °C), alkali-treated fiber 
(238 °C), and raw EVPSF (192.5 °C). According to Nor-
mand et al. [66], the thermal degradation of hemicellulose 
is in the range of 250–37 °C, for cellulose, it is estimated 
at 370–45 °C, and the whole range of thermal degradation 
is well fitted for lignin [66]. Therefore, the removal of non-
cellulosic components, lignin, and hemicellulose resulted in 
a higher onset temperature for cellulose and alkali-treated 
fiber in the study. DTG curves reveal that the deterioration 
temperature of CNCs is declining faster and the Tmax of cel-
lulose nanocrystals is 325.63 °C, which is lower in compari-
son with bleached cellulose, 352.50 °C, alkali-treated fiber, 
338.50 °C, and raw fiber, 327.50 °C. The nano-sized and 
negatively charged sulfate groups of CNCs are responsible 
for this faster thermal degradation [40, 55]. This may also 
be due to the replacement of hydroxyl groups during the 
hydrolysis step by sulfate groups, which makes CNCs less 
resistant to thermal degradation because of their lower acti-
vation energy [41]. Thus, sulfuric acid hydrolysis of Ensete 
fiber’s cellulose into CNCs led to a great decline in thermal 
stability. Thermal deterioration of cellulose nanocrystals 
around 300 °C was found to be significantly related to the 
presence of negatively charged sulfate groups, which aid in 
the cellulose deterioration process [66, 69]. Several previ-
ous studies have shown that treating CNCs with sulfuric 
acid reduces their thermal stability significantly. Kallel et al. 
[41] showed that the thermal degradation of CNCs from 
garlic straw residues started at approximately 200 °C and 
ended at 370 °C [41]. Normand et al. [66] also reported 
that thermal deterioration of CNCs from spruce bark started 
around 190 °C and ended at 277 °C [66]. Oun and Rhim 
also reported the thermal degradation range for rice straw, 
wheat straw, and barley straw as 271–350, 265–370, and 
265–35, respectively [69]. Other researchers, Hemmati et al. 
(2018b), recorded 230 °C as the thermal degradation start-
ing point for CNCs from walnut shell agricultural residues 
(Hemmati et al., 2018b). Weight loss in this region is greatly 
related to the thermal degradation temperature range and 
sensitive parts of the sample to thermal degradation. Expo-
sure to pyrolysis makes them lose a huge amount of weight. 
Raw Ensete fiber (54.7%), alkali-treated (58.7%), bleached 
samples (65.5%), and CNCs (62.5%) lost weight. These sce-
narios can be proven by other researchers’ work (Hemmati 
et al., 2018a,[43, 66].

The third stage of thermal degradation due to oxidation 
and breakdown of charred residue takes place above 400 °C 
to form gaseous products of low molecular mass [93]. Due 
to the presence of ash and lignin, the charred percent of resi-
due in raw Ensete fiber was higher than in alkali-treated and 
bleached cellulose. From the table, it was clearly observed 
that the char formation for CNCs was higher than bleached 
EVPSF. The free ends and high crystalline nature of CNCs 
that had large amounts of carbon were responsible for this Ta
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situation [30]. Many different scholars have also proven this 
truth. According to Kasiri and Fathi [43], the highest per-
centages of charred residue were found in pistachio shells 
(29.9%), treated pistachio shells (22.5%), and CNCs (27.2%) 
[43]. The results for thermal stability in the present work 
generally agreed with those from FTIR, SEM, and XRD 
data.

3.6  Crystallinity analysis

An XRD analysis of raw fiber, treated fiber, and CNCs 
extracted from the Ensete ventricosum pseudo-stem was 
performed. Figure 5 and Table 4 reveal different peak pat-
terns for all samples. This might be due to the presence of 
different chemical components for each sample at different 
treatment stages. Due to the presence of non-cellulosic con-
stituents such as hemicellulose, extractives, and lignin in raw 
EVPSF, which were removed in subsequent pretreatments, 
semicrystalline broad amorphous humps and crystalline 
peaks were observed [26]. From experimental data, peaks 
were observed at about 15.74, 16.80, 22.65, and 34.50°, 
and the CI was found to be about 44.09, 62.30, and 77.25% 
for raw, treated EVPSF, and isolated CNCs, respectively. 
There are also very smaller peaks shown at 43.98, 64.32, and 
77.40°. As clearly observed from the figure and the data, the 
crystallinity of the sample increases with stepwise chemical 
pretreatments. This situation witnessed the effectiveness of 

methods used to remove non-cellulosic parts. Amorphous 
components such as hemicellulose and lignin effectively dis-
solve through alkali treatments and the crystallinity of the 
sample significantly increases (Hemmati et al., 2018a,[53, 
79]. The remaining amorphous region of cellulose, which is 
randomly oriented, is easily attacked by sulfuric acid due to 
the penetration of hydronium ions into amorphous regions. 
This, in turn, promotes the hydrolysis and breakdown of 
cellulose glycosidic bonds, resulting in the formation of 
independent crystallites [26, 61]. Figure revealed that the 
removal of the amorphous domain of cellulose increases 
the CI of CNCs and gives narrower and sharper peaks. In 
all sample patterns, type I cellulose existed dominantly [25]. 
Peaks at 2θ = (16.38°, 101 plane), (22.58°, 002 plane), and 
(34.89°, 004 plane). Type II cellulose was also observed at a 
peak of 22°, 002 plane. This may be associated with the re-
precipitation of cellulose after sulfuric acid hydrolysis [25, 
26]. The average crystallite size of CNCs was determined 
as 52.41 nm using the Scherrer equation (Eq. 13). The result 
was deviated a little bit from the result obtained from the 
particle size analyzer (66.8). This might have occurred due 
to personal error, value of constants (k = 0.89 to 1.39), or 
instrumental error. Generally, the results for CNCs reveal 
that the final product is homogenously distributed and has a 
roughly spherical shape (Table 4).

The present work’s result is in good agreement with so 
many works [11, 25, 26, 69]. Normand et al. [66] reported 

Fig. 5  XRD patterns of the raw, 
treated EVPSF, and isolated 
CNCs
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three different XRD peaks with different intensities as 16.1, 
22.5, and 34.5° [66], also showed three peaks as 16.8, 22.8, 
and 34.6° (Hemmati et al., 2018a); and Sai Prasanna and 
Mitra [80] were another researcher who reported XRD peaks 
as 15.1, 21.5, and 36.6 [80], for samples at 101, 002, and 004 
planes, respectively.

3.7  Morphological analysis

The shape and morphology of the raw, treated, and 
extracted cellulose nanocrystals of EVPSF are illustrated 
in Fig. 6. According to SEM micrographs in Fig. 6, there 
exist clear differences between the morphologies of raw 
and treated Ensete fiber and isolated CNCs. The raw 
EVPSF image (Fig. 6a) has a smoother surface, which 
was expected given the presence of extractives such as 
wax, pectin, hemicellulose, and lignin [28, 44, 66]. In 
contrast to raw fiber, treated Ensete fiber showed a rough 
surface with chunks of fiber bundles and an irregular 
shape and size. This is mainly because of degradation 
of non-cellulosic parts of the fiber by chemical pretreat-
ments, which indicates the removal of the shielding coat 
that covers alpha cellulose [28]. These shielding coats are 
mainly lignin and hemicellulose [44, 66, 72]. As the image 
clearly illustrates, the removal of these covering structures 
of cellulose leaves so many pores and a rough surface that 
enhances the penetration of sulfuric acid into the inner 
parts of cellulose during acid hydrolysis [66, 78]. Thus, 
pretreatment methods and their treatment conditions play 
a significant role in determining the yield and properties of 
CNCs [66]. Figure 6c reveals that cellulose nanocrystals 
have a defined shape that resembles a rod structure and the 
figure also shows some clusters of CNCs [66].

4  Conclusion

Cellulose nanocrystals were successfully extracted from 
EVPSF’s cellulose, a plentiful, inexpensive, and easily 
accessible material. The present study looked at how the 
functional group, size, surface charge, chemical compo-
sition, morphology, thermal properties, and crystallinity 
of EVPSF changed during mechanical and chemical pre-
treatment, and sulfuric acid hydrolysis, as well as how the 
hydrolysis condition affected the yield and properties of 
CNCs. The efficient and progressive removal of hemicellu-
lose and lignin from the biomass resulted in a high amount 
of cellulose, which facilitates the subsequent extraction of 
CNCs. Chemical pretreatments and sulfuric acid hydroly-
sis conditions have a significant impact on CNC yield. 
Proper reaction conditions for both chemical pretreatment 
and acid hydrolysis of cellulose are thus critical considera-
tions for obtaining good CNCs yield and properties. The Ta
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results for various characterizations show that EVPSF is 
an effective, sustainable, and renewable source for cellu-
lose nanocrystal isolation. The optimum hydrolysis values 
for sulfuric acid concentration, hydrolysis temperature, 
and time for CNCs isolation were 51% wt., 52 °C, and 
51 min, respectively. The obtained cellulose nanocrystals’ 
good thermal stability, nano-size diameter, and high CI 
indicate a significant potential for use as reinforcement in 
polymeric composites for a variety of applications.
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