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Abstract
Optimal conditions for the production of oligosaccharides from sacha inchi shell (SL) and defatted kernel cake (KC) were 
studied by combining chemical and enzymatic treatments. Growth enhancement of Lactobacillus spp. and resistance to 
digestion under simulated gastrointestinal conditions were also assessed. SL and KC powders were subjected to alkali, del-
ignification, and combined alkali and delignification pretreatments. The pretreated materials were then hydrolyzed by the 
commercial cellulases cellulase SS (CSS) and cellulase XL-531 (CXL). Pretreating SL with delignification and pretreating 
KC with alkali before hydrolysis by CSS gave the highest content of reducing sugars and various types of oligosaccharides. 
Response surface methodology gave optimized conditions for SL oligosaccharide (SLO) as 60 °C, 4 h, and pH 5.14 with an 
enzyme concentration of 1.52% (v/v), while optimized KC oligosaccharide (KCO) was recorded at 45.68 °C, 4.5 h, and pH 
4 with an enzyme concentration of 1.05% (v/v). The crude oligosaccharides were then purified by Saccharomyces cerevisiae, 
which removed 80.80% and 99.97% of glucose from SLO and KCO, respectively. Both SLO and KCO profiles were analyzed 
by thin layer chromatography (TLC), containing cellobiose, xylobiose, and xylotriose. The oligosaccharides were evaluated 
for their prebiotic properties—enhancement of the growth of Lactobacillus brevis, L. delbrueckii subsp. bulgaricus, and L. 
plantarum. SLO stimulated probiotic growth more than KCO. The oligosaccharides also promoted growth of L. brevis, with 
a highest specific growth rate similar to that of commercial xylo-oligosaccharides. SLO withstood in vitro digestion (77.89% 
being retained), demonstrating the prebiotic potential of SL for oligosaccharide production.
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1 Introduction

Sacha inchi (Plukenetia volubilis L.) is a perennial plant of 
the Euphorbiaceae family. The fruits are green and ripen 
to blackish brown with capsules of four to seven lobes. 
Sacha inchi seeds have protein content of 27% and oil con-
tent of 35% to 60%. The oil is rich in essential fatty acids 
including omega-3, omega-6, vitamin A, and vitamin E 
with widespread industrial oil extraction [1]. Following 
the sacha inchi oil squeezing process, the remaining by-
products such as sacha inchi shells (SL) and defatted ker-
nel cake (KC) account for up to 50% of the raw material, 
with no current value-added benefits.

Recently, research has focused on extraction of the pro-
tein in sacha inchi by-products that are also high in fiber. 
SL contains 85.45% fiber, while KC contains 25.26%, but 
research to support the utilization of dietary fiber from 
these by-products is lacking [2]. Nondigestible carbo-
hydrates, including dietary fiber, oligosaccharides, and 
resistant starch, serve a variety of physiologic activities, 
and many nondigestible carbohydrates have an effect on 
well-being, improved health and disease prevention [3]. 
Soluble and insoluble dietary fibre from plants consists of 
lignocellulosic material such as wheat straw, corn stove, 
orange peel, cassava, and almond shell and can be con-
verted into oligosaccharides as prebiotic ingredients. A 
prebiotic can be defined as a functional food, carbohy-
drate or non-carbohydrate, that withstands digestion and 
absorption in the upper gastrointestinal tract, encourages 
beneficial microorganisms as probiotics in the colon, and 
provides health benefits in the gastrointestinal tract and 
throughout the body [4]. The gut microbial diversity could 
be changed according to the nutritional behavior [5]. The 
essential final components of carbohydrate metabolism are 
short-chain fatty acids, in particular acetic acid, propionic 
acid, and butyric acid, which are fermented by probiotics 
and used as an energy source by the host organism.

Oligosaccharides can be produced by three different 
methods, the isolation of plant resources, enzymatic syn-
thesis, and enzymatic hydrolysis of polysaccharides [6]. 
Using enzymes and chemically assisted treatment are good 
ways to produce large amounts of high-purity oligosac-
charides due to specific site activity [7]. Lignocellulosic 
materials mainly consist of the three polymers cellulose, 
hemicellulose, and lignin. These polymers are inter-asso-
ciated in a complex hetero-matrix formed by intrapolymer 
and interpolymer linkages, connected by strong bonds that 
are highly resistant to attack by enzymes. The pretreatment 
process is one of the steps in the conversion of lignocellu-
lose to oligosaccharides by increasing the surface contact 
area of the material, making it more accessible to enzy-
matic reactions that increase sugar yields with high-purity 

oligosaccharide production. This research investigated the 
optimal conditions for producing oligosaccharides from 
SL and KC by combining chemical and enzymatic treat-
ments. Growth enhancement of Lactobacillus spp. and 
resistance to digestion under simulated gastrointestinal 
conditions were also assessed.

2  Materials and methods

2.1  Materials

SL and KC were obtained from The Ultimate Bangkok Ltd., 
Thailand. The materials were ground and passed through a 
60-mesh sieve. The samples were then dried at 50 °C until 
the moisture content was lower than 10% (w/w). Commer-
cial cellulase SS and cellulase XL-531 were purchased from 
Nagase ChemteX Corporation, Tokyo, Japan. All chemicals 
and solvents used in this study were of analytical grade.

2.2  Chemical and structural carbohydrate 
composition analysis

The methods of the Association of Official Analytical Chemists 
were used to determine the moisture, crude fiber, protein, fat, ash, 
and carbohydrate content [8]. Holocellulose and insoluble lignin 
were assessed by the TAPPI T222 om-98 method. Determination 
of structural carbohydrates in SL followed the National Renew-
able Energy Laboratory method. In brief, 400 mg of SL was 
mixed with 4.5 mL of 72% sulfuric acid and ground for 30 min. 
The solution was added to 85 mL of distilled water and heated in 
an autoclave at 121 °C for 1 h. After completion, the hydrolysate 
was cooled and filtered. Structural carbohydrate analysis was 
performed using barium carbonate to neutralize each sample to 
pH 5.0–6.0 and then passed through a 0.45 μm cellulose acetate 
membrane. Next, HPAEC-PAD analysis was performed. Briefly, 
a Dionex CarboPac PA-1 column (250 mm × 4 mm) with a guard 
column (50 mm × 4 mm) was used at a flow rate of 1.0 mL/min. 
The post-column pump had a controlled flow rate of 0.5 mL/
min. A stepwise linear gradient was applied over 20 min. Peaks 
of monosaccharides were assigned using xylose (Merck), arab-
inose (Sigma), mannose (Merck), galactose (Sigma), and glucose 
(Sigma) standards at 1–5 ppm.

2.3  Pretreatment methods

For the alkali pretreatment method, SL and KC powders 
were soaked in 0.5 M sodium hydroxide solution at a ratio 
of 1: 10 with continuous stirring for 6 days and then washed 
with distilled water three times and filtered through a mesh 
sieve filter. The pH was adjusted to neutral by 1 M hydro-
chloric acid followed by drying at 50 °C [9].



6837Biomass Conversion and Biorefinery (2024) 14:6835–6848 

1 3

For the delignification method, 50 g of SL and alkali-
pretreated SL powder were applied to 1600 mL of distilled 
water, and the mixture was stirred to ensure uniformity for 
15 min. Then, 10 mL of acetic acid and 30 g of sodium 
chlorite were added to the suspension every hour, eight times 
with continuous stirring. The suspension was placed in a 
water bath at 70 °C in a chemical hood to contain chlo-
rine dioxide gas from the reaction of lignin in the SL. The 
delignified suspension was soaked in a cold-water bath for 
20 min, then filtered to separate the liquid, and washed with 
hot water 3–4 times until the sample became white. Finally, 
the sample was precipitated twice with 95% ethanol and 
once with acetone before drying at 50 °C.

For deproteinization, KC and alkali-pretreated KC pow-
der were added to distilled water at a ratio of 1: 10. The mix-
ture was adjusted to pH 9.0 with 2 M sodium hydroxide and 
soaked for 2 h. The pH was then adjusted to neutral with 1 M 
hydrochloric acid followed by drying at 50 °C.

All pretreated samples were also hydrolyzed with com-
mercial cellulase to determine whether the pretreatment 
process improved oligosaccharide production. The com-
mercial cellulases used in this study were cellulase SS 
(CSS) and cellulase XL-531 (CXL) (Nagase ChemteX 
Corporation, Japan). CSS contains cellulase, β-glucanase, 
β-1,3 glucanase, and xylanase (1936 U/g, 394,575 U/L, 
535 U/L, and 755 U/g, respectively), while CXL contains 
cellulase, β-1,3 glucanase, and xylanase (1559 U/g, 995 
U/L, and 1451 U/g, respectively). In brief, pretreated sam-
ples were added to 1 M sodium acetate buffer pH 5.0 at 
a ratio of 1: 20. The commercial cellulases were used at 
an enzyme concentration of 0.5% (v/v) and incubated at 
50 °C with continuous shaking at 170 rpm for 0, 8, and 
24 h. Next, the reducing sugar content was analyzed using 
the colorimetric dinitrosalicylic acid (DNS) method with 
glucose as a standard [10]. The sugar profile was analyzed 
using thin layer chromatography (TLC) performed on 
Merck TLC silica gel 60 (20 × 20 cm aluminum sheets). 
The plates were developed once with 1-butanol: acetic 
acid:water in the ratio 2: 1: 1. Spots were verified by spray-
ing with 10% sulfuric acid in ethanol with 0.2% orcinol 
and then heated at 110 °C and compared with standard 
mixtures of the xylo-oligosaccharides (XOS) xylobiose 

 (X2), xylotriose  (X3), xylotetraose  (X4) and xylopentaose 
 (X5) (Wako, Japan), cellobiose  (C2) (Sigma), and glucose 
(G) (Megazyme, Ireland).

2.4  Optimization of oligosaccharide production

For oligosaccharide production, temperature, time, pH, 
and enzyme concentration were considered important fac-
tors influencing sugar production. A Box–Behnken design 
(BBD) was used to investigate the interaction between the 
studied parameters affecting the amount of sugar gener-
ated. The BBD experiments were established based on ref-
erences, with maximum and minimum values for tempera-
ture  (F1), time  (F2), pH  (F3), and enzyme concentration 
 (F4) [11]. BBD coded values and experimental data for 
oligosaccharide production are presented in Table 1. Opti-
mal conditions producing the highest sugar yields were 
determined using response surface methodology (RSM). 
The calculations were carried out using Design Expert 7.0. 
The four distinct variables were studied at the same con-
centration of substrate (50 mg/mL) in 1 M sodium acetate 
buffer. After completion, the crude oligosaccharide was 
freeze-dried and analyzed for reducing sugar content using 
the DNS method.

2.5  Purification of oligosaccharides

Saccharomyces cerevisiae (TISTR 5019) and Candida 
pulcherrima (JCM 1631) were used for the purification 
of crude oligosaccharides. Briefly, 1% of 6 log CFU/
mL initial starter culture was added to yeast and mould 
medium consisting of 0.4% peptone, 0.1% yeast extract, 
0.1% potassium dihydrogen phosphate, and 0.05% mag-
nesium sulfate in 100 mL of distilled water. The culture 
was incubated at 30 °C for 24–72 h. After completion, 
the culture was centrifuged at 6000  rpm to separate 
the cells, filtered through a 0.2 μm filter syringe, and 
freeze-dried. The purified oligosaccharide was analyzed 
for sugar profile by TLC and for monosaccharide con-
tent by HPAEC.

Table 1  Levels of variables 
for construction of the Box–
Behnken design

SL, sacha inchi shell; KC, defatted sacha inchi kernel cake

Factor Variation Levels (SL) Levels (KC)

 − 1 0  + 1  − 1 0  + 1

Temperature (°C) F1 40 50 60 40 50 60
Time (h) F2 4.0 8.0 12.0 0.5 2.5 4.5
pH F3 4.0 5.0 6.0 4.0 5.0 6.0
Enzyme concentration (v/v) F4 0.75 1.25 1.75 0.25 0.75 1.25
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2.6  Evaluation of prebiotic properties

2.6.1  Growth enhancement of lactic acid bacteria

The probiotics used in this research were strains of Lactobacil-
lus spp.: Lactobacillus plantarum  (JCM1149T), Lactobacillus 
delbrueckii subsp. bulgaricus (JCM1002), and Lactobacillus 
brevis (TISTR860). Activated Lactobacillus spp. were added 
to modified 1% (v/v) De Man, Rogosa, and Sharpe medium 
(MRS) consisting of 10 g of peptone, 10 g of beef extract, 5 g 
of yeast extract, 2.6 g of dipotassium hydrogen phosphate, 5 g 
of sodium acetate, 1.7 g of ammonium monohydrogen citrate, 
0.2 g of magnesium sulfate, 0.05 g of manganese sulfate, and 
1 mL of Tween 80 in 1000 mL of distilled water. The obtained 
oligosaccharide was used as a carbohydrate source instead of 
dextrose. Glucose was used as a positive control and modified 
MRS without a carbohydrate source was used as a negative 
control. Each carbohydrate source was added at 2% (w/v) to 
modified MRS and compared to commercial XOS. The culture 
medium was incubated at 37 °C for 48 h, and optical density 
was measured at 600 nm every 10 min. The culture medium 
was spread in MRS agar to determine the microbial growth 
curve at 0–40 h incubation time.

2.6.2  Resistance to digestion under simulated human 
gastrointestinal tract conditions

Simulated gastric fluid buffer (SGF) and simulated intestinal 
fluid buffer (SIF) were prepared as described by Hongpatta-
rakere et al. [12]. Ten milliliters of the obtained oligosaccha-
ride and commercial XOS (2%, w/v) were mixed with 7.5 mL 
of SGF buffer and 1.6 mL of 25,000 U/mL pepsin. The pH 
of these mixtures was adjusted to 2.0 with 1 M HCl, and they 
were incubated at 37 °C for 2 h. Then, 20 mL of the mixtures 
was mixed with 11 mL of SGF buffer, 0.5 mL of 800 U/mL 
porcine pancreatin, and 2.5 mL of 160 mM bile salt. The pH of 
these mixtures was adjusted to 6.9 with 1 M NaOH, and they 
were incubated at 37 °C for 2 h. All samples were collected at 2 
and 4 h and analyzed for reducing sugar content using the DNS 
method and for total sugar [13] content using the phenol–sulfu-
ric acid method. The percentage of hydrolysis is calculated as

2.7  Experimental design and statistical analysis

A completely randomized design (CRD) with three rep-
lications and analysis of variance (ANOVA) were used 
to compare mean values by Duncan’s multiple range test 
(DMRT) at 95% confidence level.

(1)%hydrolysis =
(final reducing sugar − reducing sugar released) × 100

total sugar content − initial reducing sugar content

3  Results and discussion

3.1  Chemical and carbohydrate composition 
of sacha inchi residues

The chemical composition of sacha inchi residues was deter-
mined (Table 2). SL contained 47.20% carbohydrate and 
37.20% fiber, consisting of 0.14% soluble fiber and 37.06% 
insoluble fiber. KC contained protein and fat as the major 
components. Sathe et al. [14] reported the extraction of pro-
tein from sacha inchi seeds to produce a protein powder to 
increase its value. KC contained 7.17% fiber consisting of 
1.39% soluble fiber and 5.78% insoluble fiber. The composi-
tion of SL is substantially less well known compared to KC. 
de Souza et al. [15] reported that the seed shell of sacha 
inchi contains 1.24% total lipids and is low in saturated 
fatty acids and high in α-tocopherol, consisting of n-3 fatty 
acids at 438.7 mg/g of total lipid. Sacha inchi shell biomass 
extract has been used to synthesize silver nanoparticles with 
silver nitrate solution [16]. Sacha inchi shells are high in 
phenolic compounds and antioxidants; one study reported a 
total phenolic compound content of 74.56 mg/g, with con-
densed tannins (93.1%) accounting for the majority of the 
phenolic compounds in the shell [17]. The lipid content of 
sacha inchi oil press-cake is reported as 5–25%. Previous 
studies reported that sacha inchi oil press-cake contains pro-
tein 32–62% and 11.1–25.3% total dietary fiber [2, 18, 19]. 
Many researchers have studied the extraction of protein from 
sacha inchi KC. Chirinos et al. [20] reported that alkali and 
enzyme-assisted protein extraction from defatted sacha inchi 
cake meal provided a maximum protein yield of 46% at an 
enzyme (Alcalase 2.4L) concentration of 5.6%, extraction 

Table 2  Chemical and carbohydrate composition (mean and standard 
deviation) of SL and KC

SL, sacha inchi shell; KC, defatted sacha inchi kernel cake

Composition Content (wt%)

SL KC

Moisture 8.51 ± 0.25 5.44 ± 0.10
Ash 1.44 ± 0.05 4.28 ± 0.03
Fat 1.55 ± 0.34 26.85 ± 0.16
Protein 4.10 ± 0.23 35.99 ± 2.81
Carbohydrate 47.20 20.27
Fiber 37.20 ± 0.75 7.17 ± 0.15
Soluble fiber 0.14 1.39
Insoluble fiber 37.06 5.78
Lignocellulose
Cellulose 13.37 ± 0.06 17.71 ± 0.18
Hemicellulose 12.17 ± 0.07 3.18 ± 0.17
Lignin 16.56 ± 0.48 -
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time of 40.4 min, meal: solvent ratio of 1: 50 (w/v), pH 9.0, 
and 50 °C. The essential amino acid composition of sacha 
inchi press-cake includes lysine, histidine, and leucine as 
well as high amounts of isoleucine, valine, tryptophan, and 
phenylalanine [19]. Sacha inchi hydrolysates obtained with 
Alcalase-Neutrase for 4 h at 50 °C demonstrated the lowest 
ACE inhibition and  IC50 value, with high antioxidant activ-
ity determined by the 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) method of 1.19 μmol Trolox equivalent/mg 
[1]. However, the literature contains no evidence of the use 
of dietary fiber from sacha inchi residue from sacha inchi 
oil manufacturing.

Lignocellulose is the most abundant biopolymer found 
in waste biomass and is commonly used for biofuel pro-
duction. The transformation of lignocellulose into func-
tional sugar depends on its nutritional properties. Hence, 
this study focused on the oligosaccharides obtained from 
lignocellulose degradation of sacha inchi residues. SL con-
sisted of 13.37% cellulose and 12.17% hemicellulose, and 
KC consisted of 17.71% cellulose and 3.18% hemicellu-
lose, while lignin was 16.56% of SL but not found in KC. 
The results showed that cellulose was the main component 
of SL and KC. Commercial cellulase enzymes are used 
in the production of oligosaccharides. Table 2 shows the 
chemical composition of sacha inchi residues. SL con-
tained high amounts of lignin (16.56%), and this should 
be removed before the production of oligosaccharides. 
Conversely, KC did not contain lignin, but the protein 
in KC should be eliminated. Therefore, selection of the 
pretreatment method is critical to maximize the conver-
sion of lignocellulosic materials into sugars by enzymatic 

hydrolysis [21]. Previous reports indicate that an alkaline 
reagent improves the degradation of lignocellulose [22].

The monosaccharide composition of sacha inchi resi-
dues is shown in the HPAEC chromatogram (Fig. 1). SL 
consisted of two main monosaccharides, glucose (14.49%), 
and xylose (5.90%), while KC consisted of 3.68% glucose 
and 1.27% arabinose. Glucose was the main component 
in SL and KC. As a result, the predicted oligosaccharides 
produced were divided into three categories: cello-oligo-
saccharide, XOS, and arabinoxylo-oligosaccharide. Poly-
saccharides previously extracted from sacha inchi seeds 
consisted of 69.76% glucose, 14.86% mannose, 10.53% 
arabinose, 2.42% galactose, 1.23% ribose, 0.27% rhamnose, 
and 0.93% xylose [23]. Non-isothermal autohydrolysis of 
peanut shells at 210 °C presented an XOS yield of 48.24% 
[24]. Almond shells have a high xylan content, with an 
XOS yield of 63% for autohydrolysis at 190 °C for 19 min 
[25]. The highest XOS production reported in the litera-
ture was achieved from hazelnut shell by autohydrolysis at 
190 °C for 15 min, yielding 62% of the initial xylan [26].

3.2  Effect of pretreatment on reducing sugar 
content and sugar profile

Because of differences in their chemical composition, the 
methods of pretreating SL and KC were specific, as shown in 
Table 2. SL pretreated with alkali appeared as a dark-brown 
powder, while SL pretreated by delignification and alkali-
delignification was a light powder (Fig. 2a–c). KC pretreated 
with alkali gave a light-brown powder and deproteinization 
provided a light-yellow powder while alkali-deproteinization 

Fig. 1  HPAEC chromatograms showing monosaccharide compositions of SL (a) and KC (b)
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provided a dull-brown powder (Fig. 2d–f). Pretreatment is 
an important stage in the cellulose and hemicellulose con-
version process since it prepares the cellulosic components 
for enzymatic reaction [21]. During lime pretreatment at 
mild temperatures of 60–90 °C, lignin and hemicellulose 
were preferentially removed but cellulose was unaffected. 
Alkali pretreatment generally requires lower temperatures, 
pressures, and residence periods depending on the nature of 
the biomass feedstock, particularly its lignin content [27]. 
Saponification of intermolecular ester linkages, cross-con-
nected xylan hemicelluloses and other components during 
alkaline hydrolysis, and the porosity of the lignocellulosic 
biomass increase as the cross links are removed [28]. Alkali 
pretreatment increases the susceptibility of poplar wood to 
enzymatic hydrolysis due to partial degradation of the lignin 
which prevents cellulase penetrating the biomass [29]. Fur-
thermore, alkali treatment decomposes lignin preferentially 
without affecting the polysaccharide component of lignocel-
lulose [30]. According to Zheng et al. [31], 6% w/w NaOH 
is the strongest alkali chemical, achieving an 85% increase 
in glucose yield by enzymatic hydrolysis from rice straw 
in 24 h at 25 °C. Delignification with sodium chlorite has 
been studied to reduce the lignin content of lignocellulosic 
material. Enzymatic hydrolysis improves with an increase of 
accessible pore capacity to a specific majority after removal 
of lignin by sodium chlorite delignification. Sodium chlorite 
delignification results in substantial enzymatic conversion 
when the lignin content is reduced to 15%, corresponding to 
0.30–0.35 g/g accessible pore volume in forest biomass [32].

Pretreated SL and KC were used as precursors for the 
production of oligosaccharides by CSS and CXL. Increasing 
the incubation time increased the reducing sugar content in 
all samples. The reducing sugar content of SL pretreated 

with alkali, delignification, and alkali-delignification then 
hydrolyzed with CSS for 24 h was 2655.0, 84,900.0, and 
9025.0 ppm, respectively, while hydrolysis with CXL gave 
3552.5, 6077.5, and 5630.0 ppm, respectively (Table 3). 
SL pretreated by delignification had the highest reducing 
sugar content, followed by that pretreated with alkali-del-
ignification, while SL pretreated with alkali provided the 
lowest reducing sugar content. Delignification pretreatment 
removed 44.2% of the lignin content and gave a yield of 
84.0% (data not shown). The reducing sugar content of KC 
pretreated with alkali, deproteinization, and alkali-depro-
teinization then hydrolyzed with CSS for 24 h was 20,680.0, 
6805.0, and 7105.0 ppm, respectively, while hydrolysis with 
CXL gave 11,510.0, 12,010.0, and 7130.0 ppm, respectively. 
KC pretreated with alkali had the highest reducing sugar 
content, followed by that subjected to deproteinization and 
alkali-deproteinization, respectively. Alkali pretreatment 
removed 94.2% of the protein content (data not shown).

Oligosaccharide profiles were observed by TLC (Fig. 3). 
Fewer monosaccharides should be present in the optimal 
oligosaccharide profile because monosaccharides can be 
absorbed in the small intestine and used by pathogens in the 
colon, resulting in fewer prebiotic properties. SL pretreated 
with delignification and alkali-delignification produced oli-
gosaccharides with a degree of polymerization (DP) greater 
than 2, while the main product of SL pretreated with alkali 
was DP 2 oligosaccharide. By contrast, KC pretreated with 
alkali and hydrolyzed with CSS gave the highest reduc-
ing sugar content and an oligosaccharide DP greater than 
2. Furthermore, the two commercial enzymes used in this 
study were compared. CSS provided greater oligosaccha-
ride variety than CXL, while monosaccharide amounts were 
lower with both materials. The different composition of the 

Fig. 2  SL images pretreated 
with alkali (a), delignification 
(b), and alkali-delignification 
(c), and KC pretreated with 
alkali (d), deproteinization (e), 
and alkali-deproteinization (f)
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commercial enzymes caused the variety of oligosaccha-
rides produced, with CSS containing cellulase, glucanase 
and xylanase, and CXL containing mostly cellulase and 
xylanase. Thus, SL pretreated with delignification and KC 
pretreated with alkali hydrolyzed by CSS, having the highest 
reducing sugar content and lower monosaccharide content, 
were further optimized for effective oligosaccharide produc-
tion by RSM. However, the purity of the oligosaccharides 
was reduced due to the presence of monosaccharides that 
have reduced prebiotic potential because of their ability to 
rapidly absorb through the upper part of the small intestine 
[33]. Díaz et al. [34] reported that enzymatic hydrolysis of 
banana pseudostem pulp provides the highest cello-oligosac-
charide content using a low dosage of cellulase, slowing the 

rate of glucose production. As a result, reducing the mono-
saccharide content of the mixture is critical for improving 
the quality of the final oligosaccharide product from enzy-
matic hydrolysis [35, 36].

3.3  Optimization of oligosaccharide production 
by enzyme hydrolysis

The concentrations of reducing sugars obtained using the 
generated BBD experimental conditions for both SK and 
KC are reported in Supplementary Table 1. Concentra-
tion ranges of sugars from SL and KC, respectively, were 
8641.27–37,176.70 and 4913.23–20,514.30 ppm. Based on 
the experimental data and the resulting amount of sugars, 

Table 3  Reducing sugar content 
(mean and standard deviation) 
of pretreated SL and KC after 
hydrolysis by commercial 
cellulases

A–C Values with different superscript uppercase letters are significantly different for time of incubation
a–f Values with different superscript lowercase letters are significantly different for pretreatment method and 
commercial enzyme used (p < 0.05)
SL, sacha inchi shell; KC, defatted sacha inchi kernel cake; CSS, cellulase SS; CXL, cellulase XL-531

Raw material Pretreatment method Com-
mercial 
enzyme

Reducing sugar content (ppm)

0  hC 8  hB 24  hA

SL Alkali CSS 15.3 ± 0.0b 152.9 ± 0.1e 2655.0 ± 0.0d

CXL 15.3 ± 0.0b 152.8 ± 0.1e 3552.5 ± 0.0d

Delignification CSS 19.0 ± 0.0a 8490.0 ± 123.7a 84,900.0 ± 176.8a

CXL 17.8 ± 1.8a 6165.0 ± 53.0b 6077.5 ± 35.4c

Alkali-delignification CSS 15.3 ± 0.0b 5677.5 ± 70.7c 9025.0 ± 353.6b

CXL 15.3 ± 0.0b 1877.5 ± 35.36d 5630.0 ± 176.8c

KC Alkali CSS 81.5 ± 8.8a 7152.0 ± 141.1b 20,680.0 ± 35.4a

CXL 77.8 ± 7.1b 9340.0 ± 123.7a 11,510.0 ± 282.8c

Deproteinization CSS 69.9 ± 1.8c 1065.0 ± 17.7f 6805.0 ± 212.1e

CXL 76.5 ± 8.8b,c 1615.5 ± 53.0e 12,010.0 ± 707.1b

Alkali-deproteinization CSS 30.3 ± 3.5d 5677.0 ± 106.1d 7105.0 ± 141.4d

CXL 19.0 ± 1.8e 6640.0 ± 123.7c 7130.0 ± 176.8d

Fig. 3  TLC chromatograms of 
sugar profiles obtained from SL 
pretreated with alkali (a), delig-
nification (b), alkali-delignifi-
cation (c), and oligosaccharide 
obtained from KC pretreated 
with alkali (d), deproteinization 
(e), and alkali-deproteinization 
(f) after hydrolysis by commer-
cial cellulases at pH 5.0, 50 °C 
for 8, and 24 h. Lane 1, standard 
glucose; lane 2, standard cello-
biose; lane 3, mixture of stand-
ard XOS; lane 4, CSS at 8 h; 
lane 5, CXL at 8 h; lane 6, CSS 
at 24 h; lane 7, CXL at 24 h
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polynomial equations for reducing sugar production using 
SL and KC are presented as follows:

The RSM contour plots in Fig.  4 reveal the interac-
tion between the studied variables affecting the amount of 
reducing sugar. The contours were parabola-shaped with 
the crown identifying the maximum values of the produced 
sugar. The optimal values were in the middle of the gener-
ated contours, implying that the established BBD models 
are applicable for the investigation of optimal conditions. 
For oligosaccharide production using SL, the optimal con-
ditions were 60.00 °C, 4 h, pH 5.14, and an enzyme con-
centration of 1.52%, resulting in a reducing sugar content 
of 35,187.30 ppm (R2 0.9094; R2 adjusted 0.8036). Con-
versely, the optimal conditions for sugar production using 
KC were 45.68 °C, 4.5 h, pH 4.00, and an enzyme con-
centration of 1.05%, resulting in a reducing sugar content 
of 18,641.27  ppm (R2 0.9177; R2 adjusted 0.8217). To 
experimentally validate the optimization results, the sugar 
production processes were carried out using the obtained 

(2)

Y
SL

= −2.84 × 10
5 + 3520.86F1 + 12, 646.06F2 + 63, 184.26F3

+10, 815.38F4 − 263.33F1F2

+170.90F1F3 + 137.51F1F4 + 66.14F2F3

+1960.71F2F4 − 2190.48F3F4 − 24.17F
2

1

−193.45F2

2
− 6843.99F

2

3
− 193.45F

2

4

(3)

Y
SL

= −2.02 × 10
5 + 5290.16F1 + 21, 202.28F2 + 22, 448.20F3

+30, 084.41F4 − 151.91F1F2 + 64.86F1F3

+351.75F1F4 − 1465.08F2F3 − 3747.09F2F4

−1888.30F3F4 − 57.31F
2

1

−495.26F2

2
− 2159.04F

2

3
− 18, 228.48F

2

4

optimal conditions, resulting in a reducing sugar content of 
35,187.30 and 18,641.27 ppm, respectively, for SL and KC 
with error values of 0.84 and 3.22, respectively.

3.4  Purification of oligosaccharides

Impurities of SL oligosaccharide (SLO) and KC oligosac-
charide (KCO) included glucose and other monosaccharides. 
A biological approach was used in this study for purifica-
tion due to the low economic cost and ease of processing. 
Another method of purifying oligosaccharides is to use yeast 
to ferment unintended monosaccharide impurities into etha-
nol, which increases XOS purity [37]. S. cerevisiae and C. 
pulcherrima are two yeast strains that effectively use mono-
saccharides as a carbon source. Instead of glucose, 2% crude 
oligosaccharides were added to the yeast culture medium 
and incubated at 30 °C for 24–72 h. The glucose band on 
TLC disappeared in SLO purified with S. cerevisiae and 
was substantially reduced in SLO purified with C. pulcher-
rima (Fig. 5), while both yeasts removed the glucose band 
in KCO. Furthermore, the glucose band was still apparent 
after 1 day of incubation, while it was removed, and the 
other sugar profiles remained the same after 48 and 72 h of 
incubation (data not shown). S. cerevisiae is the most com-
monly used microorganism for industrial ethanol production 
from hexoses. It is also widely used as a cell factory to make 
advanced biofuels, chemicals, and pharmaceuticals. Accord-
ing to Lian et al. [38], S. cerevisiae utilizes 50 mM glucose 
and galactose completely within 24 h. S. cerevisiae has also 
been used to purify gluco-oligosaccharides, despite the fact 
that only the monosaccharide can be removed [39]. In a 
previous study, C. pulcherrima eliminated 6.5% of xylose 
within 4 days but did not assimilate xylobiose and the DP of 
the sugar remained constant [40]. As a result, S. cerevisiae 

Fig. 4  RSM contour plots for SL showing interaction between time  (F2) and pH  (F3) (a) and for KC showing interaction between temperature 
 (F1) and pH  (F3) (b) affecting the amount of sugar produced
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was employed for purification for 2 days due to its ability to 
remove the glucose in both SLO and KCO.

The purified SLO and KCO were analyzed for removal of 
monosaccharides by HPAEC. SLO contained glucose as a 
major monosaccharide (71.59% w/w), as shown in Table 4. 
Purification of SLO with S. cerevisiae removed 80.80% 
of the glucose and all of the mannose and galactose. SLO 
contained small amounts of xylose and arabinose that S. 
cerevisiae was unable to remove. KCO had total monosac-
charides less than SLO but also contained glucose as a major 
monosaccharide (43.24% w/w). Purification of KCO with S. 
cerevisiae removed all the glucose, mannose, and galactose, 
while xylose and arabinose were slightly reduced. Accord-
ing to Subtil et al. [41], D-glucose reduces the simultane-
ous utilization of pentoses primarily by inhibiting pentose 
uptake, while intracellular D-glucose does not inhibit pen-
tose utilization. D-glucose catabolism also impedes pentose 

utilization. L-arabinose utilization in S. cerevisiae has been 
accomplished through the use of multi-step oxidoreductive 
fungal or bacterial pathways. The fungal L-arabinose utiliza-
tion pathway, like the fungal D-xylose utilization pathway, 
employs NADPH- and NADH-dependent redox reactions, 
resulting in severe co-factor imbalances [42].

3.5  Prebiotic properties of obtained 
oligosaccharides

Purified SLO and KCO were used to promote the growth of 
three species of lactic acid bacteria, L. brevis, L. delbrueckii 
subsp. bulgaricus, and L. plantarum. Lactic acid bacteria 
were cultured in modified MRS medium at 37 °C for 48 h, 
and absorbance was measured at 600 nm every 10 min. 
Glucose, originally contained in normal MRS medium, was 
replaced by SLO, KCO, and commercial XOS. The posi-
tive control was normal MRS, and the negative control was 
modified MRS without a carbon source. The positive control 
provided the highest specific growth rate for all lactic acid 
bacteria, followed by commercial XOS and SLO, while KCO 
had a low specific growth rate similar to that of the nega-
tive control (Table 5). L. brevis is found in milk, cheese, 
sauerkraut, sour bread, silage, cow manure, feces, and the 
oral and digestive tracts of humans and rats [43]. It is one 
of the few lactobacilli known to be capable of growing on 
and using XOS of low molecular weight [44, 45]. L. brevis 
displays high growth with XOS consumption, preferring an 
average DP of 2 for XOS [46]. L. brevis strains also grow 
well on isomalto-oligosaccharide but growth is lower than 
on XOS [47]. L. plantarum is found in various foods and in 
the human gastrointestinal tract [48]. L. plantarum cultured 
with malto-oligosaccharides grows better than that cultured 
in fructo-oligosaccharides or galacto-oligosaccharides [49]. 
L. plantarum prefers to hydrolyze DP7 isomalto-oligosac-
charides to produce DP5, rather than using oligosaccharides 

Fig. 5  TLC chromatograms of sugar profiles obtained from crude 
SLO and KCO after purification by fermentation with S. cerevisiae 
and C. pulcherrima at 30 °C for 48 h. Lane 1, standard glucose; lane 
2, standard cellobiose; lane 3, mixture of standard XOS; lane 4, crude 
SLO; lane 5, SLO purified by S. cerevisiae; lane 6, SLO purified by 
C. pulcherrima; lane 7, crude KCO; lane 8, KCO purified by S. cer-
evisiae; lane 9, KCO purified by C. pulcherrima 

Table 4  Monosaccharide content before and after purification by S. 
cerevisiae for 48 h

SLO, sacha inchi shell oligosaccharide; KCO, defatted kernel cake 
oligosaccharide

Sugar Monosaccharide content (%wt)

SLO Purified SLO KCO Purified KCO

Glucose 71.59 13.75 43.24 0.02
Mannose 1.81 0.00 2.13 0.00
Galactose 6.75 0.00 0.17 0.00
Xylose 6.67 5.93 1.12 1.03
Arabinose 0.05 0.04 0.17 0.14

Table 5  Specific growth rate (mean and standard deviation) of lactic 
acid bacteria cultured with SLO and KCO at 37 °C for 48 h

1 Normal MRS medium; 2MRS medium without carbon source
a–e Values with different superscript letters indicate a significantly 
different specific growth rate of Lactobacillus spp. on each carbon 
source (p < 0.05)

Carbon source Specific growth rate

L. brevis L. delbrueckii 
subsp. bulgaricus

L. plantarum

Glucose1 0.27 ± 0.01a 0.20 ± 0.01a 0.22 ± 0.01a

Negative  control2 0.03 ± 0.01d 0.02 ± 0.00e 0.01 ± 0.00e

Commercial XOS 0.20 ± 0.01b 0.15 ± 0.01b 0.18 ± 0.01b

SLO 0.09 ± 0.01c 0.08 ± 0.01c 0.07 ± 0.01c

KCO 0.03 ± 0.02d 0.03 ± 0.00d 0.03 ± 0.00d
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with a low DP [50]. The strain L. delbrueckii subsp. bulga-
ricus is used industrially for yogurt production [51]. Growth 
of L. delbrueckii subsp. bulgaricus strains is significantly 
different on oligosaccharides with different DPs and includ-
ing gluco-oligosaccharides, fructo-oligosaccharides, and 
galacto-oligosaccharides [52].

As a result, SLO was chosen to investigate the growth 
curve of the three lactic acid bacteria. The three species of 
cultured lactic acid bacteria were sampled to count the num-
ber of cells using the spread plate technique. The highest 
number of L. brevis cells was cultured in glucose, followed 
by SLO, commercial XOS, and the negative control (9.0, 8.2, 
8.1, and 5.7 log CFU/mL, respectively), while the growth 
of L. delbrueckii subsp. bulgaricus and L. plantarum on 
SLO was similar to that on the negative control (Fig. 6a–c). 
In comparison to other species, L. brevis is substantially 
promoted by XOS produced from rice by-products utilizing 
hydrothermal treatment-assisted enzymatic hydrolysis [53]. 
In addition, L. brevis cultured in glucose has a log phase 
between 10–14 h, whereas SLO and commercial XOS have 
faster log phases at 8–12 h. When bacteria reach the sta-
tionary phase, the substrate becomes depleted, which may 
result in a lower number of L. brevis cells being promoted 
by SLO and commercial XOS than glucose [54]. XOS pro-
duced from microwave-assisted enzymatic hydrolysis of 
rice straw supports L. brevis growth at a slower rate when 
compared to glucose, but with the same population in the 
stationary phase [55]. Lactic acid bacteria can produce lac-
tic acid associated with their growth rate; thus, probiotics 
with a fast log phase can inhibit pathogen activity rapidly 
[56]. L. brevis produces significant amounts of lactate dur-
ing cell growth, with linear arabino-oligosaccharides and 
debranched sugar beet arabinan after 48 h [57]. Spent coffee 
ground polyphenol extracts can induce the growth of L. bre-
vis as a unique carbon source at a similar level to dextrose, 
which has a high total phenolic content with antioxidant 
and anti-pathogenic activity [58]. L. brevis strains exhibit 
a higher survival rate in gastric conditions and antimicro-
bial activity against various foodborne pathogens includ-
ing Listeria monocytogenes, Escherichia coli O157:H4, 
Staphylococcus aureus, and Salmonella Enteritidis [59]. 
Brevicin is a natural biopreservative produced by L. brevis 
NS01, which presents good antimicrobial activity [60]. A 
previous study reported final populations of L. brevis and 
L. plantarum fermented with soybean milk after 24 h of 
8.98 and 9.03 log CFU/mL, respectively [61]. L. plantarum 
has good probiotic properties and can tolerate the simulated 
digestive tract environment. It can metabolize and synthesize 
bacteriocins, which have a strong inhibitory effect on the 
growth of both Gram-positive and Gram-negative bacteria 
[62]. The growth of L. plantarum is rapid between 24 and 
48 h of fermentation and produces 3-phenyllactic acid, an 
antifungal compound with high activity [63]. Although the 

heat sensitivity of L. plantarum was increased under a severe 
food process, pressurized carbon dioxide treatment [64], oli-
gosaccharides could enhance growth rate and stress toler-
ance of the beneficial bacteria [65]. L. delbrueckii subsp. 
bulgaricus induces growth of neoagaro-oligosaccharides and 
fructo-oligosaccharides at a concentration of 7.2 log cfu/
mL [66]. Oligosaccharides extracted from soy sauce lees 
strongly promote the proliferation of L. delbrueckii subsp. 
bulgaricus, with the concentration reaching 9.67 log cfu/mL 
[67]. The antimicrobial substances of L. delbrueckii subsp. 
bulgaricus are specific against Gram-negative bacteria [68].

A 2% (w/v) concentration of SLO solution was continu-
ously tested for resistance to digestion in simulated gas-
trointestinal conditions; 90.4% of commercial XOS with-
stood simulated digestion, while 83.66% of SLO remained 
undigested in the stomach simulation system, and 77.89% 
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Fig. 6  Growth of L. brevis (a), L. delbrueckii subsp. bulgaricus (b), 
and L. plantarum (c) on oligosaccharides obtained from SL (triangle) 
compared with glucose (diamond), non-carbon source (circle), and 
commercial XOS (box) at 37 °C for 40 h
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remained undigested in the small intestine simulation system 
(Fig. 7a). The sugar type was determined using the TLC 
technique after SLO was digested under acidic and enzy-
matic simulated human gastrointestinal conditions for 0, 2, 
and 4 h. Digested oligosaccharides had a 2–3 times higher 
DP than undigested oligosaccharides (Fig. 7b). The stom-
ach plays a greater role in hydrolysis via hydrochloric acid, 
which hydrolyzes the carbohydrate structure randomly [69]. 
Pancreatic amylase is the major carbohydrate-hydrolyzing 
enzyme in the intestine [70]. Pancreatic amylases degrade 
the α-1,4-glycosidic linkages of linear glucans to maltose 
[71]. Brush border enzymes in the mammalian small intes-
tine also hydrolyze α-1,4- and α-1,6-glycosidic linkages 
[72]. Cello-oligosaccharides have β-1,4-glycoside linkages 
formed by linear D-gluco-oligomers, which involve glyco-
side linkages largely resistant to hydrolytic degradation by 
human digestive enzymes [73]. Various microorganisms 
express these enzymes either singly or associated in a mac-
romolecular complex known as the cellulosome [74]. Nev-
ertheless, cello-oligosaccharides enhance cell density by up 
to 4.1 times in Clostridium butyricum, Lactococcus lactis 
subsp. lactis, L. paracasei subsp. paracasei, and L. rham-
nosus, with reduced efficiency for Bifidobacterium sp. [75]. 
Cello-oligosaccharide is effectively expressed in lactic acid 
bacteria and shows direct production of D-lactic acid with 
lengths ranging from cellobiose to cellohexaose [76].

4  Conclusions

Sacha inchi by-products from the oil industry are lignocel-
lulosic materials that can be used for polysaccharide con-
version. Oligosaccharides are by-products of polysaccharide 
conversion that have functional properties and can increase 
the value of these by-products. Oligosaccharides produced 
from various materials have potential for consumers, but 

information on production of oligosaccharides from sacha 
inchi by-products is limited. The key to oligosaccharide pro-
duction via enzymatic hydrolysis is lignocellulose pretreat-
ment, which breaks down the complex structure of the sub-
strate and increases the surface area for enzymatic catalysis. 
Because of their chemical composition, SL and KC require 
different pretreatment methods. SL and KC were able to pro-
duce oligosaccharides using commercial cellulases. A BBD 
experimental design was used to determine the optimal con-
ditions for oligosaccharide production. S. cerevisiae removed 
more than 80% of glucose from SLO and KCO. However, 
KCO was unable to promote lactic acid bacteria as a probi-
otic, whereas SLO was able to promote L. brevis at the same 
level as commercial XOS and withstand simulated digestion 
(90.4% was retained). The study results suggested that oligo-
saccharides with prebiotic properties can be produced from 
sacha inchi by-products.
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cial XOS (circle) (a) and sugar profile of SLO (b) after hydrolysis in 
in vitro simulated gastric phase and intestinal phase digestion. Lane 
1, standard glucose; lane 2, standard cellobiose; lane 3, mixture of 

standard XOS; lane 4, SLO; lane 5, SLO after incubation with simu-
lated gastric fluid; lane 6, SLO after incubation with simulated intes-
tinal fluid. G, glucose;  C2, cellobiose;  X2, xylobiose;  X3, xylotriose; 
 X4, xylotetraose; X5, xylopentaose
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