
Vol.:(0123456789)1 3

Biomass Conversion and Biorefinery (2024) 14:6333–6345 
https://doi.org/10.1007/s13399-022-02942-y

ORIGINAL ARTICLE

Dissociation of acid blue 113 dye from aqueous solutions using 
activated persulfate by zero iron nanoparticle from green synthesis: 
the optimization process with RSM‑BBD model: mineralization 
and reaction kinetic study

Peyman Pourali1,2 · Aylar Behzad2 · Ali Ahmadfazeli3 · S. Ahmad Mokhtari2 · Yousef Rashtbari2 · Yousef Poureshgh2 

Received: 15 February 2022 / Revised: 31 May 2022 / Accepted: 8 June 2022 / Published online: 18 June 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Dyes are one of the major environmental pollutants in the textile industry effluent. The Most of these compounds are toxic, 
carcinogenic, mutagenic, and biodegradable. In this study, the response surface method was used to determine the removal 
optimal conditions of acid blue 113 (AB 113) dye in the presence of nanoscale zero-valent iron (nZVI) particles as activa-
tors for persulfate (PS) and the mineralization rate of the dye were investigated. The structure and morphology of nZVI 
nanoparticles were investigated by using FTIR, FESEM, and XRD techniques. The experiments were evaluated based on 
the Box-Behnken design with five input parameters such as reaction time, pH, catalyst value (nZVI), PS value, and initial 
concentration of dye at three levels. Finally, the mineralization rate and kinetic studies were investigated to evaluate the 
oxidation process. The results of physicochemical analysis confirmed the accuracy of nZVI nanoparticle structure. Under 
optimal conditions, initial concentration of dye was 46 mg/L, pH = 3, reaction time was 50 min, catalyst dose = 0.08 g/L, 
PS = 0.14 g/L, and the removal rate obtained was 100%. The proposed model (quadratic) was confirmed by high correlation 
coefficient R2

Adj = (0.9724) and R2 = (0.9872). The results illustrated that the reaction kinetic conforms to the pseudo-first-
order model (0.9985). The present study showed that the radicals obtained from the activation of persulfate using nZVI 
nanoparticles have a high efficiency in the removal of AB 113 dye. The results indicated that under optimal conditions, the 
efficiency of TOC for oxidation of acid AB 113 dye was 79.37%.
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1  Introduction

Nowadays, dyes are widely produced in various industrial 
fields including the textile industry, food industry, leather 
industry, and pharmaceutical industry [1, 2]. Annually, about 
700,000 tons of dyes are produced all over the world, of 

which 15% of that amount has entered the environment with-
out any treatment process and about 70% of all of them are 
azo group dyes [3–5]. Meanwhile, acid blue 113 (AB 113) 
dye is considered one of the most widely used azo dyes in 
the textile industry due to its high photolytic stability, resist-
ance to microbial degradation, and high strength on fabrics 
[6, 7]. AB 113 dye has difficultly dissociated in natural envi-
ronment and has a high stability due to its aromatic rings and 
azo bond (-N = N-). On the other hand, the dyes of the azo 
group are known to be carcinogenic and mutagenic agents 
with toxic metabolites. In recent years, various methods have 
been proposed and used for the treatment of colored waste-
waters. Existing methods for dye removal include aerobic 
and anaerobic digestion, coagulation, advanced oxidation, 
combined chemical and biochemical processes, adsorp-
tion, and membrane treatment. Each of these methods has 
different removal efficiencies, advantages, disadvantages, 
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investment, and operating costs. The oxidation power for 
removing contaminants in the advanced oxidation process 
based on the production of hydroxyl free radicals (OH*) has 
been high that convert many organic chemical compounds 
into minerals. These radicals are unstable and highly active, 
which are produced through chemical or photochemi-
cal reactions at the site. Free radicals are strong oxidants 
that rapidly attack organic matter molecules and separate a 
hydrogen atom from the structure of organic matter [8–14].

Nowadays, the usage of persulfate as an oxidizing agent is 
expanding. Persulfate [15] is a non-selective anion, soluble 
and relatively stable at room temperature, and is the strong-
est oxidant of the peroxygen family. Its oxidation–reduc-
tion potential is 2.1 V and it is stronger than hydrogen 
peroxide (1.8 V) and permanganate (1.7 V) but is slightly 
weaker than ozone (2.2 V). In addition, the sulfate radi-
cal has more chance for reacting with organic compounds 
than the hydroxyl radical (20 ns) due to its longer durability 
(30–40 μs). PS and its resulting sulfate radicals have special 
and unique properties such as high kinetic velocity, greater 
stability compared with hydroxyl radicals, and less depend-
ence on natural organic matter, which itself has a greater 
impact on organic matter [16, 17]. Under atmospheric con-
ditions, the oxidation of PS does not have much effect on 
organic pollutants, but if heat, light, or certain metal ions 
are used as catalysts, the reaction of PS will significantly 
increase. The processes that occurred in the case of the use 
of PS are given in Eqs. 1 and 2 [18].

The advantages of using this oxidizer include high solu-
bility in aqueous environments, non-selective reactivity, 
relative stability at ambient temperature, reaction with most 
organic-based contaminants, and chemical stability in aque-
ous systems [19]. Hydroxyl radical and sulfate radical are 
both strong oxidants. The produced sulfate radical from PS 
can destroy a number of radical chain reactions in which 
organic matter presents [20]. As mentioned, one of the ways 
of activating PS is using metal ions such as iron and cobalt. 
Iron is considered to be atoxic, inexpensive, and effective. 
Reactions that occur in the presence of iron ion include the 
following reaction [21]. The following reaction shows the 
chemical activation of PS by an intermediate metal (Eq. 3).

Among metals, the most application is related to divalent 
iron (Fe2+), in which the large amounts of requirement, high 
production of sludge, and consumption of SO4

●− radicals in 
high concentrations are the main problems of this activator 
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[22]. Due to the problems associated with the usage of this 
activator, in this study, zero-valent iron nanoparticle (nZVI) 
was applied, which is able to act as a permanent source of 
Fe2+ and continuously enters iron into the reaction. The 
reaction of Fe৹ with PS is shown in the form of the follow-
ing reactions (Eqs. 4 and 5) [23, 24].

In 2021, Soubh et al. used the optimization process for 
the removal of methylene blue from aqueous solutions using 
activated persulfate by nano-scale zero-valent iron (nZVI) 
which is supported by reduced expanded graphene oxide 
(rEGO). The highest removal efficiency obtained with 
pH = 3, activating dose = 1.2 g/L, persulfate concentration 
of 0.576 g/L, and reaction time of 20 min was 96% [25]. 
The response surface method (RSM) is a powerful tool for 
statistical modeling that is performed by applying the least 
number of experimental experiments according to the exper-
iment design [26]. RSM is based on a nonlinear multivariate 
model that consists of a design of experiment for providing 
sufficient and reliable response values and subsequently a 
mathematical model that has the best fits with the informa-
tion obtained from the experimental design and determines 
the optimal value of the independent variables that produce 
the most or the least response [27–29]. Central points are 
a method for estimating and evaluating experiments’ error 
and measuring fitting weakness [30]. RSM itself has differ-
ent types and this statistical method can be used in various 
ways. One of its types is the Box-Behnken (BBD) method, 
which is a second-order design based on three-level incom-
plete factorial designs [31, 32]. This method can estimate 
the value of the parameters in a second-order model, make 
the required designs, and calculate the amount of the non-
conformance of parameter [15]. The aim of this study was 
the optimization of AB 113 dye removal in the zero-valent 
iron nanoparticle/persulfate process (nZVI @PS) by using 
a statistical model of the response procedure from aqueous 
environments.

2 � Method

2.1 � Required chemicals

AB 113 dye was provided as a precursor of colored pollutant 
from Alvan Sabet Hamedan Company and nZVI nanoparti-
cle was prepared by synthesis in the laboratory. The general 
characteristics of AB 113 dye are presented in Table 1 [6, 
33]. Also, H2SO4 and NaOH were prepared from Germany’s 
Merck Company with laboratorial degree of purity to adjust 
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the pH of the solution containing dye. It should be noted that 
double-distilled water was used in all stages of the experi-
ments [12].

2.2 � Preparation of nZVI nanoparticles by green 
synthesis method

Grape leaf was used to synthesize nanoparticles by green 
method. For this purpose, the first 30 g of grape leaf was 
added to 500 mL of distilled water and then placed on a 
magnetic stirrer-heater at a speed of 300 rpm for 60 min at 
80 °C till the mixing is done. After elapsing mentioned the 
time, the extraction process was performed from the solution 
and after cooling, the vacuum pump was filtered by using 
paper filters. The extract made by iron chloride was mixed 
with a specific normality in a ratio of 2 to 3. In the next 
step, the synthesized nanoparticles were dried for 1–2 days 
at ambient temperature. After this step, the produced nano-
particles were stored for later uses [16, 34, 35].

2.3 � Experiment method

Dye stock solution was prepared by dissolving the powder 
of AB 113 dye in double-distilled water at a concentration of 
1000 mg/L. Then, the desired concentrations in mg/L were 
prepared in a volume of 100 mL of stock solution. The most 
important effective variables include solution pH, catalyst 
value (nZVI), PS value, contact time, and initial concentra-
tion of dye (Table 2). In this study, the effect of these vari-
ables on the performance of dye dissociation by nZVI@PS 
nanoparticle was investigated. The pH of the solution was 
adjusted by using 0.1 N sulfuric acid and sodium hydroxide 

solutions. At all stages, the mixing rate was 250 rpm and 
all experiments were performed at ambient temperature. At 
the end of the determined reaction time, the solution was 
centrifuged by a centrifuge at 3000 rpm for 5 min and pre-
pared for measuring the concentration of residual dye. For 
ensuring of the results’ repetition, each step of the experi-
ment was repeated three times and the average results were 
reported. The residual concentration of AB 113 dye was 
determined by the spectrophotometer DR5000 manufactured 
by the American HACH company at a wavelength of 570 nm 
[22]. AB 113 dye removal efficiency was determined after 
the process through Eq. 6 [36–38].

where Co and Ct are respectively the initial and final con-
centrations of AB 113 dye in the solution in mg/L.

2.4 � Experiment design based on BBD

Response surface methodology evaluates the existing rela-
tionships between clusters of experimental agents by using 
experimental techniques and then analyzes and presents 
graphs by investigating the responses based on one or more 
selected criteria [39, 40]. In this study, solution pH, cata-
lyst dose, amount of persulfate, contact time, and contami-
nant concentration were selected as independent variables 
affecting the removal efficiency of AB113. Design Expert 
10 software was applied to survey the effect of independ-
ent variables on response performance (AB 113 removal 
efficiency). The design was done by using the Box-Benken 
Design method. The number of test steps was determined by 
using Eq. 7 [41–43].

where K is the number of factors examined and Co is 
the number of repetition steps of the test. After selecting 
the design, the model equation and its predicted coefficients 
were determined by the second-order equation (Eq. 8):
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Table 1   Physicochemical characteristics of AB 113dye

λmax Molecular structure Chemical structure Molecular weight (g/mol)

570 C32H21N5Na2O6S2 681.66

Table 2   Information about the levels and range of studied variables

Variable Sign Unit Levels

 − 1 0  + 1

Initial pH of the solution A - 3 7 11
The value of nZVI B g/L 0.01 0.055 0.1
Persulfate concentration C mM 0.01 0.105 0.2
Contact time D min 10 35 60
Initial concentration of dye E mg/L 25 112.5 200
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The values of Ck0, Cki, Ckii, and Ckij are constant, linear, 
second-order, and regression interaction coefficients, respec-
tively. Xi and Xj are independent coded variables [40, 44]. 
Statistical analysis was performed to evaluate the accuracy 
and adequacy of the models by using the analysis of variance 
(ANOVA) with probability values of Prob ≤ F < 0.05. The 
adequacy and predictability of the model were tested using 
the lack of fit criterion, the determination of linear regres-
sion coefficient R2, R2

Adjust, R2
Predicted, adequate precision, 

and residual detection.

2.5 � Presentation of second‑order polynomial model 
and ANOVA analysis

According to the Box Behnken scheme, the empirical rela-
tionship between input variables and experimental results 
is represented by a second-order polynomial equation. The 
resulting equation based on coded factors is:

(9)

Y = +87.15 − 32.49A + 9.6B + 6.4C − 15.3D + 18.32E

−2.47AB − 3.7AC + 6.56AD + 11.46BC−

1.72BD + 1.35BE + 0.4375CD − 2.01CE − 2.93DE − 21.9A
2

−17.08B2 − 16.38C
2 − 15.93D

2 − 18.44E
2

which in this equation, Y represents the removal rate 
(%) and A, B, C, D, and E represent pH, nZVI, PS, initial 
concentration, and reaction time, respectively. The results 
of the ANOVA analysis in Table 3 show that the proposed 
model has statistically a significant relationship with linear 
conditions according to one-way analysis of variance with 
value of p ≤ 0.001. Also, A, B, C, D, and E parameters are 
quite significant interaction of B2 (p ≤ 0.001). The value 
of F for this model has been 48.69, which means that the 
variance of each variable is significant compared with the 
error variance, and all the main parameters play an impor-
tant role as the answer.

With F = 434.28 is the most effective factor in the oxi-
dation process of AB 113. In addition, the adjusted corre-
lation coefficient (R2 (adj)) is equal to 0.9724 that indicates 
the high accuracy of the statistical model.

2.6 � Analysis tools

For determining the functional groups at the nZVI nanopar-
ticle surface, FTIR analysis was performed by PerkinElmer, 
Spectrum Two model, in the range of 450–4000 cm−1. X-ray 
diffraction for the prepared nZVI nanoparticle in the angle 
range of 2θ = 10–80° was determined by XRD (Philips 

Table 3   Analysis of variance of 
operating parameters in AB 113 
oxidation

Source Sum of squares df Mean square F-value p-value

Model 37,866.68 20 1893.33 48.69  < 0.0001 significant
  A-pH 16,888.30 1 16,888.30 434.28  < 0.0001
  B-nZVI 1475.90 1 1475.90 37.95  < 0.0001
  C-PS 656.26 1 656.26 16.88 0.0003
  D-CONC 3747.28 1 3747.28 96.36  < 0.0001
  E-Time 5371.42 1 5371.42 138.13  < 0.0001
  AB 24.45 1 24.45 0.6288 0.4347
  AC 54.69 1 54.69 1.41 0.2460
  AD 172.13 1 172.13 4.43 0.0448
  AE 13.84 1 13.84 0.3559 0.5558
  BC 525.56 1 525.56 13.51 0.0010
  BD 11.76 1 11.76 0.3025 0.5868
  BE 7.26 1 7.26 0.1868 0.6691
  CD 0.7656 1 0.7656 0.0197 0.8895
  CE 16.16 1 16.16 0.4156 0.5246
  DE 34.28 1 34.28 0.8815 0.3561
  A2 4606.18 1 4606.18 118.45  < 0.0001
  B2 2800.71 1 2800.71 72.02  < 0.0001
  C2 2576.38 1 2576.38 66.25  < 0.0001
  D2 2435.51 1 2435.51 62.63  < 0.0001
  E2 3263.00 1 3263.00 83.91  < 0.0001
  Residual 1049.97 27 38.89
  Lack of fit 887.84 20 44.39 1.92 0.1924 Not significant
  Pure error 162.13 7 23.16
  Cor. total 38,916.65 47



6337Biomass Conversion and Biorefinery (2024) 14:6333–6345	

1 3

PNA-analytical diffractometer device). FE-SEM scanning 
electron microscope at an accelerated voltage of 10 keV 
was used to determine the surface and morphological 
characteristics.

3 � Results and discussion

3.1 � Surveying the structural nature 
of the nanoparticles

3.1.1 � Investigation of nZVI factor groups by using FTIR 
analysis

One of the common methods used for identifying and ana-
lyzing materials is infrared spectroscopy. The results of 
FTIR nZVI nanoparticle at a frequency of 450–4000 cm−1 
as illustrated in Fig. 1. The largest peak in the range of 3364 
has been shown that is related to the O–H tensile vibra-
tions of the hydrogen bond of polyphenols [45]. Peaks of 
1649, 1153, and 1018 are respectively related to the tensile 
vibrations of C = C alkenes, the tensile vibrations of C–C 
aromatics, the tensile vibrations of C–O–C carbonyls, and 
the flexural vibrations of C–H aromatics [45–48]. Peaks at 
830 cm−1 indicate H-C groups [49, 50]. Peaks at 604 and 
535 cm−1 indicate the presence of Fe–O groups [51]. Poly-
phenols act as the main stabilizing agent for nanoparticles, 
which are found in the range of 3200–3500 cm−1 [52, 53]. 
Bonds of functional groups such as CO–C, C–O, and C = C 
are derived from heterocyclic compounds and amide bonds 

are derived from proteins in plant extracts, and the ligands 
are nanoparticle coating. In addition, the available proteins 
prevent the formation of clots and help to stabilize the nano-
particles by forming a membrane and cover the metal nano-
particles [54].

3.1.2 � Investigation of the structure and nature of nZVI 
using XRD analysis

The X-ray diffraction pattern (XRD) can be seen in Fig. 2 
for nanoparticle in the angle range of 2θ. The XRD diffrac-
tion pattern was used to characterize the crystalline phase 
of nanoparticles and to measure their structural properties. 
As shown in the figure, the peak of Fe˚ was determined at 
angle of 2θ = 44.67 [55]. There are some other weak peaks 
with less intensity at angles of 2θ = 32–47-59, which indicate 
the presence of KCl. Also, the peak at points of 2Ɵ = 31–36-
53–63 indicates the presence of NaCl. In the study of Hos-
seinzadeh et al., impurities such as copper, cadmium, lead, 
and magnesium were recognized in very small amounts in 
the composition of nanoparticles used in their study [56]. 
Also, Lily et al. reported NaCl peaks in XRD test on iron 
nanoparticles synthesized from plant extract [52].

3.1.3 � Morphology surveying of nZVI using FE‑SEM analysis

Scanning electron microscopy (FE-SEM) was used to deter-
mine the surface and morphological characteristics. The results 
of nZVI nanoparticle analysis are illustrated in Fig. 3. As shown 

Fig. 1   FTIR spectrum for nZVI
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in the figure, nZVI particles have a regular morphology and are 
uniformly, spherically, and homogeneously placed next to each 
other to form a chain-like structure [57]. The high magnification 
FE-SEM image shows that the sizes of these nZVI particles range 
from 15 to 40 nm. Some of nZVI nanoparticles agglomerate 
together and precipitate during the heating process and indicate 
the morphology of nZVI particles with a spherical nanosphere 
size [58].

3.2 � The effect of pH on the oxidation efficiency 
of AB 113 dye

The results of the effect of pH on the rate of dye removal are 
shown in Fig. 4a. The surveyed pHs in this process were 3, 7, 

and 11. As it is known, the highest efficiency of the process 
in the dye removal was related to pH = 3 and was 100%. By 
increasing the pH of the studied samples, the removal efficiency 
significantly decreased in which the minimum amount of dye 
was removed at pH 11. pH and optimal time were respectively 
determined to be 3 and 50 min. The pH of the solution is one of 
the most effective and important factors in performing chemical 
reactions that affect the path and synthetics, the studied contami-
nant structure, the mechanism of hydroxyl radical production, 
and the reaction of reactants [59]. In oxidation processes, includ-
ing electrochemical methods, pH is one of the important items 
[60]. At alkaline pH due to the sedimentation of iron hydroxide 
at the surface of nZVI, which leads to occupy the reaction sites 
and to slow down the reaction by releasing iron ions and elec-
trons. At pH = 3, nZVI dissolves rapidly in the solution, leading 
to insufficient levels [61]. Also at pHs above 3, the solubility of 
the residual iron in the solution decreases and the iron becomes 
colloidal in form. This phenomenon reduces efficiency in turn 
[62, 63], which is consistent with the results of Qayateri et al. 
[64].

3.3 � Investigation of the effect of persulfate 
concentration on the oxidation efficiency of AB 
113 dyes

The results of the effect of persulfate concentration on 
the removal of AB 113 dye are shown in Fig. 4b. At this 
stage of the study, the effect of persulfate anion concen-
tration in the range of 0.01 to 0.2 g/L was evaluated and 
the optimal dose was obtained 0.14 g/L. The reason of 
increasing the reaction efficiency by rising PS concentra-
tion is the boost in the production of active radicals [65]. 
Increasing the concentration of PS as the main source 
of hydroxyl radical production will enhance efficiency. 

Fig. 2   XRD spectrum for nZVI
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Fig. 3   FE-SEM spectrum for nZVI
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However, in relation to the consumption concentration 
of PS, increasing the concentration of this substance to 
a certain extent not only does not increase the efficiency 
of the desired contaminant removal, but also has been 
turned into a factor for abduction and consumption of 
hydroxyl radicals in aqueous solution, which will reduce 
the process efficiency [66, 67]. The results of this study 
agree with the results of the study of Shokouhi et al. [68].

3.4 � Surveying the effect of nZVI concentration 
on the oxidation efficiency of AB 113 dye

To study the effect of nZVI concentration on the degra-
dation of AB 113 dye, nZVI concentration was selected 
in the range of 0.01–0.1 g/L. As shown in Fig. 4b, the 
degradation efficiency increased by rising nZVI concentra-
tion from 0.01 to 0.1 mg/L and in this study, the optimal 
concentration of nZVI was 0.08 mg/L. As the amount of 
nZVI increased, more active surface sites were created to 
accelerate the initial reaction, leading to more nZVI sur-
face collisions with azo dye molecules to increase AB 113 
degradation [61]. nZVI augments the oxidation process due 
to its large surface area and thus increases the amount of 
acid blue dye degradation [69].

3.5 � The effect of contact time on the oxidation 
efficiency of AB 113 dye

Figure 4c shows the effect of contact time on the removal 
efficiency of AB 113 dye. In order to evaluate the optimal 
contact time, the experiments were performed in the range 
of 10–60 min. The stirrer speed was 250 rpm. Contact time 
is one of the most important factors influencing the removal 
processes. In this process, the highest percentage of AB113 
dye removal is related to the reaction time of 50 min, which 
is describable because of having enough opportunity to pro-
duce more free radicals and their contact with dye molecules 
[70]. Since the addition of electrolysis time leads to the rise in 
amount of produced hydroxyl radical, therefore, degradation 
efficiency of AB 113 increases by this process [71]. By adding 
the contact time, the amount of AB113 dye removal increases, 
which is consistent with the results of Samarghandi et al. [72].

3.6 � The effect of initial concentration of AB 113 dye 
at equilibrium time on process efficiency

The results of this part of the study about the effect of 
changes on initial concentration of dye are illustrated 
in Fig. 4c. Increasing the concentration of AB 113 dye 
encountered the efficiency of the process with reduction. 

Fig. 4   Overlap diagram of the 
independent variable effects on 
AB 113 removal efficiency. a 
PS and nZVI, b pH and nZVI; 
c initial dye concentration and 
reaction time
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In order to evaluate the optimal concentration of AB 
113 dye, the experiments were performed in the range 
of 25–200 mg/L. The optimal concentration of AB 113 
dye in the process was 46 mg/L. Due to the fact that 
the number of produced radicals in different concentra-
tions are different, so the removal efficiency is different 
too [73]. In most of the studies related to dye oxidation, 
increasing the concentration of studied contaminants has 
been associated with decreasing process efficiency. The 
cause can be attributed to the decrease in the ratio of the 
produced radical to the concentration of the pollutant 
and the other cause can be attributed to the increase in 
the concentration of intermediate substances resulting 
from the oxidation of the pollutant that tend to consume 
the radical [74]. The results of this study agree with the 
results of studies by Seid Mohammadi et al. [59].

3.7 � Investigation the accuracy and validity 
of the proposed model

In order to validate the proposed model, various analyses 
were performed. The graph of experimental data versus 
the predicted data by the model of Fig. 5 shows that the 
values are placed uniformly and compatible with each 
other along a straight line and have a high correlation 
[75]. In statistical analysis of the experimental data, 
checking that the data has a normal distribution is nec-
essary. In the normal distribution, the points related to 
the data are very close together and are the follower of 
a straight line that is descending. To determine whether 

the data is normally distributed or not, the normal prob-
ability diagram is shown in Fig. 6. According to the rel-
evant diagram, it is quite obvious that the data related to 
oxidation reasonably have a normal distribution. Based 
on the results of Pareto diagram in Fig. 7, it was observed 
that in the negative effect, pH had the highest efficiency 
in the removal of AB 113 and the most positive effect on 
the removal of AB 113 was related to the reaction time. 
Figure 8 indicates the considered effective variables for 
oxidation AB 113 including (reaction time, pH, catalyst 
value (nZVI), PS value, and initial concentration of dye). 
The selective range of variables, the degree of impact, 
and the optimal points of each variable can also be seen 
in this figure.

3.8 � Investigation of process kinetics

In all AOP and EOP studies, determining the reaction kinet-
ics is one of the main steps of the study. The study of reac-
tion kinetics is performed to find the oxidation mechanisms 
of pollutants and the reaction of the model and the better 
execution of the process. For investigating the reaction kinet-
ics, the first-order reaction model was evaluated under opti-
mal conditions and at different times [76, 77].

Based on the indicated kinetic coefficient, the removal 
rate follows the first-order reaction in this process, in which 

(10)
lnc

c
0

= −k
1
trc =

dc

dt
= k

1
c

Fig. 5   Fit of experimental data against predicted data Fig. 6   Normal probability
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the results of study are shown in Fig. 9. Reaction kinetics 
used to study the rate of chemical reactions. The reaction 
rate can be indicated by decreasing the concentration of a 
reactant per unit time or increasing the concentration of a 
product per unit time [78]. The results of the study are con-
sistent with the results of the study of Dargahi et al. [79].

3.9 � TOC analysis

At this stage, all variables were selected and adjusted for 
the optimal case. The optimal conditions including values 

of pH = 3, nZVI = 0.08, PS = 0.14, and the concentration of 
AB 113 = 46 mg/L and reaction time of 50 min were used for 
this step and the results showed that after 50 min in optimal 
conditions, TOC efficiency reached to 79.37%. The initial 
TOC value is equivalent to 640 mg/L, which has reached 
a concentration of 132 mg/L with a removal efficiency of 
79.37% at the end of the reaction time. The reduction of 
mineralization efficiency compared with dye removal can be 
observed in the most oxidation processes. This cause can be 
a result of the production of carbon generator intermediate 
compounds that are not fully mineralized [80, 81].

Fig.7   Pareto diagram show-
ing the effect of factors on the 
removal of AB 113

Fig. 8   The effect of the consid-
ered initial parameters and their 
optimal points
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3.10 � Stability and repeatability of nZVI

An important feature of a heterogeneous catalyst is its reusabil-
ity and high stability for real-scale applications. In this study, 
the reusability of the nZVI catalyst was evaluated in four con-
secutive oxidation cycles under optimal conditions (see Fig. 10). 
Here, the reusability of the nZVI was evaluated by repeated 
regeneration via a washing catalyst using 0.1 mol/L NaOH solu-
tion and deionized water. As can be seen, under the optimum 
conditions, the efficiency for AB113 removal was 100% and 
reached 95.43% after four cycles. These results confirm that the 
nZVI catalyst has high reusability. However, the slight decrease 
in the efficiency can be attributed to the change in the physico-
chemical properties of the catalyst, which will eventually reduce 
the number of active sites for fe.2+ release [82–84]

3.11 � Application of nZVI @PS using real samples

Further investigation of the removal of AB113 onto the nZVI 
@PS was performed by means of the real wastewater samples. 
The samples were obtained from the Sivan Textile Company in 
Ardabil. The treatment was subjected to the nZVI @PS under 
optimized conditions. It should be noted that the samples con-
tained a large variety of other contaminants which could com-
pete with the target contaminants for the adsorption sites. How-
ever, the results showed that the nZVI @PS still had significant 
efficiency of dye removal (81.43%). This observation suggests 
that the nZVI @PS has a good potential for the removal of dyes 
in real samples.

Fig. 9   Reaction kinetic for 
oxidation of AB 113

Fig. 10   Recycle efficiency of 
nZVI
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4 � Conclusion

This study was performed to optimize the removal of AB 113 
dye in the process of zero valent iron nanoparticle/persulfate 
(nZVI @PS) by using the statistical model of response pro-
cedure (RSM) with BBD test design. The results indicated 
that by increasing the pH and concentration of AB 113, the 
oxidation efficiency declines so that the pH and the optimal 
concentration are 3 and 46 mg/L, respectively. Also, the cat-
alyst dose in the values of nZVI = 0.08 and PS = 0.14 g/L has 
the highest efficiency and by increasing and decreasing the 
dose of that amount, the efficiency decreases. Time is one 
of the main parameters in this process, in which the optimal 
value of oxidation time is 50 min. Under optimal conditions, 
the process efficiency is 100%. Due to the acceptable per-
formance and proper removal of AB 113 dye, this process 
can be used as a suitable method and with high efficiency in 
the treatment of wastewater containing AB 113 dye. Also, 
according to the Pareto diagram, the greatest effect on the 
removal of AB 113 was related to the pH variable.
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