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Abstract
The persistent increase in the atmospheric concentration of carbon dioxide  (CO2), the primary anthropogenic greenhouse gas 
contributing to global warming, makes research directed towards carbon capture and storage (CCS) imperative. In the past 
few years, among the available adsorbents, biochar has drawn significant interest as a promising carbon-based material for 
low-temperature  CO2 capture from flue/fuel gas (such as biogas or gasification-derived syngas) owing to its environmentally 
friendly nature, cost-effective and facile preparation method, and sustainable adsorption performance. This work provides 
a review of recent studies on the development of biochar from biomass feedstocks and its subsequent modification through 
various approaches, including physical, chemical and physicochemical activations for post-combustion  CO2 capture. An 
overview of the factors, including pyrolysis temperature, heating rate and time, and different modification methods, affecting 
the physicochemical attributes of biochar such as surface area, microporosity, surface properties and functional groups is pre-
sented. Biochar with a large micropore volume, a narrow microporosity (0.3–0.8 nm) and basic surface characteristics would 
be effective in adsorbing  CO2 molecules. In this regard, physical modification of biochar is closely related to pore formation, 
whereas chemical modification emphasizes the creation of oxygen and nitrogen-containing functional groups; hence, they 
contribute to the enhanced  CO2 capture through porosity development and surface chemistry alteration, respectively. Biochar 
has presented a strong selectivity towards  CO2 compared to other gasses and has revealed a sustainable performance in multi-
cycles of  CO2 adsorption–desorption; these are crucial features to ensure the large-scale application of biochar for  CO2 capture.

Keywords CO2 adsorption technologies · Biomass-derived biochar · Physical activation · Chemical activation · 
Physicochemical modification · CO2 adsorption capacity

1 Introduction

Nowadays, the issues of global climate change have attracted 
worldwide attention. The pollutant gasses such as nitrogen 
oxides  (NOx), carbon monoxide (CO), carbon dioxide  (CO2), 

and sulphur dioxide  (SO2) are generated from energy sectors 
such as industrial plants, thermoelectric power plants, and 
combustion of fossil fuels [1]. In between,  CO2 emission 
from fossil fuel combustion is considered the main contribu-
tor to greenhouse gas (GHG) emissions. In addressing these 
environmental concerns, there is a continuous effort by the 
scientific community in proposing the priority actions and 
sectors that require a detailed look to fulfil net-zero emis-
sions in 2050 [2]. The United Nations has taken the respon-
sibility to manage a series of discussions at the international 
level to develop appropriate guidelines for accommodating 
the climate change impacts. As a result, the Kyoto Proto-
col was adopted on 11 December 1997 and enforced on 
16 February 2005, focusing on the industrial countries to 
reduce GHG emissions. They have been recognized as the 
main contributor to the current high levels of GHG emis-
sions in the atmosphere [3]. A decade after Kyoto Protocol, 
the Paris Agreement was adopted in Paris on 12 December 
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2015. The involved countries aimed to achieve a neutral cli-
mate by limiting global warming increase to 2 ℃ above the 
pre-industrial levels [4]. However, predictions on worldwide 
energy-related  CO2 emissions propose the  CO2 release from 
the energy sector will increase by 6%, from 33 Gt in 2015 
to 35 Gt in 2050 [5]. Hence, to ensure the reduction of  CO2 
concentration in the atmosphere, implementing efficient Car-
bon Capture and Storage (CCS) technologies, especially for 
large scale applications, are of great interest.

CO2 capture technologies can be classified into three 
groups: pre-combustion, oxy-fuel combustion and post-
combustion  CO2 capture. Interestingly, post-combustion 
 CO2 capture technologies are more favourable due to better 
compatibility with the existing gas emission control systems 
and low technological risk [6]. Solvent absorption, adsorp-
tion with solid adsorbents, cryogenic separation, and mem-
brane separation are commonly well-known methods for 
post-combustion  CO2 capture [7]. Among these methods, 
adsorption with solid sorbents is preferred because of its 
ability to comply with a broad range of temperatures, low 
energy consumption, and ease of adsorbent regeneration [8]. 
Over the past few years, many types of adsorbents have been 
studied for  CO2 adsorption, including metal–organic frame-
works (MOFs), zeolites, metal oxides, ion-exchange resins, 
layered double hydroxide, activated carbons, mesoporous 
carbon, and carbon nanomaterials [9–13]. Even though these 
materials exhibit excellent  CO2 adsorption performance, 

their use at a large scale has some drawbacks, such as high 
operational cost and adsorption competition issues [14]. In 
striving to find sustainable and cost-effective adsorbents, 
biochar has attracted considerable attention and has become 
a research hotspot as a valuable material to combat the 
global climate change problem. Biochar is a carbon-based 
solid product obtained from the thermal processing of bio-
mass through various methods, including pyrolysis, gasifica-
tion, torrefaction and hydrothermal carbonization [15, 16]. 
It has many multifunctional properties that are affected by 
the type of feedstock and production condition. Biochar can 
be generated from various biomass feedstocks such as wood 
and woody biomass [17–19], crop residues [20, 21], animal 
manure [22, 23], food waste [24, 25] and sewage sludge 
[26–28], as presented in Fig. 1.

Biochar has found numerous applications in the fields 
of environmental remediation (adsorption of different 
contaminants, heavy metals, nitrogen and phosphorous) 
[29–31], agriculture (improvement of soil fertility, stabi-
lizing soil nutrients, and reduction of soil GHGs emission) 
[32, 33], climate change (adsorption of pollutant gases 
such as  NOx,  SOx,  H2S and GHGs) [34, 35], and material 
science (development of catalyst, building materials and 
batteries) [36, 37]. Figure 2 visualizes the word cloud of 
the most frequently used keywords in journal articles in 
the field of biochar application in 2021(bibliographic data 
from Scopus).

Fig. 1  Different biomass 
feedstocks for the production of 
biochar
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Recently biochar has emerged as a material of interest 
for carbon capture. To reflect this interest in research stud-
ies, the Scopus database was used to retrieve the number of 
articles per year from 1991 to March 13, 2022, with the key-
words “char” AND “CO2 adsorption” OR “CO2 capture” OR 
“carbon capture”. The results of this analysis are reflected in 
Fig. 3, which shows the growing scientific interest in using 
biochar-based adsorbents for  CO2 capture in recent years.

The type of sorbent used in  CO2 capture significantly 
impacts the  CO2 adsorption capacity [38]. In this regard, 
sorbents can be categorized into zeolites, MOFs, metal-
oxide-based adsorbents and carbonaceous materials. 

Amongst all, activated carbons are promising carbona-
ceous materials that present good thermal, chemical and 
mechanical stability [39]. Despite their advantages, they 
have relatively low selectivity towards  CO2 over other 
gases such as  N2 and  CH4 [40]. Zeolites demonstrate an 
excellent selectivity to  CO2, yet they show a poor adsorp-
tion uptake and stability in the presence of moisture and 
impurities (such as  NOx,  SOx) [41]. MOFs present high 
 CO2 adsorption at elevated pressures; nevertheless, they 
have a lower  CO2 uptake than other adsorbents at low  CO2 
partial pressures [42]. Even though MOFs possess high 
 CO2 adsorption capacity, their large-scale manufacturing 
cost should be considered due to the use of expensive pre-
cursors [43]. Metal-oxides, such as calcium oxide (CaO), 
are extensively used to capture  CO2 at a large scale. How-
ever, a major problem of CaO-based adsorbents is the sin-
tering of adsorbent particles during the regeneration stage, 
which drastically reduces their adsorption capacity [44]. In 
striving to develop sustainable, low-cost  CO2 adsorbents, 
biochar has become a research hotspot. Biochar can be eas-
ily produced from various abundant and low-cost materials, 
such as woody and crop residues which also addresses the 
waste disposal problem in many agro and forestry-based 
industries. In comparison with activated carbon, the break-
even price of biochar is about one-sixth of activated carbon 
[45]. Moreover, the average energy consumption for the 
production of biochar (6.1 MJ/kg) is significantly lower 
than that of activated carbon (97 MJ/kg) [46]. With all the 
facts from the economic points of view, biochar is one of 
the potential candidates for producing low-cost adsorbents 

Fig. 2  Visualized word cloud 
of the most frequently used 
keywords in journal articles 
in the field of biochar applica-
tions. Bibliographic data were 
extracted from the Scopus data-
base, with a total of 1970 
articles only in the year 2021
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from Scopus from 1991 to March 13, 2022
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for  CO2 adsorption with the potential to be used in large-
scale operations.

Biochar has shown promising potential as a  CO2 adsor-
bent, yet the adsorption uptake of pristine biochar is not very 
high as it does not have a well-developed porous structure 
and has poor surface chemistry. Therefore, physical and/or 
chemical modifications are usually implemented to enhance 
the  CO2 capture capacity of biochar [47–49]. In this context, 
this review demonstrates the potential of pristine and modi-
fied biochar derived from various biomass feedstocks for 
 CO2 capture based on the literature data. An outline of the 
parameters influencing the microstructure and surface chem-
istry of biochar, including pyrolysis conditions and the type 
of modification approaches, is provided. The performance 
of pristine and modified biochar in  CO2 adsorption is com-
pared, and the mechanisms through which the  CO2 uptake 
capacity of modified biochar is enhanced are extensively 
discussed. Apart from that, the selectivity and reusability 
of the modified biochar are also elucidated. To the best of 
our knowledge, reviews covering such aspects of biomass-
derived biochar for  CO2 capture are only a few. This review 
provides advanced access to emerging ideas on the current 
trends for the development and implementation of biochar 
to control  CO2 emissions from various emission sources. A 
complete overview starting from  CO2 capture technologies 

and ending with the challenges of using biochar as  CO2 
adsorbent would provide insightful information that will be 
beneficial for the scientific community and those working on 
air pollution control and related biochar applications.

2  CO2 capture technologies

The CCS technology captures and stores  CO2 before enter-
ing the atmosphere. CCS can be applied at large-scale emis-
sion sources, including natural gas processing, coal and gas-
fired power generation, and manufacturing industries such as 
pulp, paper, cement, iron, and steel [50–52]. Figure 4 depicts 
a scheme of CCS technologies, including pre-combustion, 
oxy-fuel and post-combustion  CO2 capture processes.

The principle of pre-combustion technology is to cap-
ture  CO2 from the syngas after converting CO into  CO2 
[53]. Initially, a fuel is reacted with air to produce a gas 
that is rich in CO and hydrogen  (H2). Then, the reaction of 
CO with the steam forms  CO2 and  H2 via water–gas shift 
(WGS) reaction, where  CO2 is then separated using chemi-
cal absorption processes such as those applied in Purisol, 
Fluor, Rectisol and Selexol, as presented in Table 1. Mean-
while,  H2 can be directly consumed as fuel. It is convenient 
to adsorb  CO2 since the  CO2 concentration is relatively high. 

Fig. 4  Diagram of  CO2 capture technologies, including pre-combustion, oxy-fuel combustion and post-combustion capture. Adapted with per-
mission from [292]
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The advantages of the pre-combustion technology include: 
the gas volume needed in the pre-combustion capture is sig-
nificantly reduced because the processing takes place before 
the syngas is diluted with the combusted air [54], and the 
 CO2 is produced under pressure; therefore, less compression 
is required for  CO2 storage and transportation [55]. Even 
though this technology fulfils the industrial scale specifica-
tion, retrofitting the existing plants is complicated and costly. 
Moreover, the syngas must be dried before the  CO2 separa-
tion can be performed [56].

In the second approach, oxy-fuel combustion, the fuel is 
burned in nearly pure oxygen instead of air, which induces 
a flue gas stream consisting of  CO2, water, and other trace 
impurities. Pure oxygen is obtained from an air separation 
unit that separates oxygen from nitrogen. The advantage of 
using this method is that it can be employed in the existing 
or new power plants along with the utilization of various 
biomass feedstocks [59]. In the oxy-fuel  CO2 capture pro-
cess, cryogenic distillation is found to be the most suitable 
process for producing high purity oxygen for a large-scale 
operation [60]. However, the major drawback of this tech-
nology is that the supply of expensive pure oxygen and the 
high energy consumption for oxygen separation from the 
air would prevent the applicability of this method for  CO2 
capture [59, 60].

As the third approach,  CO2 is directly captured from 
flue gas streams after combustion using wet or dry adsor-
bents in post-combustion technology. Generally, the fuel 
is combusted with air in a boiler to produce steam in a 
coal-fired power generation system. Then, electricity will 
be generated using a turbine [61]. The flue gas produced 
is mainly composed of  CO2 and  N2. At present, solvent 
scrubbing using amine solution is a promising method to 
react with  CO2 in the flue gas and produce purified  CO2 that 
can be compressed for storage [62]. The post-combustion 
technologies can be divided into (i) absorption-based, (ii) 

adsorption-based and (iii) membrane-based post-combustion 
processes. Table 2 represents the advantages and disadvan-
tages of different methods for post-combustion technologies.

Chemical absorption is a favourable approach for 
absorbing  CO2 from the flue gas streams consisting of low 
to moderate  CO2 partial pressures in the range of 3–20% 
[56]. Absorption can be explained by the use of a liquid to 
separate the gaseous component from the flue gas, and this 
liquid is known as an absorbent or solvent for  CO2 capture. 
In this process, the gas phase is turned into a liquid phase 
as the gaseous components contact the absorbent. Various 
chemical absorption processes, including amine absorption, 
aqua ammonia absorption, dual alkali approach and sodium 
carbonate slurry, have been widely used for carbon capture 
and storage [63–68].

CO2 adsorption using solid adsorbents is one of the 
well-known methods to reduce the  CO2 concentration 
in the atmosphere. The solid material is known as 
adsorbent, while the adsorbed  CO2 gas is referred to as 
adsorbate. During the adsorption process, the gaseous 
constituent comes into contact with a solid adsorbent, 
where  CO2 molecules are adsorbed onto the solid sur-
face. Most adsorbents experience a severe reduction 
in sorption capacity at high adsorption temperatures 
[56]. The interaction of  CO2 with the biochar surface 
could be through weak physical adsorption (physisorp-
tion) or strong chemical reaction (chemisorption), or a 
combination of the both, depending on the structural 
features and surface chemistry of biochar, as well as 
the implemented adsorption condition (such as temper-
ature and pressure) [47, 69, 70]. Physisorption is often 
associated with a lower heat of reaction compared to 
chemisorption [56]. After the adsorption process is 
completed, the desorption stage is conducted, where 
 CO2 is removed from the adsorbent, and the adsorbent 
is consequently regenerated. A number of techniques 

Table 1  Capturing solvent and disadvantages of different pre-combustion technologies

Technology Capturing solvent for  CO2 Regeneration Drawback Reference

Purisol N-methyl-2-pyrrolidone Stripping  CO2 containing Purisol solvent 
with an inert gas

• Needs additional compression after the 
WGS reaction

[56, 57]

Fluor Propylene carbonate Flash desorption of  CO2 containing Fluor 
solvent

• High cost of solvent
• High circulation rates of solvent, thus 

increasing the operation costs

[56]

Rectisol Chilled methanol Flash desorption of  CO2 containing metha-
nol solvent

• High operating and capital costs due 
to regeneration and complex operating 
systems

• Ability to absorb trace metals such as 
mercury that leads to the formation of 
amalgams

[56, 58]

Selexol A mixture of dimethyl 
ether and polyethylene 
glycol

Stripping/flash desorption of  CO2 containing 
Selexol

• Only efficient at elevated pressures [56, 57]
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related to regeneration of the adsorbent can be enu-
merated [71, 72]: (1) PSA: pressure-swing adsorption 
[73], (2) TSA: temperature-swing adsorption [74], 
(3) PTSA: pressure and temperature-swing adsorp-
tion [69], (4) VPSA: vacuum pressure-swing adsorp-
tion [75], (5) ESA: electric-swing adsorption [76], 
(6) RPSA: rapid pressure-swing adsorption, and (7) 
URPSA: ultra-rapid pressure-swing adsorption [72]. 
Among the listed adsorption methods, TSA and PSA 
are the two most commonly applied techniques in the 
adsorption–desorption of biochar. In the TSA system, 
 CO2 is desorbed from the adsorbent as the temperature 
of the system is increased. Whereas in the PSA system, 
the adsorption is performed at elevated pressures; con-
sequently, reducing pressure within the system releases 
 CO2 from the solid material. The benefit of a PSA 
system is that the regeneration can be accomplished 
in a few seconds compared to hours in the TSA system 
[77]. However, in the TSA system, the solid adsorbent 
can still be regenerated while preserving a high  CO2 
partial pressure [56].

Recently, membrane separation processes have been 
commercially used to remove  CO2 from the natural gas 
streams [78], consisting of  CH4 and  CO2, where the 
 CO2 concentration and the overall pressure are rela-
tively high. The membrane separation strongly relies 
on selectivity and permeability. Here,  CO2 is selec-
tively separated from the other gas components and 
transported to the other side of the membrane by the 
use of a permeable or semi-permeable membrane [56]. 
For efficient separation, it is suggested that the f lue 
gas must be pre-treated to avoid any impurities such as 
 NOx and  SOx, which can cause an adverse effect during 
the separation process [56].

From the economic perspective, pre-combustion 
technology could offer a lower cost than oxy-fuel and 
post-combustion technologies by approximately 21–24 
and 38–45%, respectively [59]. However, the additional 
cost and the complexity of setting up the process due 
to the retrofitting of current equipment may limit its 
commercialization. Among the CCS technologies, post-
combustion  CO2 capture is a widely used technique to 
tackle escalating  CO2 concentrations [59]. Most power 
plants favour the adsorption of  CO2 after a complete 
occurrence of the reaction [79]. Ideally, an efficient 
adsorbent for post-combustion  CO2 capture must pre-
sent a high  CO2 capture capacity and stability, high 
selectivity and low manufacturing cost for large-scale 
operations. In addition, a detailed design of the process 
in the adsorption/desorption cycles is essential to mini-
mize the energy consumption in the post-combustion 
operating conditions [80].
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3  Biochar production

Biochar could be developed through conventional pyrol-
ysis, flash carbonization, gasification, torrefaction and 
hydrothermal carbonization, as illustrated in Fig. 5.

Conventional pyrolysis under continuous inert gas 
flow can be categorized into slow, fast, and flash pyroly-
sis. This thermal process produces three main products; 
biochar, bio-oil and non-condensable gaseous such as 
carbon monoxide, hydrogen, methane and carbon dioxide 
[95]. In fast pyrolysis, the primary product is bio-oil, 
which constitutes 50–75% of the feedstock mass. The 
reaction normally occurs at 450–600 ℃ for less than 
10 min at a heating rate of 16–150 ℃/min [96–98]. An 
improved form of fast pyrolysis is flash pyrolysis which 
operates at a temperature ranging from 600–1300 ℃, 
which can be attained within 3 min. Conversely, lower 
pyrolysis temperature and slow heating rates contribute 
to higher char yield, as represented by slow pyrolysis. 
The process is performed at the temperature range of 
300–900 ℃ for about 1.5 h, depending on the process 
condition. The primary product is biochar, which rela-
tively accounts for 25–35% of the feedstock mass [99]. 
Apart from conventional pyrolysis, an advanced pyrolysis 

technique known as microwave-assisted pyrolysis is 
applied, which is a rapid, efficient, selective and con-
trollable technique to obtain solid, liquid and gaseous 
products from biomass. Microwave-assisted pyrolysis has 
manifold benefits compared to conventional pyrolysis, 
such as volumetric heating, energy transfer rather than 
heat transfer, non-contacting heating and heating from 
the inside material body [100]. In flash carbonization, 
biochar is produced from biomass feedstock at the fol-
lowing conditions: (1) temperature: 300–600 ℃, pres-
sure: 1–2 MPa, and residence time: 30 min [101, 102]. In 
this process, biomass is efficiently converted into biochar 
with 70–80% fixed carbon content, and biochar yield is 
approximately 40–50% [103].

Gasification is performed at high temperatures in the 
range of 600–1000 ℃ for 2–3 h using a gasifying agent such 
as steam, air and oxygen. This process involves two steps: 
(1) production of biochar and volatile matter through pyrol-
ysis and (2) syngas production by gasification of biochar 
and secondary cracking of volatile matters [104]. The main 
product generated is a non-condensable gas rich in carbon 
dioxide and hydrogen. However, the biochar yield is rela-
tively low (5–10% of the feedstock mass) as most organic 
compounds are gasified into gas [105].

Fig. 5  Production of biochar 
through various thermochemi-
cal processes. Adapted with 
permission from [101]
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Torrefaction is a thermochemical treatment process 
conducted at a lower temperature, around 200–300 ºC for 
15–120 min [106], where the biomass is subjected to slow 
heating in an inert condition. It is also referred to as mild pyrol-
ysis, as the heating condition is similar to pyrolysis, generally 
performed at a temperature of 350 to 650 ℃ [107]. During tor-
refaction, the biomass decomposes slowly and emits  H2O and 
 CO2. With increasing torrefaction temperature, the elemental 
compositions (carbon, hydrogen, nitrogen, oxygen), the bio-
char’s yield and volatile matter decrease, while higher heating 
value (HHV), fixed carbon and ash content increase [108].

The hydrothermal carbonization (HTC) process, also known 
as wet torrefaction, is carried out in subcritical water [109] 
under autogenous pressure (0.3–4.0 MPa) [110], where the raw 
material is heated in the hydrothermal reactor at a temperature 
between 170 and 260 ℃ for 15–90 min. This process generates 
three main products, namely: solid products (hydrochar), aque-
ous compounds and small fractions of gases (major gas:  CO2) 
[111]. Interestingly, a carbonization reaction is performed in 
water at a temperature lower than that of pyrolysis. Moreover, 
during the HTC process, the ash content could be reduced as 
the inorganic compound can be washed away into the liquid 
phase [112]. Among all the biochar production methods, slow 
pyrolysis has a higher production yield (25–35%). Although 
the hydrothermal process operates at temperatures less than 
300 ℃, which is lower than that of pyrolysis temperature, the 
hydrochar needs to undergo the drying process for 24 h before 
being subjected to any modification techniques [113, 114]. 
Additionally, no “high-end equipment” is required to synthe-
sise the biochar in slow pyrolysis. Table 3 summarizes the 
thermochemical processes for biochar production.

4  Physicochemical characteristics of biochar 
for  CO2 capture

4.1  Surface area and porosity

The physicochemical characteristics of biochar are cru-
cial for  CO2 uptake and depend on various factors. These 

parameters include feedstock properties, pyrolysis tempera-
ture, residence time and heating rate, and the implemented 
modification technique (physical, chemical or physicochemi-
cal treatment) [124–127]. In the case of gas adsorption, the 
development of highly microporous biochar with a large 
specific surface area is desired [47]. The porous structure 
of biochar is created during the pyrolysis of feedstock due 
to the volatilization of organic matters [128]. According 
to the International Union of Pure and Applied Chem-
istry (IUPAC), the distribution of pore size is as follows: 
micropores (< 2 nm), mesopores (2–50 nm) and macropo-
res (> 50 nm) [129]. Figure 6 shows the porosity type and 
the possible functional groups on the carbon structure of 
biochar.

Studies have indicated that for efficient  CO2 capture at 
1 bar, it is necessary to generate a high volume of micropo-
res with pore size in the range of 0.5–0.7 nm [130]. For 
example, Dang et al. [131] who obtained biochar from pine 
nut shell modified by KOH that had a pore size between 0.33 
and 0.63 nm, reported an excellent  CO2 capture of 220 mg/g 
at 25 ℃ and 1 bar. Studies have also reported that the devel-
opment of micropores has a greater impact on  CO2 capture 
compared to total pore volume and surface area development 
[131, 132]. Notably, pores less than 0.8 nm significantly con-
tribute to  CO2 uptake at 1 bar, while pores with a diameter 
smaller than 0.5 nm capture  CO2 molecules at low partial 
pressure (0.1 bar) [130]. This is consistent with the previous 
finding that the maximum  CO2 adsorption (145.20 mg/g) at 
0 ℃ and 0.15 bar was observed for the biochar with micropo-
res in the range of 0.33–0.50 nm [131]. The kinetic diam-
eter of  CO2 (0.33 nm) is relatively smaller than methane 
(0.38 nm) and nitrogen (0.364 nm) [133]. Therefore, the  CO2 
adsorption will be facilitated if the adsorbent has a pore size 
close to the  CO2 diameter.

4.1.1  Effects of pyrolysis temperature

The structural properties and surface chemistry of biochar 
determine its performance in  CO2 adsorption. Apart from 
the properties of biomass feedstock, pyrolysis conditions, 

Table 3  Thermochemical 
conversion techniques for 
biochar production and their 
process conditions

na: not available

Processes Condition Reference

Temperature Residence time Heating rate

Slow pyrolysis 300–900 ℃ 1–1.5 h 5–20 ℃/min [115–118]
Fast pyrolysis 450–600℃  < 1 -10 min 16–150 ℃/min [96–98]
Flash pyrolysis 600–1300 ℃  < 10 s -3 min 300 ℃/min [96, 119]
Microwave-assisted pyrolysis na 15–30 min [100, 120]
Gasification 600–1000 ℃ 2–3 h [25, 104, 121]
Torrefaction 200–300℃ 15–120 min [111, 122]
Hydrothermal carbonization 170–260 ℃ 15–90 min [87, 114, 123]
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especially pyrolysis temperatures, have considerable impacts 
on biochar characteristics [134, 135]. Previous studies dem-
onstrated that pyrolysis temperature plays a crucial role in 
producing biochar which presents high surface area and 
micropore volume with superior  CO2 adsorption capacity 
[20, 117, 136].

When biomass undergoes pyrolysis, pore development 
occurs due to the loss of water molecules in the dehydration 
process and the release of volatile matters from the carbon 
structure of biochar. At low pyrolysis temperature (< 400 
℃), this condition is not adequate to complete the devolatili-
zation of volatile matters; thus, the creation of new pores is 
hindered [137, 138]. As the temperature goes up to 500 ℃, 
more volatiles are released, creating sparse regions, leading 
to cracks in the material and, consequently, developing more 
pores [139, 140]. At high pyrolysis temperatures (500–900 
℃), the generated energy could be used to develop micropo-
rosity and boost the evolution of pore structure [49]. Table 4 
displays the effects of different pyrolysis temperatures on 
the pristine biochar properties derived from various biomass 
feedstocks. The generally observed trend is that surface area 
and micropores volume/total pore volume increase as the 
pyrolysis temperature is increased. It should be noted that 
at high pyrolysis temperatures (> 900 ℃), softening and 
sintering of the high molecular weight volatiles may occur, 
resulting in the shrinkage of the total pore volume of bio-
char. As such, the extreme pyrolysis temperature reduces 
the micropore volume and surface area [141]. Hence, the 
pyrolysis temperature should be carefully controlled to 
obtain a suitable microporosity and surface area for a high 
 CO2 uptake. A literature survey suggests that the pyrolysis 
temperature of 400–900 ℃ is suitable for converting biomass 
feedstocks to biochar [20, 142, 143].

In general, biochar yield decreased over the tempera-
ture of 300–900 ℃ [144–146]. At higher temperatures, 
the rapid decomposition of lignocellulosic components 

reduces biochar yield [144]. Moreover, more volatile 
matters are released as the biomass is heated up [145]. 
Lahijani et al. [117] pyrolyzed walnut shells at three dif-
ferent temperatures (500, 700 and 900 ℃) under  N2 gas 
for 90 min. The obtained char yields were 31.7, 28.4 and 
23.8% with the respective temperatures. Even though the 
biochar yield decreased at 900 ℃, the highest micropore 
volume of 0.159  cm3/g was obtained for this sample. In 
this context, the development of micropores should be 
taken into account when considering the optimum pyrol-
ysis temperature in producing biochar as  CO2 capturing 
medium. Pyrolysis has been carried out under different gas 
environments such as nitrogen  (N2), carbon dioxide  (CO2), 
helium (He), argon (Ar), and steam  (H2O) [147–151]. 
Among all, nitrogen is the most popular and extensively 
used gas due to its availability, cost-effectiveness and inert 
behaviour [54]. Guizani et al. [152] reported that the char 
yield produced under  N2 gas (13.10%) was higher than 
that obtained in the  CO2 atmosphere (11.32%). According 
to them, the additional mass decay in the char pyrolyzed 
under  CO2 could be explained by  CO2 gasification of char, 
which occurred concurrently with biomass pyrolysis. Gas 
flow rate is also an important parameter during the pyroly-
sis, which may affect the char yield. A high gas flow rate 
removes volatile matters faster from the hot zone, reducing 
secondary exothermic reactions such as thermal cracking, 
partial oxidation, repolymerization and recondensation, 
leading to the reduction of char formation [153]. In a study 
by Liu et al. [153], peanut shells were carbonized at 500 ℃ 
for 60 min.  N2 gas at various flow rates (20, 50, 100, and 
200 ml/min) was used for carbonization. They found that 
the obtained biochar yield reduced approximately from 
35 to 28%, as the gas flow increased from 20 to 200 ml/
min. Similar results were reported in the production of 
laurel residue-derived biochar; when the nitrogen flow rate 
was increased from 50 to 400 ml/min, the biochar yield 

Fig. 6  Morphology and the 
presence of surface functional 
groups on biochar. Adapted 
with permission from [37]
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reduced from 28.48 to 27.2% [154]. Therefore, the selec-
tion of the appropriate carbonization gas and its flow rate 
is important to obtain a high yield of biochar.

4.1.2  Effect of pyrolysis holding time and heating rate

Apart from pyrolysis temperature, holding time and heating 
rate are other two factors that influence the development of 
micropores and surface area. Increasing the pyrolysis time 
boosts the rudimentary pore generation as the carbon sur-
face releases the volatile matter [49]. However, prolonged 
pyrolysis time at high temperatures may lead to an inter-
mediate melt formation due to progressively softening and 
sintering of the low molecular weight volatiles [141]. Here, 
the intermediate melt could partially block the pores, thus 
reducing the surface area. Lua et al. [141] observed that a 
maximum surface area of 519  m2/g and micropore volume 
of 0.215  cm3/g was achieved at 120 min of residence time 
for oil palm shells. While prolonging the residence time to 
180 min reduced the surface area and micropores volume to 
380  m2/g and 0.155  cm3/g, respectively. On the other hand, 
insufficient holding time to release the volatiles would result 
in the accumulation of these matters between and within the 
particles, and thus the deposition of these matters causes 
pore entrance blocking. In terms of biochar yield and fixed 
carbon content, Yang et al. [158] found that a holding time 
of 120 min produced a high yield and fixed carbon content 
of 32.67% and 79.38%, respectively, using pruned apple tree 
branches. Generally, the literature survey shows that a hold-
ing time between 60 and 120 min is suitable to improve the 
surface area and porosity of biochar for  CO2 uptake [141, 
158, 159].

The heating rate is strongly associated with heat and 
mass transfer inside the particles. At a low heating rate, the 
reaction is relatively slow, while, at a high heating rate, the 
reaction rate is more pronounced due to progressive heat 
and mass transfer [49]. For example, increasing the heat-
ing rate from 1 to 20 ℃/min increased the surface area of 
rapeseed stem-derived biochar from 259.9 to 384.1  m2/g 
and micropores volume from 0.097 to 0.116  cm3/g [159]. 
However, an excessive heating rate also melts the biochar 
particles and likely smooths the biochar surface [126]. In a 
study carried out by Angin et al. [160], a reduction in the 
surface area and micropores volume from 4.23 to 3.64  m2/g 
and 0.0067 to 0.0057  cm3/g, respectively, was experienced 
with an increase of the heating from 10 to 50 ℃/min. Chen 
et al. [127] reported that increasing the heating rate from 5 to 
30 ℃/min increased the surface area and micropores volume 
of biochar from ~ 400 to 411.06  m2/g and ~ 0.120 to ~ 0.125 
 cm3/g, respectively. Further increasing the heating rate to 50 
℃/min reduced the surface area and micropores volume to 
385.38  m2/g and ~ 0.10  cm3/g, respectively. In conclusion, 
the available literature suggests that a heating rate in the 

range of 5 to 30 ℃ is preferable for promoting the evolution 
of biochar porosity and its surface area development for  CO2 
adsorption application [127, 159].

4.2  Biochar pH

Generally, biochar is alkaline, and its pH is around 8.0 to 
11.0 (Table 4). Studies have indicated that pyrolysis tem-
perature influences the biochar pH [161]. The relevance of 
pyrolysis temperature and pH of several biochar samples 
derived from various biomass feedstocks, such as animal 
manure, woody biomass, and agricultural residues, is shown 
in Table 4. The data demonstrate a positive correlation, 
where the biochar pH increases as the pyrolysis tempera-
ture is increased. It should be highlighted that increasing the 
pyrolysis temperature results in higher pH of biochar due to 
the disappearance of the acidic group at higher temperatures 
[162]. Conversely, at low temperature (< 300℃), the acidic 
value could be attributed to the remaining organic acids and 
phenolic constituents resulting from the decomposition of 
cellulose and hemicellulose on biochar surface [163]. For 
example, Al-wabel et al. [164] showed that with the increase 
of the temperature from 200 to 800 ℃, the pH of the bio-
char derived from Conocarpus wastes increased from 7.37 
to 12.38, corresponding to the decrease of acidic surface 
groups from 4.17 to 0.22 mmol/g biochar, which was deter-
mined by Boehm’s titration. Yuan et al. [165] reported that 
pyrolysis temperature above 300 ℃ for canola straw, corn 
straw, peanut straw and soybean biochar might lead to the 
formation of carbonates (i.e.  MgCO3,  CaCO3), thus result-
ing in pH increment up to 10.76, 11.32, 11.15 and 11.10, 
respectively. However, at lower pyrolysis temperature (200 
℃), Zhang et al. [163] showed that the biochar derived from 
wheat straw and lignosulfonate had acidic pH ranging from 
4.87–6.11. Similar to this study, vegetable waste and pine 
cone-derived biochar also exhibited acidic pH of 5.95 and 
4.15, at the same pyrolysis temperature of 200 ℃ [155]. The 
acidic condition is due to the decomposition of cellulose and 
hemicelluloses at temperatures around 180–250 ℃, which 
produce organic acid and phenolic compounds that remain 
on the biochar surface and lower the pH of the biochar.

Ash content also has a significant effect on the pH of 
biochar. An increase in the pyrolysis temperature results in 
higher ash content of biochar, thus affecting its pH. In a 
study by Ghaffar et al. [166], as the pyrolysis temperature 
increased from 350 to 500℃, the higher ash content and 
the removal of acid functional groups (such as carboxylic 
(-COOH), phenolic (-C6H5) and carbonyl (-C = O) groups) 
from the Brazilian pepper-derived biochar surface contrib-
uted to the increment of pH from 7.72 to 9.65. This is a 
generally observed trend, but the observed results are not 
the same in some cases, probably depending on biomass 
feedstock. Therefore, pyrolysis temperatures above 400 ℃ 
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are appropriate to develop biochar with basic characteris-
tics. Due to the acidic character of  CO2 gas, the interaction 
with basic biochar would be feasible for  CO2 adsorption. 
According to the literature, it can be concluded that higher 
pyrolysis temperatures lead to increased biochar surface area 
and microporosity with a higher concentration of basic func-
tional groups, which are beneficial attributes for  CO2 capture 
[134, 156, 163, 166, 167].

4.3  Surface functional groups

Besides the surface area and microporosity of biochar, sur-
face functional groups on biochar also play a significant role 
in determining the surface chemistry of biochar and thus its 
 CO2 adsorption performance [168, 169]. At low adsorption 
pressures, the surface functional groups contribute to the 
enhanced  CO2 capture performance, regardless of the poros-
ity of biochar. While, at high pressures, for the pores larger 
than 1.0 nm, the surface functional groups play an important 
role in giving a higher  CO2 adsorption capacity [168]. Here, 
basic surface characteristics and high aromaticity are desir-
able to ensure the high  CO2 capture capacity of the biochar, 
which are discussed in the following.

4.3.1  Surface basicity

Basically, the  CO2 adsorption can be improved by increas-
ing the biochar surface alkalinity [117]. Here, the oxygen 
and nitrogen surface functional groups have been recog-
nized as the main contributors to carbon’s surface acidity 
and alkalinity [170, 171]. According to Boehm et al. [170], 
surface functional groups can be categorized into acidic, 
basic, and neutral types. Oxygen-containing functional 
groups are mainly acidic, as shown in Fig. 7. Specifically, 

lactol, phenols, lactones and carboxylic acid have been 
postulated as the sources of surface acidity [172]. How-
ever, not all the oxygen-containing groups tend to show 
acidic characteristics. For instance, chromene, ketone and 
pyrone are more likely to be basic groups and contribute 
to surface basicity [125].

In the case of  CO2 gas adsorption with an acidic char-
acter, biochar with basic surface functional groups is 
much favoured. In this regard, acidic oxygen functionali-
ties are not beneficial for  CO2 adsorption. The relation-
ship between thermal desorption temperature and related 
desorption products during temperature-programmed 
desorption (TPD), as illustrated in Fig. 8, indicates that 
acidic oxygen functional groups such as phenol, lactone 
and carboxyl dissociate to CO and  CO2 at the temperature 
range of 100–700℃ (373-973 K). Most basic functional 
groups decompose to  CO2 and CO above 600 ℃ (873 K) 
except anhydride, which starts to decompose at 350 ℃ 
(623 K). It can be concluded that most oxygen-containing 
acidic groups could be removed from the biochar surface 
at high temperatures, thus producing biochar favourable 
for adsorption of  CO2 acidic gas.

On the other hand, the presence of nitrogen-contain-
ing groups such as pyrrolic, pyridinic, lactam, imide, and 
amide enhance biochar’s surface basicity [48]. These func-
tional groups can be incorporated into the biochar surface 
using different nitrogen-containing reagents such as ammo-
nia, amines, nitric acid, and other nitrogen-containing pre-
cursors (i.e. melamine, polyacrylonitrile) through biochar 
activation [173, 174]. In an attempt to increase the surface 
basicity of biochar for enhancing the  CO2 uptake, Yaumi 
et al. [175] impregnated rice husk with melamine, and by 
introducing the N-containing group onto the biochar sur-
face, the concentration of basic surface groups increased 

Fig. 7  Acidic and basic oxygen 
functionalities on biochar sur-
face. Adapted with permission 
from [171]
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from 1.43 to 4.10 mmol/g, corresponding to improved sur-
face alkalinity.

4.3.2  Aromaticity

Aromaticity is a chemical property that facilitates  CO2 
adsorption on the biochar surface. Fixed carbon fraction 
is strongly related to biochar’s aromaticity produced from 
the pyrolysis and gasification [176]. High aromaticity can 
indicate the carbon stability and its resistance to biodegrada-
tion [177], and van Krevelen diagram is used to determine 
the degree of aromaticity and maturation of char based on 
atomic H/C and O/C ratios. A low ratio of H/C and O/C 
(< 0.2) indicates that the biochar is chemically stable [178, 
179]. Aromaticity and hydrophobicity are interrelated 
properties; when the aromaticity of biochar increases, con-
sequently its hydrophobicity enhances [47]. Biochar with 
non-polar and hydrophobic characteristics may favour the 
sorption of  CO2 molecules by limiting the accessibility of 
 H2O molecules on the biochar surface [48]. It was reported 
that biochar derived from white oak possessed an extremely 
low O/C ratio of 0.051, implying low polarity and high 
hydrophobicity [180, 181], which both factors contribute to 
the enhancement of  CO2 sequestration.

4.4  Elemental composition of biochar

In general, the elemental composition of biochar is highly 
affected by pyrolysis temperature. The carbon content 
increases as a function of pyrolysis temperature. By increas-
ing the pyrolysis temperature, the heat treatment-driven loss 
of the OH functional group from the lignocellulosic biomass 
occurs due to dehydration, resulting in the disappearance 
of H and O atoms [182]. Additionally, the elimination of 
water,  CO2, CO, hydrocarbons, and tarry vapours during 
the carbonization contributes to the decrement of H, O and 

N contents as the biomass is heated up [183]. Moreover, the 
losses of H and C at the elevated temperature may result 
from the breakage and cleavage of the weak bonds in the 
carbon structure [184, 185]. Accordingly and as the data 
in Table 4 show, the H, O and N contents reduce when the 
pyrolysis temperature increases.

The elemental contents data obtained from CHNS analy-
sis provides insightful information about the chemistry of 
biochar. For example, the O/C, H/C and (O + N)/C values are 
known as hydrophobicity, aromaticity and polarity indexes, 
respectively [186–188]. A high H/C ratio suggests a low 
degree of aromaticity and carbonization, while high O/C 
and (O + N)/C ratios indicate low hydrophobicity and high 
polarity, respectively [186]. In the case of  CO2 adsorption, 
biochar with lower H/C and O/C presents better efficiency 
in the adsorption. Zubbri et al. [87] investigated the effect 
of various thermochemical treatments on the  CO2 adsorp-
tion capacity of the biomass-derived adsorbents. The imple-
mented treatments included hydrothermal carbonization (at 
170 °C) to obtain hydrochar, pyrolysis (850 °C) to obtain 
biochar, and KOH impregnation of hydrochar followed by 
activation (850 °C); the samples were designated as HC 
170–90, biochar 850–120 and HC-2KOH 850–120, respectively. 
They observed that the value of O/C reduced along with 
increasing the severity of thermal treatment in the follow-
ing order HC 170–90 (1.51) > HC-2KOH 850–120 (1.18) > bio-
char 850–120 (0.86). At high temperatures, the reduction of 
the hydrophilic sites may be attributed to the dehydration 
process (loss of O- and H- functional groups), making the 
char surface more hydrophobic. Similarly, the H/C ratio 
reduced with the thermal treatment processes in the follow-
ing order HC 170–90 (0.38) > HC-2KOH 850–120 (0.34) > bio-
char 850–120 (0.18), indicating higher aromaticity. Other than 
that, the polarity index, represented by the ratio of (O + N)/ 
C decreased with heat treatment. Among all samples, the 
KOH activated hydrochar (HC-2KOH 850–120) possessed the 

Fig. 8  Surface oxygen-contain-
ing groups and their decompo-
sition by TPD. Adapted with 
permission from [293]
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highest adsorption capacity of 122.37 mg/g at 30 ℃ and 
1 bar. In another study by Gargiulo et al. [86], the authors 
obtained cellulose fibres-derived biochar by employing 
steam-assisted slow pyrolysis at various temperatures (600, 
650 and 700 ℃). The biochar pyrolyzed at 700 ℃ exhibited 
the lowest H/C ratio of 0.09 among the prepared biochars. 
In this case, high aromaticity was closely related to the sta-
bility of biochar which enhanced  CO2 sorption capacity 
to 102.52 mg/g at 25 ℃ and 1 bar. In another attempt to 
investigate the performance of different biomass feedstocks 
towards  CO2 adsorption, Bamdad et al. [189] pyrolyzed soft-
wood bark, softwood sawdust, hardwood and a mixture of 
softwood bark and sawdust at a temperature between 400 
and 500 ℃. They found softwood sawdust pyrolyzed at 500 
℃ with the lowest H/C ratio of 0.03 showed the maximum 
 CO2 adsorption capacity of 105.60 mg/g at 20 ℃ and 1 bar 
compared to the other resultant biochars.

4.5  Analytical techniques to determine 
the physicochemical properties of biochar

After preparing pristine and modified biochar, it is important 
to carry out some characterization analyses on the biochar to 
gain some insights into the structural features of biochar and 
its surface chemistry. The common methods used to char-
acterize the physicochemical properties of biochar include 
Raman spectroscopy, surface area and porosity analysis 

using Brunauer–Emmett–Teller (BET), Fourier transform 
infrared spectrometry (FTIR), X-ray photoelectron spectros-
copy (XPS), X-ray diffraction (XRD), solid-state 13C nuclear 
magnetic resonance (NMR), and scanning electron micros-
copy-energy dispersive X-ray spectroscopy (SEM–EDX), as 
shown in Fig. 9.

Raman spectroscopy is normally used to determine the 
carbon structural characteristic of the biochar, where the two 
prominent peaks, which respectively represent the amor-
phous ( D-band) and crystalline ( G-band) region formed 
during the pyrolysis of biochar [190]. The surface area and 
porosity of biochar are measured via nitrogen adsorption at 
77 K. The assessment of the micropore volume is usually 
accomplished by the Dubinin–Radushkevich (DR) method 
or the t-plot method [191]. Mesopore volume can be cal-
culated by the difference between the total pore volume 
and micropore volume [49]. For pore size distribution, the 
Barrett-Joyner-Halenda (BJH) method is only suitable for 
calculating mesopores [192], while the density functional 
theory (DFT) is applicable for micropores and mesopores 
determination [49]. FTIR can be used to analyse the pres-
ence of the related functional groups within the wavelength 
between 4000 and 400  cm−1, while XPS is used to deter-
mine the chemical state and the concentration of elements 
on the adsorbent surface. Specifically, the FTIR absorption 
peak and XPS binding energy for fresh and spent (after 
adsorption) adsorbent, which provide insightful information 

Fig. 9  Characterization methods used to analyse the physicochemical properties of biochar. Adapted with permission from [47]
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regarding the various surface functionalities, such as O and 
N-containing functional groups are crucial to interpret the 
 CO2 adsorption mechanism, which is highly influenced by 
the basic or acidic characteristic of the biochar surface [34, 
190]. To examine the carbon structure and the mineralogical 
analysis of biochar, XRD could be performed [117]. NMR 
is commonly used to investigate the quantitative aromaticity 
and non-protonated aromatic fraction of the biochar [193]. 
SEM analysis is conducted to observe the changes in the 
surface morphology of biochar. Here, porosity development, 
pore widening and pore-clogging could be observed after the 
implementation of various modification techniques. Addi-
tionally, EDX is used to determine the elemental composi-
tion of the biochar surface [20].

5  CO2 capture mechanisms by biochar

Various interactions can contribute to the adsorption of  CO2 
on the biochar surface, but the most perceived ones include 
physisorption on micropores, van der Waals attractions and 
Lewis-acid base interactions by O and N containing-func-
tional groups, as demonstrated in Fig. 10.

The adsorption performance of biochar greatly depends 
on its pore structure. Here, pore size distribution will dictate 
the diffusion rate of  CO2 molecules onto the biochar surface, 
where the surface area determines the number of active sites 
for adsorption to occur [194]. The micropore filling effect 

contributes to the physisorption of  CO2 [117, 195]. Biochars 
having micropores in the range of 0.3–0.8 nm are effective 
for  CO2 capture; specifically, those with pores below 0.5 nm 
are the most desirable ones [195]. In addition to this, the 
highly aromatic structure of biochar could enhance the phys-
ical adsorption of  CO2 via van der Waals attractions [195, 
196]. Moreover, various functional groups, especially O and 
N-containing functional groups on biochar surface, contrib-
ute to the  CO2 adsorption either via hydrogen bonding and/
or Lewis aid-base interactions [197, 198]. In general, the 
majority of O-containing functional groups are acidic, and 
hence would inhibit the adsorption of acidic  CO2. Accord-
ing to the acid–base interacting mechanism, the presence of 
acidic groups on the biochar surface would lead to a negative 
effect on  CO2 adsorption capacity. However, the inclusion 
of hydroxyl (-OH) and carboxyl (-COOH) in the biochar 
matrix may improve the hydrogen bonding interaction with 
 CO2 molecules [198, 199]. Here, the strongly electroposi-
tive H atom in hydroxyl and carboxyl groups interacts with 
the electronegative O atom in  CO2 to produce a hydrogen 
bond (O–H···O=C= O) due to the considerable electron-
egativity difference between O atom (3.5) and H atom (2.1) 
[200, 201]. This interaction is considered a weak hydrogen 
bonding compared to the other hydrogen bonding between 
O–H···O, and N–H···O, where H atom is covalently bonded 
to strong electronegative atoms (O and N atoms). Another 
mechanism that contributes to  CO2 adsorption is the interac-
tion of basic N-containing functional groups with acidic  CO2 

Fig. 10  Possible mechanisms 
involved in  CO2 adsorption of 
biochar. Adapted with permis-
sion from [195]
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molecules, known as a Lewis acid–base reaction [201–203]. 
In general, pyridone, pyridine, amine, quaternary-N, pyr-
idine-N-oxide, cyanide, and pyrrole groups are the most 
common types of N-containing functional groups with dif-
ferent basic strengths. Among the N-containing functional 
groups, pyridone, pyridine and pyrrole significantly affect 
the  CO2 adsorption [47]. Lim et al. [197] used density func-
tional theories (DFT) to investigate the interaction of various 
N-containing functional groups with  CO2. They found that 
the binding energies  (Eads) estimated from various begin-
ning configurations reveal how the functional groups interact 
with the  CO2 atom to determine which configuration is most 
beneficial for adsorption.  CO2 configurations with related 
N-functional group binding energies are shown in Fig. 11.

In Fig. 11 (a), the  Eads value is less than -0.10 eV indi-
cating weak van der Waals interactions. Pyridone pos-
sesses the highest binding energy of  CO2 (-0.224 eV) 
compared to the other N-containing functional groups. The 

adsorption behaviour of a pyridone with  CO2 is mostly 
determined by two types of interactions: Lewis acid–base 
and hydrogen-bonding interactions. For pyridine, the  Eads 
value is almost near to that of pyridine, which explains 
pyridinic-N is more favourable for adsorption of  CO2 due 
to its stronger electronegativity. In addition to this, it is 
possible that pyridinic-N prefers the electron-deficient C 
atom over the O atom in  CO2 molecules. Pyrrole interacts 
with  CO2 through hydrogen bonding, whereas the  CO2 
interactions occur in pyridine-N-oxide group involving the 
reaction between the carbon atom of  CO2 with the oxy-
gen atom of the functional group (-NO····C and -NH····O). 
The lowest  Eads value of -0.110 eV may be attributed to a 
weaker Lewis acid-basic interaction than that of pyridine 
group and the hydrogen bonding of pyridone group. Other 
N-functional groups, including cyanide, quaternary and 
amines, formed weak Lewis acid–base reaction with  CO2; 

Fig. 11  Optimized geometry after  CO2 adsorption and the binding energy  (Eads) values for the different N-containing functional groups. Atom 
colours: C = grey, H = white, O = red and N = blue. Adapted with permission from [197]
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hence, the presence of these three groups was less signifi-
cant for adsorption of  CO2.

6  Modified biochar for  CO2 adsorption

Biochar has multifunctional properties that make it a 
promising adsorbent. The high availability of biomass 
feedstock is the key parameter for its cost-effectiveness, 
making it much cheaper than other available  CO2 adsor-
bents [48]. However, pristine biochar exhibits low  CO2 
uptake due to its low microporosity and lack of enriched 
surface chemistry. Thus, the adsorption of  CO2 molecules 
on biochar should be enhanced through various modifica-
tion techniques. From the surface chemistry perspective, 
the adsorption of  CO2 on pristine biochar is not very effi-
cient as  CO2 is a weak Lewis acidic gas (electron acceptor) 
[204]. Strong acid–base interaction with the Lewis basic 
sites (electron donor) will promote the surface affinity and 
selectivity towards  CO2 molecules [205]. In this regard, 
biochar modification can be implemented through various 
methods using different activating agents and activation 
conditions [206] to produce biochar with desirable sur-
face properties, thus enhancing the adsorption capacity. To 
obtain biochar with desired properties, the biomass feed-
stock is normally subjected to treatment before or after 
the carbonization. The following sub-sections highlight 
the modification of biochar through physical activations 
 (CO2 activation and steam activation), chemical activa-
tions (metalized-biochar, amino-modified biochar, alkali-
modified biochar) and physicochemical activation (ultra-
sound-assisted amination). A scheme of the implemented 
modification methods and the routes through which each 
method affects the physicochemical characteristics of bio-
char is presented in Fig. 12.

6.1  Physical activation

Physical activation uses several oxidising agents such as 
steam,  CO2, and air at temperatures above 700 ℃ to increase 
the porosity of biochar [207]. The penetration of these oxi-
dising agents into the internal surfaces followed by the car-
bon atom gasification results in the opening and widening of 
the inaccessible pores [208]. Here, the selection of oxidising 
agents plays a crucial role in creating microporous biochar 
[209]. Oxidation with  CO2 is favourable for generating and 
widening the existing micropores, while steam activation 
creates micropores and mesopores [207]. These activations 
can be performed either during pyrolysis or after pyrolysis. 
Table 5 summarises the related literature on the physical 
activation of biochar for  CO2 adsorption.

6.1.1  Steam activation

Steam activation is utilized to develop the porous structure 
and introduce oxygen-containing functional groups (i.e., 
carbonyl, carboxylic, hydroxyl, ether and phenolic groups) 
onto the carbon surface [169]. For this purpose, steam acti-
vation is normally performed at a temperature between 800 
and 900 °C for 30 min until 3 h [210] with a steam flow rate 
of 120 to 300 ml/min [211, 212]. Theoretically, the porous 
structure of biochar can be improved by devolatilization 
of trapped products such as aldehydes, ketones, and some 
acids [213] that result from incomplete combustion during 
pyrolysis. Pore development in steam activation is related 
to carbon depletion and the water–gas shift reaction [214]. 
Therefore, steam activation could develop a variety of pore 
size distributions and produce micropore and mesopore 
[208, 215, 216].

The reactions involved in steam activation are explained in 
Eqs. (1)-(8) [207, 217]. The development of the surface oxide 

Fig. 12  Different modification 
methods implemented on the 
biochar surface



7420 Biomass Conversion and Biorefinery (2024) 14:7401–7448

1 3

(C(O)) in Eq. (1) comes from the oxygen exchange from the 
water molecule  (H2O) to the vacant carbon site  (Cf) on the 
surface, which may be devolved as carbon monoxide (CO) 
(Eq. (2)). The production of  CO2 in Eq. (3) due to the forma-
tion of CO increases the rate of carbon gasification by scaveng-
ing the C(O). The water–gas shift reaction occurs where CO 
and  H2O are dissociated to  CO2 and hydrogen  (H2) (Eq. (4)). 
Simultaneously, carbon gasification occurs where the  Cf reacts 
with  H2O to produce  CO2 and  H2 (Eq. (5)). The presence of 
 CO2 and  H2 actives  Cf and carbon gasification occurs to form 

CO (Eq. (6)) and  CH4 (Eq. (7)). Further reaction of  CH4 and 
 H2O produces CO and  H2 (Eq. (8)).

(1)Cf + H2O → C(O) + H2

(2)C(O) → CO + Cf

(3)CO(g) + C(O) → CO2(g) + Cf

Table 5  Effect of physical activation and operating conditions on the  CO2 adsorption capacity of biochar

Feedstock Pyrolysis 
temperature 
(℃)

Activating 
agent

Activation
temperature 
(℃)

Activation 
time (min)

Adsorption condition CO2 con-
centration 
(%)

CO2 adsorp-
tion capacity 
(mg/g)

Reference

Tem-
perature 
(℃)

Pressure (bar)

Soybean straw 500 CO2 Pristine 0 30 1 10 45 [200]
Pristine 0 120 1 10 24
500 30 30 1 10 46
500 30 120 1 10 27
600 30 30 1 10 58
600 30 120 1 10 26
700 30 30 1 10 60
700 30 120 1 10 27
800 30 30 1 10 76
800 30 120 1 10 32
900 30 30 1 10 70
900 30 120 1 10 31

Whitewood 500 CO2 890 100 25 1 10 28 [226]
890 100 25 1 30 63
890 100 45 1 20 36
890
890

100
100

65
65

1
1

10
30

12
29

Vine shoots 600 CO2 890 60 25 0.15 100 66.18 [19]
890 60 75 0.15 100 13.16
890 180 25 0.15 100 69.52
890 180 75 0.15 100 13.16

Pine sawdust 550 CO2 550 45 25 1 15 32.12 [195]
Whitewood 500 Steam 700 84 25 1 10 26 [226]

700 84 25 1 30 59
700 84 15 1 20 35
700 84 45 1 10 15
700 84 75 1 30 35

Cellulose 
fibres

650 Steam Steam-assisted 
slow pyroly-
sis at 650 ℃

- 25 1 100 75.68 [86]

Cellulose 
fibers

700 Steam-assisted 
slow pyroly-
sis at 700 ℃

Steam-

- 2 1 100 102.52

Pinus nigra 
wood

600 assisted slow 
pyrolysis at 
600 ℃

- 2 1 100 49.28
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The overall reaction is presented in Eq. (9) [218].

In general, the volume/radius of pore and surface area are 
positively correlated with steam activation temperature and 
time due to the continuous removal of carbon atoms from the 
carbon surface [207]. At high activating temperatures, i.e. 
around 700–800 ℃, the changes in the surface oxygen-con-
taining groups, aromatic structure, and alkali and alkaline 
earth metal (AAEM) species contribute to the reactivity of 
steam activated biochar. Here, at the temperature of 700–800 
℃, the agglomeration of AAEM species increases their par-
ticle size and penetration of H radical into the carbon surface 
leads to changes in the ring condensation reactions, which 
increases the biochar reactivity. However, raising the tem-
perature to above 800 ℃ makes the biochar more ordered 
due to the consumption of small aromatic ring structures and 
reduces its reactivity. Conversely, steam activation below 
300 ℃ is not suggested as this low activation temperature 
cannot remove the strong hydroxyl binding groups [219]. It 
should be highlighted that the reactivity of biochar depends 
on the AAEM species, which improve the oxygen-contain-
ing groups at the initial gasification process. These AAEM 
species are further consumed as the activation temperature 
increases. Generally, a long activation time (> 45–60 min) at 
a high temperature allows the overactivation phenomenon. 
Here, more gasification at a faster rate will collapse the wall 
structure and negatively affect the biochar surface [207]. 
In this case, pores are still developed, but some pores may 
exceed the desirable size for  CO2 capture. Here, micropores 
can be converted to mesopores and macropores, decreas-
ing the volume fraction of micropores [220]. In short, the 
optimum steam activation temperature and time should be 
strictly determined to avoid the overactivation phenomenon, 
which might lead to developing biochar with low surface 
area and pore volume.

From the previous studies, it should be highlighted that 
the activation temperature plays an important role in improv-
ing the surface area and total pore volume of the modified 
biochar [137, 221]. The porosity type is greatly influenced 
by the activating temperature, where steam activation below 

(4)CO + H2O → CO2 + H2

(5)Cf + 2H2O → CO2 + 2H2

(6)Cf + CO2 → 2CO

(7)Cf + 2H2 → CH4

(8)CH4 + H2O → CO + 3H2

(9)C(s) + H2O(g) → CO(g) + H2(g)ΔH = 117kJ∕mol

750 ℃ generates micropores, while increasing the steam 
activation temperature up to 750 ℃ may lead to the devel-
opment of pores distribution consisting of micropores and 
mesopores [221]. To increase the microporosity and surface 
area of barley straw-derived biochar, Pallarés et al. [137] 
used different steam activation temperatures (600, 700 and 
800 ℃) for 1 h. Among the activated biochar samples, the 
one activated at 700 ℃ possessed the higher micropores sur-
face area of 540  m2/g followed by the biochar activated at 
800 ℃ (500  m3/g). At the lowest activation temperature of 
600 ℃, the micropore surface area could not be detected, as 
the formation of new pores was not completed due to insuf-
ficient activation temperature. Therefore, the employment 
of suitable activation temperature is critical in producing 
biochar with high microporosity which is favoured for a high 
 CO2 uptake.

6.1.2  CO2 activation

Unlike steam activation, which yields in a pore distribu-
tion consisting of micropores and mesopores,  CO2 activa-
tion tends to develop micropores. In gas adsorption, where 
the small molecules, such as  CO2, need to be adsorbed, the 
occurrence of micropores is more important than mesopores 
and macropores [222]. Advantageously, the development of 
highly microporous biochar by  CO2 activation facilitates 
the adsorption of  CO2 under ambient conditions [200]. As 
mentioned previously,  CO2 can be used either during the 
pyrolysis of biomass feedstock, which is referred to as direct 
activation or after it. The Boudouard reaction explains the 
mechanism of biochar activation with  CO2 [207, 209]. In 
this reaction, vacant active sites, denoted as Cf , on the car-
bon surface undergo dissociative chemisorption of  CO2 to 
form C(O) and CO, as shown in (Eq. (10)). Next, the pore 
structure is developed as the surface oxide is desorbed from 
the surface (Eq. (11)). Finally, CO in the gaseous product 
is adsorbed on the active carbon site of the char and retards 
the gasification (Eq. (12)).

Among the operating parameters for  CO2 activation, 
which are activation temperature,  CO2 flowrate, and holding 
time, most studies reported that activation temperature is the 
critical parameter in controlling biochar’s textural properties 
[137, 223]. Zhang et al. [200] employed direct  CO2 activa-
tion to develop microporous biochar. They used soya bean 
straw as a precursor and pyrolyzed it under  N2 gas, and then 
switched to  CO2 gas after the pre-set temperatures (500, 600, 

(10)Cf + CO2 → C(O) + CO

(11)C(O) → CO

(12)Cf + CO → C(CO)
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700, 800 and 900 ℃) were achieved for 30 min. Initially, the 
micropore surface area for pristine biochar was 250  m2/g. 
After  CO2 activation at 800 ℃, the micropore surface area 
increased almost 2 times to 473  m2/g. Here, the hot corro-
sion on the biochar surface created narrow micropores and 
weakly improved the mesopores and macropores. Using this 
activated biochar, a  CO2 uptake of 76 mg/g was obtained. 
However, an increase in the activation temperature to 900 ℃ 
reduced the micropore surface area to 455  m2/g. It was dis-
cussed that at high temperatures, the hot corrosion became 
more intense and led to the disruption of coalescence of 
micropores to mesopores and macropore. As a result, his 
phenomenon reduced the micropore surface area. Ogung-
benro et al. [223] performed  CO2 activation at three dif-
ferent temperatures (600, 700 and 900 ℃) after pyrolysis 
of date fruit seeds at 800 ℃. Initially, the  CO2 adsorption 
capacity for pristine biochar was 91.12 mg/g at 20 ℃ and 
1 bar. While the biochar activated under  CO2 at 900 ℃ for 
1 h, exhibited the highest  CO2 sorption of 141.14 mg/g fol-
lowed by the ones activated at 700 ℃ (126.21 mg/g) and 
600 ℃ (119.11 mg/g) at 20 ℃ and 1 bar. Enhancement of 
 CO2 adsorption capacity was confidently related to the 
increment of surface area from 531.33 to 798.38  m2/g and 
micropore volume from 0.19 to 0.28  cm3/g after  CO2 activa-
tion. Apart from activation temperature, holding time also 
significantly affects the microporosity and surface area of 
biochar. Studies indicate prolonging the activation time to 
over 2 h may collapse the pores, and the widening of the 
micropores is continuously developed, reducing the surface 
area and micropores volume [137, 223]. Ogungbenro et al. 
[223] reported that the biochar activated using  CO2 at 800 
℃ for 3 h revealed the lowest surface area and micropore 
volume of 192.65  m2/g and 0.07  cm3/g, respectively, among 
the activated biochar samples at different activation times 
(1, 2 and 3 h). In another investigation, Pallarés et al. [137], 
carbonized barley straw at 500 ℃ and further activated it 
using  CO2 at 800 ℃. It was reported that the surface area 
and micropores volume of barley straw activated for 2 h (769 
 m2/g and 0.3252  cm3/g, respectively), were lower than those 
obtained from 1 h activation with values of 789  m2/g and 
0.3495  cm3/g, respectively.

It should be highlighted that at high temperatures, a 
shorter holding time is sufficient to prevent the exces-
sive burn-off of biochar and pores widening. Otherwise, 
a longer holding time is required at lower activation tem-
peratures so that the  CO2 molecules could penetrate into 
the carbon matrix to generate more micropores. In studying 
the effect of  CO2 flow rate, an extreme reduction in sur-
face area and micropore volume from 789 to 160  m2/g and 
0.3268 to 0.0657  cm3/g, respectively, was reported when 
 CO2 flow rate was increased from 2500 to 4000  cm3/min 
[137]. Here, the insufficient contact of  CO2 molecules with 
carbon and the shorter residence time reduced the chance 

for pore development. In summary, in physical activation, 
 CO2 activation is preferred as steam activation is difficult to 
control due to the high reactivity of steam [224]. Further-
more, the diffusion rate in steam activation is lower than the 
reaction rate; hence, carbon atoms and steam can only react 
on the carbon surface, while  CO2 activation can overcome 
these limitations [225]. As a result,  CO2 activation pro-
duces biochar with higher micropores volume and surface 
area than steam activation. In a study conducted by Pallarés 
et al. [137], barley straw was carbonized under nitrogen and 
activated using  CO2 and steam (in separate experiments) at 
activation temperatures of 700–900 ℃ for 1–2 h. The authors 
confirmed that  CO2-activated biochar had higher micropo-
res volume and BET surface area of 0.3268  cm3/g and 789 
 m2/g, respectively, at the activation temperature of 800 ℃ for 
1 h. While, steam-activated biochar produced the maximum 
micropores volume of 0.2304  cm3/g and the BET surface 
area of 552  m2/g (700 ℃, 1 h). Notably, the biochar activated 
with  CO2 showed a 41.84% increment in microporosity than 
that activated by steam.

6.2  Chemical activation

Chemical activation is applied to pristine biochar to improve 
its surface chemical properties, mainly surface basicity 
and surface functional groups. Chemical activation can be 
implemented via two routes; direct impregnation of biomass 
feedstock with a chemical agent followed by thermal treat-
ment and activation of synthesized biochar with a chemi-
cal agent, which further undergoes heat treatment [207]. 
The use of different chemical agents will generate various 
surface functionalities. Specifically, the implementation of 
chemical activation enhances the surface basicity, which is 
beneficial for acidic  CO2 adsorption. The following chemi-
cal activation section highlights three types of modification 
as a research hotspot, including metalized-biochar, alkali-
modified biochar, and amino-modified biochar, as summa-
rized in Table 6.

6.2.1  Metalized‑biochar

Studies have indicated that impregnating pristine biochar 
with metal or metal oxide can increase its  CO2 capture 
capacity. According to the reports, impregnation of biochar 
with metal salt solutions with basic properties such as mag-
nesium, aluminium, iron (III) and calcium resulted in the 
enhancement of acidic  CO2 gas adsorption by an increment 
of surface basicity [227, 228]. In a study performed by Zub-
bri et al. [20], impregnation of biochar by several magnesium 
salts such as magnesium nitrate, magnesium sulphate, mag-
nesium chloride and magnesium acetate and their effect on 
the  CO2 adsorption capacity were examined. Firstly, rambu-
tan peel was pyrolyzed at various temperatures (500, 700 
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and 900 ℃) for 90 min under nitrogen gas. Accordingly, the 
highest surface area of 569.65  m2/g and micropore volume 
of 0.201  cm3/g was achieved for biochar prepared at 900 
℃. However, after incorporating 5% magnesium nitrate, the 
surface area and micropore volume reduced to 505.58  m2/g 
and 0.182  cm3/g, respectively, due to metal deposition and 
possible pore blocking. It was reported that the  CO2 adsorp-
tion capacity of biochar impregnated with magnesium nitrate 
was the highest (76.89 mg/g) among all magnesium-loaded 
biochar samples. The magnesium oxide and magnesium car-
bonate formation are demonstrated in Eqs. (13)-(15). Here, 
the decomposition of magnesium nitrate to its oxide form 
takes place at the temperature of 400 ℃ and above [229] 
(Eqs. (13)-(14)). Then, the further reaction of magnesium 
oxide with  CO2 forms carbonate, as shown in Eq. (15) [20]:

Finally, after 25 cycles of  CO2 adsorption–desorption, 
magnesium nitrate loaded-biochar showed excellent stabil-
ity and its adsorption capacity was retained throughout the 
process. It was also discussed that the  CO2 adsorption was 
predominantly governed by physisorption.

In another study, Lahijani et al. [117] introduced vari-
ous metals such as Mg, Na, Al, Fe, Ni, and Ca on the sur-
face of walnut shell-derived biochar through impregna-
tion to increase the surface basic sites; this was followed 
by thermal treatment of metalized-biochar at 500 ℃ for 
15  min. The performance of the metalized-biochar for 
 CO2 adsorption was in the sequence of magnesium > alu-
minium > iron > nickel > calcium > raw biochar > sodium. It 
was suggested that anhydrous Mg(NO3)2 formed at around 
110–190℃ from the endothermic dehydration reaction of 
Mg(NO3)2.6H2O as shown in Eq. (13). Next, the thermal 
decomposition of anhydrous magnesium nitrate to magne-
sium oxide occurs at a temperature above 400 ℃ (Eq. (14). 
The interaction of  CO2 with the basic  O2− in the  O2−-Mg2+ 
(MgO) forms carbonate as represented in Eq. (15). Mg-
loaded biochar demonstrated the highest  CO2 adsorption 
capacity (80.0  mg/g) compared to the pristine biochar 
(69.1 mg/g) at 30 ℃ and 1 bar. It was discussed that after 
metal deposition on biochar, chemisorption also contributed 
to the  CO2 adsorption through carbonate formation. After 
metal doping on biochar, the contribution of physisorption 
reduced due to metal deposition on pore entrance and pore 
blockage (deduced from the reduction in surface area and 
porosity), yet the interaction of basic metal oxides with  CO2 
played an important role in chemisorption. Therefore, the 

(13)Mg(NO3)26H2O → Mg(NO3)2 + 6H2O

(14)Mg(NO3)2 → MgO + 2NO2 +
1

2
O2

(15)Mg − O + CO2 → Mg − O…CO2(ad)
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incorporation of magnesium nitrate into the biochar contrib-
uted to a 15.7% enhancement in  CO2 adsorption capacity.

Other than that, Creamer et al. [228] investigated the 
development of various metal oxyhydroxide–biochar com-
posites for carbon dioxide capture. The biochar was prepared 
using cottonwood and impregnated with three different metal 
salts (aluminium chloride, iron chloride, and magnesium 
chloride hexahydrate) at various metal ratios, followed by 
pyrolysis at 600 ℃ for 3 h. The surface area for the metalized 
biochar was 289, 367 and 749  m2/g for magnesium-, alumin-
ium- and iron-loaded biochar, respectively. In comparison 
with the pristine biochar (58 mg/g), the metalized biochar 
showed higher  CO2 adsorption: 63.69 mg/g for Mg-biochar, 
71.05 mg/g for Al-biochar and 66.57 mg/g for Fe-biochar. 
Interestingly, the authors pointed out that Al-biochar exhib-
ited the highest  CO2 sorption even though Fe-biochar had 
the highest surface area. Here, the microporosity was a more 
influential factor than the surface area; the micropore vol-
ume of Al-biochar (0.37  cm3/g) was higher than that of Fe-
biochar (0.33  cm3/g). In this case, a high volume of small 
micropores contributed to a high  CO2 uptake.

Apparently, metal loading affects the porosity, surface 
area, and surface basicity, and the performance of the adsor-
bents significantly depends on these factors [230]. Therefore, 
the amount of metal loading should be carefully determined 
to have the least adverse effect on surface area and micr-
oporosity while enhancing the surface basicity for excellent 
 CO2 capture.

6.2.2  Amino‑modified biochar

Numerous studies have suggested that basic nitrogen func-
tional groups increase the basicity and nitrogen functionali-
ties on the biochar surface [231, 232]. Among the nitrogen-
containing functional groups, amine has been mostly utilized 
to be functionalized on biochar surfaces, where  CO2 mol-
ecules selectively bind with amine groups via chemisorptive 
interactions, thus forming carbamate [233–236]. Although 
the specific mechanism of this reaction remains unclear, 
however, some studies discussed that the reaction is in the 
intermediate formation of zwitterion followed by Brǿnsted 
base deprotonation [169, 237]. In  CO2 adsorption by pri-
mary and secondary amines, the lone pair on the nitrogen 
atom in the amine molecule attacks  CO2 to form zwitterion. 
Then, further reaction forms carbamate, while the other 
amine molecule abstracts the proton from the zwitterion 
intermediate [238].

Recently, Halem et al. [239] reported that the presence of 
amine in the development of polyvinyl alcohol (PVA)-based 
biochar nanofibers was important to assist the adsorption of 
 CO2 acidic gas through acid–base attraction. In their study, 
poultry litter was pyrolyzed at various temperatures of 300 
to 600 ℃ for 1 h, followed by nitric acid functionalization 

using the reflux method. Afterwards, the resulting biochars 
were treated with diethanolamine (DEA), and the mixtures 
were then heated at 50 ℃ for 1 h. Biochar was immersed in 
PVA solution (10 wt%) for 30 min, and finally, the mixtures 
were converted to nanofibers using electrospinning. It was 
found that, in comparison with the nanofiber biochar pyro-
lyzed at 500 ℃ without amine treatment (426 mg/g), the 
one treated with amine displayed a higher  CO2 adsorption 
capacity of 462 mg/g at 20 ℃. Here, the introduction of 
amine with basic characteristics was much beneficial for the 
adsorption of  CO2 acidic gas.

Bamdad et al. [240] attempted to tailor the biochar char-
acteristics by thermal and chemical activation of biochar. 
They developed microporous biochar from sawdust pyro-
lyzed at 500 ℃ followed by amination using two different 
functionalization approaches, namely nitration followed by 
reduction (denoted as AM-SW500), and condensation of 
aminopropyl triethoxysilane (denoted as AP-SW500). The 
prepared biochars were then activated in an air-nitrogen mix-
ture at 560 ℃. A significantly higher  CO2 adsorption capac-
ity of 145.2 mg/g for AM-SW500-A-560 and 167.2 mg/g 
for AP-SW500-A-560 was obtained compared to that of 
pristine biochar (110 mg/g), highlighting the contributing 
effect of amine in  CO2 chemisorption and promotion of the 
 CO2 uptake capacity.

Liu et al. [241] studied a two-step nitrogen-doping and 
KOH activation method to modify the biochar surface for 
superior  CO2 adsorption capacity. First, the coffee ground 
was used to prepare the pristine biochar by pyrolyzing it at 
400 ℃ under  N2 for 1 h. Then, the ammoxidation process 
was performed via three different methods; (i) dispersion of 
biochar in 3-Aminopropyltrimethoxysilane (APTES), reflux-
ing at 80 ℃ for 24 h, followed by washing and then drying at 
60 ℃ overnight (denoted as SHC), (ii) dispersion of biochar 
in HCl, then the mixture was treated with poly-condensation 
of aniline solution by  K2Cr2O7 in an ice bath for 6 h fol-
lowed by washing and then drying in a vacuum oven at 60 
℃ (denoted as PHC), and (iii) sonication of biochar in water 
with the addition of melamine followed by hydrothermal 
treatment and drying at 60 ℃ (denoted as MHC). Lastly, all 
prepared biochars were activated by KOH at 400 ℃ for 1 h 
and then the temperature was further increased to 600 ℃ 
for the next hour. MHC possessed the highest  CO2 adsorp-
tion capacity of 37.40 mg/g compared to PHC (~ 22 mg/g) 
and SHC (18.04 mg/g) at 35 ℃ prior KOH activation. Here, 
the nitrogen content was the factor that influenced the  CO2 
adsorption capacity, where the third method developed mel-
amine-modified biochar with the highest nitrogen content 
(17.4 wt%) compared to the first (4.11 wt%) and second 
(11.9 wt%) methods. However, the amount of nitrogen con-
tent highly decreased in the range of 68–84% after KOH 
activation due to the decomposition of thermally unstable 
N species such as nitrile, amide and amine group. It was 
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discussed that the pyrrolic nitrogen content was the highest 
(5.1%) in KMHC (after KOH activation for the third route) 
among all the amination reagents. Therefore, an extreme 
enhancement in  CO2 uptake (117.48 mg/g) at 35 ℃ was 
obtained. Specifically, in this case, pyrrolic nitrogen was 
more favourable for  CO2 uptake than pyridinic oxide and 
pyridinic nitrogen.

On the contrary, few studies reported the decrement of 
 CO2 adsorption after functionalizing the amine groups on 
biochar. Ghani et al. [242] investigated the development of 
amine-modified biochar derived from coconut shells. The 
biochar was produced from a lab-scale air blown gasifier 
operated at 800 ℃ and chemically treated using monoetha-
nolamine (MEA) for 20 min. From the ultimate analysis, 
the nitrogen content of the biochar increased by 77%, from 
0.265 to 1.19 wt%, due to the incorporation of nitrogen 
components after amine treatment. However, the surface 
area of the biochar decreased from 171.956 to 10.335  m2/g 
after amine functionalization. This reduction in surface area 
was consistent with a reduction in  CO2 adsorption capac-
ity from 46.387 to 45.576 mg/g at 30 ℃. This was due to 
pore blockage by MEA, inhibiting  CO2 adsorption on the 
biochar surface after the treatment. The authors highlighted 
that the  CO2 capture at 30 ℃ is more physical related to 
adsorbent and adsorbate attraction formed by the intermo-
lecular electrostatic forces. The pore blockage thus inhibited 
the intermolecular forces on the biochar surface and led to 
the decrement of  CO2 adsorption. While  CO2 capture at 70 
℃ was mostly attributed to chemisorption with the adsorp-
tion value of 35.496 mg/g for amine-modified biochar com-
pared to 30.114 mg/g for pristine biochar. Using the similar 
modification technique, the performance of untreated and 
amine-treated sawdust was evaluated by Madzaki et al. [85]. 
The biochar was produced from a lab-scale air blown gasi-
fier reactor at various temperatures (450, 750 and 850 ℃), 
followed by treatment using MEA for 20 min. The biochar 
was then subjected to  CO2 adsorption at 30 and 70 ℃. It 
was reported that the pH of amine-treated biochar was in 
the range of 6.32–6.93, while that of untreated biochar was 
between 5.09 and 5.57. The biochar surface pH changed 
from acidic to basic due to incorporating a strong basic 
component. However, all amine-treated biochar samples 
(gasified at different temperatures) displayed a lower  CO2 
adsorption capacity than untreated biochar. The surface 
area of amine-treated biochars, which were gasified at 450, 
750 and 850 ℃, reduced from 8.76 to 0.61  m2/g, 11.36 to 
0.15  m2/g and 182.04 to 3.17  m2/g, respectively. Again, the 
decrement in  CO2 adsorption capacity was mainly caused 
by pore obstruction by amine, during impregnation of bio-
char by MEA solution. Furthermore, the quinine functional 
group that appeared near 1600  cm−1 (as observed in FTIR 
of amine-modified biochars) was likely to be acidic and may 
result in the decrement of  CO2 capture of amine-treated 

biochar. To conclude, developing a highly microporous and 
large surface area adsorbent with high nitrogen content and 
numerous active sites is critically important for high  CO2 
adsorption capacity.

6.2.3  Alkali‑modified biochar

Alkali modification is performed by soaking or mixing either 
biomass or biochar at a specific alkali concentration for about 
6–24 h at a temperature range of 25 to 100 ℃ depending on 
the used raw materials. Alkali reagents commonly used to 
activate biochar mainly include sodium hydroxide (NaOH) 
[194, 243, 244], potassium hydroxide (KOH) [245–248] and 
potassium carbonate  (K2CO3) [249–251]. Among these rea-
gents, KOH has been widely used as an activating agent for 
creating small micropores in the carbon skeleton through 
chemical activation followed by heat treatment [125]. Here, 
the generation of micro- and meso-porosities results from 
the separation and degradation of graphitic layers, which is 
much beneficial for  CO2 uptake [207]. During KOH activa-
tion, the presence of oxygen-containing functional groups 
(i.e., carbonyl, quinone, ether and lactone) increases bio-
char’s surface basicity [252, 253]. However, these functional 
groups decompose at different activation temperatures form-
ing CO and  CO2 upon heating. The main products generated 
for activation temperature below 700 ℃ are  K2O,  H2O,  H2, 
CO,  CO2 and  K2CO3, as presented in Eqs. (16)-(19) [254]. 
Dehydration of KOH forms potassium oxide  (K2O) at 400 
℃, as shown in Eq. (16), while carbon reacts with  H2O to 
emit hydrogen and carbon monoxide, according to Eq. (17). 
 CO2 is released from the water–gas shift reaction, as shown 
in (Eq. (18)). Then, potassium carbonate  (K2CO3) is gener-
ated as  K2O reacts with  CO2 (Eq. (19)). KOH is completely 
consumed at a temperature above 700 ℃ [255]. For activa-
tion temperatures above 700 ℃, the potassium carbonate 
(Eqs. (19) and (22)) dissociates into  K2O and  CO2 and com-
pletely disappears when the temperature reaches 800 ℃. The 
resulting  CO2 can further react with carbon to form carbon 
monoxide at high temperatures (Eq. (23)). In addition, the 
potassium carbonate can be reduced by carbon and hydrogen 
to produce metallic potassium at a temperature above 700 ℃, 
as shown in (Eqs. (24) and (25)) [255]. The intercalation of 
potassium onto the carbon structure develops new micropo-
res and widens the existing pores [256].

(16)2KOH → K2O + H2O

(17)C + H2O → H2 + CO

(18)CO + H2O → CO2 + H2

(19)K2O + CO2 → K2CO3
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Hence, the activation temperature beyond 760 ℃ would 
expand the carbon atomic layers, as the vaporized metallic 
potassium can diffuse into the carbon matrix [257]. Accord-
ingly, the activation temperature should exceed the boiling 
point of potassium which is 760 ℃, to ensure its evapora-
tion and diffusion into carbon layers. Therefore, most studies 
highlighted that the optimum activation temperature is in the 
range of 800–850 ℃ [243, 258, 259]. In a recent study con-
ducted by Gomez-Delgado et al. [260], Prosopis ruscifolia 
sawdust was pyrolyzed under  N2 at 500 ℃ for 1 h, followed 
by KOH activation at 800 ℃ and a high  CO2 adsorption 
capacity of 264.4 mg/g was attained. However, the use of 
lower activation temperature was also reported in the litera-
ture. Li et al. [261] investigated different KOH activation 
temperatures (600, 700 and 800 ℃) for  CO2 uptake capacity 
using mixed sewage sludge and pine sawdust which were 
initially pyrolyzed at 300 ℃ for 4 h. The KOH-activated 
biochar at 700 ℃ had the highest surface area and micropore 
volume of 2623  m2/g and 0.90  cm3/g, respectively, than 
those activated with KOH at 600 and 800 ℃. It was evident 
that the high  CO2 uptake capacity of KOH-activated biochar 
at 700 ℃ (182.0 mg/g) compared to other modified biochars 
(136.7–141.7 mg/g) was due to the largest surface area and 
micropore volume as the crucial factors for physical adsorp-
tion of  CO2.

Besides the activation temperature, the amount of used 
KOH affects the textural properties and the functionalities of 
the modified biochar [262]. The excessive amount of KOH 
may disrupt the carbon wall structure, leading to a lower sur-
face area and microporosity of the alkali-modified biochar. 
Considering that KOH modification results in superior  CO2 
uptake, in a study carried out by Ding and Liu [262], two 
different types of seaweed, namely, Sargassum and Entero-
morpha, were used to prepare biochar through single-step 
carbonization and activation. Sargassum and Enteromorpha 
were mixed at different KOH/biomass ratios (0, 1, 2, and 4) 
and directly calcined at three different temperatures (400, 
600 and 800 ℃) in a fixed-bed adsorption system. The Sar-
gassum seaweed-based porous biochar prepared at 800 ℃ 

(20)C + K2O → 2K + CO

(21)6KOH + 2C → 2K + 3H2O + 2K2CO3

(22)K2CO3 → K2O + CO2

(23)CO2 + C → 2CO

(24)K2CO3 + 2C → 2K + 3CO

(25)K2O + H2 → 2K + H2O

with KOH/biomass mixing ratio of 1:1 demonstrated the 
highest  CO2 uptake capacity of 46.20 mg/g among the pre-
pared biochars. An excessive activation could disintegrate 
the carbon wall structure and reduce the surface area. It was 
noticeable that the total pore volume and surface area of this 
seaweed-based biochar decreased from 0.16 to 0.07  cm3/g 
and 60.2 to 16.4  m2/g, respectively, as the KOH/biomass 
weight ratio increased from 1:1 to 1:4. It was discussed that 
upon KOH activation, two absorption peaks at 1430 and 
1010  cm−1 corresponding to carbonyl C = O and carbox-
ylic C-O stretching, respectively, became more intense, as 
evidenced in FTIR analysis. These oxygen-containing func-
tional groups thus promoted  CO2 adsorption on the KOH-
modified biochar. Apart from that, the optimum activation 
temperature of 800 ℃ generated more oxygen-containing 
functional groups due to the maximum activation roles at 
high temperatures. After ten cycles of  CO2 adsorption–des-
orption, Sargassum-derived KOH-modified biochar exhib-
ited a 13% reduction in its adsorption capacity.

In another study undertaken by Shao et  al. [263], 
microporous carbons were prepared from poplar wood by 
three different methods. In the first method, poplar wood 
was mixed with KOH as an activating agent and carbonized 
at 600 ℃ in one-step activation carbonization. In the second 
method, residues of poplar wood after bioethanol fermenta-
tion were initially mixed with KOH followed by carboniza-
tion at 600 ℃. Finally, in the third method, hydrothermal 
activation was performed on poplar wood. Here, a dried pop-
lar wood was immersed in a sulfuric acid–water mixture and 
heated up in a stainless-steel autoclave with Teflon lining for 
24 h at 160 ℃. The resulting hydrochar was then activated by 
KOH at different activation temperatures (600, 700 and 800 
℃) and different mass ratios of 1 and 2. Overall, hydrother-
mal-KOH activated poplar wood at 800 ℃ at a mass ratio of 
1:1 displayed the maximum  CO2 uptake of 126.10 mg/g at 
25 ℃ and 1 bar. In comparison, KOH-activated poplar wood 
at 600 ℃ presented the lowest  CO2 uptake of 48.60 mg/g, 
while bioethanol-pretreated KOH-activated biochar (at the 
same temperature of 600 ℃) showed an uptake capacity of 
67.90 mg/g. As previously discussed, activation above 760 
℃ results in the formation of new pores as potassium can 
diffuse into the carbon layers, contributing to a high surface 
area and micropore volume. Significantly, biochar produced 
from hydrothermal-KOH activation at 800 ℃ showed the 
highest BET surface area and micropore volume of 2153 
 m2/g and 0.85  cm3/g, respectively, compared to the samples 
obtained from the other two modification methods. The cor-
responding BET surface area and micropore volume were 
found to be 511  m2/g and 0.17  cm3/g (for the first method), 
and 535  m2/g and 0.22  cm3/ (for the second method), respec-
tively. It is important to remember that insufficient activation 
temperature (< 700 ℃) may result in a lower surface area 
and microporosity, as KOH is not completely converted to 
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potassium carbonate in which the intercalation of potassium 
into the carbon matrix generates new pores and widens the 
existing pores. Hence, the activation temperature is a key 
factor when impregnating biochar with KOH and should be 
carefully determined.

Other than KOH, sodium hydroxide (NaOH) has also 
been used as the activating agent to develop modified bio-
char. In this regard, Tan et al. [243] impregnated a com-
mercial coconut shell with NaOH solution. They impreg-
nated the coconut shells with NaOH solution at different 
concentrations (24–32%) and shook the mix for 1–3 h. It 
was reported that 32% NaOH concentration and 3 h dwell-
ing time resulted in the maximum BET surface area and 
micropore area of 378.23  m2/g and 277.42  m2/g, respec-
tively. The highest  CO2 uptake capacity of 27.10 mg/g was 
obtained at 35 ℃ compared to the adsorption temperature of 
45 ℃ (24.03 mg/g) and 55 ℃ (16.62 mg/g).

6.2.4  Acid‑modified biochar

For developing acid-modified biochar, phosphoric acid 
 (H3PO4) [264, 265] and zinc chloride  (ZnCl2) [266, 267] are 
the most common activating agents, which serve as dehydra-
tion agents. Here, one-step activation is normally adopted, 
where the activation process is carried out through catalyzed 
condensation, dehydration and cross-linking reactions. As 
discussed earlier, the optimum activation temperature for 
KOH is in the range of 800–850 ℃, whereas  H3PO4 and 
 ZnCl2 require a lower activation temperature between 450 
and 500 ℃ [268]. According to Sevilla and Mokaya [269], 
a lower activation temperature compared to KOH activa-
tion is probably due to the difference in the thermal stabil-
ity of the cross-links formed during the activation process. 
 H3PO4 is a well-known acid activator, which contributes 
to the introduction of P-containing functional groups and 
micropore development on the biochar surface. The pores 
are formed during the cross-linking reactions, including the 
cyclization and condensation, where  H3PO4 plays a role as 
a dehydration agent. Similar to  H3PO4,  ZnCl2 is one of the 
outstanding acid activators and has a boiling point of 732 ℃ 
[49].  ZnCl2 can penetrate into the carbon structure through 
the dissolving impact on cellulose, which is beneficial for 
pore formation. The activation at temperatures below 700 ℃ 
probably leads to the uniform distribution of  ZnCl2 on the 
biochar surface, as  ZnCl2 is still in the liquid state. Thote 
et al. [270] pre-mixed soybean and  ZnCl2 powder at a ratio 
of 1:1 and pyrolyzed the mixture at 600 ℃ for 2 h. The 
resultant biochar had a surface area of 811  m2/g and pore 
volume of 0.33  cm3/g. The  CO2 adsorption capacity of the 
developed biochar was 41.0 mg/g at 30 ℃ and drastically 
reduced to 22.4 mg/g at high adsorption temperature (70 
℃). Ahmed et al. [271] examined pre-impregnation and 
post-impregnation methods for developing  ZnCl2-activated 

biochar. In pre-impregnation, slash pine wood was added to 
 ZnCl2 solution and mixed thoroughly for 22 h. Afterwards, 
the dried mixture was pyrolyzed at 580 ℃ for 2 h. In the sec-
ond method, slash pine wood was firstly pyrolyzed at 360 ℃ 
for 2 h; then, the produced biochar was activated with  ZnCl2 
at 580 ℃ for 2 h. Accordingly, the biochar developed from 
post-impregnation route showed slightly higher  CO2 adsorp-
tion capacity of 196.24 mg/g compared to the one developed 
using pre-impregnation method (190.08 mg/g). They dis-
cussed that  CO2 adsorption capacities are proportional to the 
surface area, where large surface area and ultra-micropores 
(0.57 nm) were beneficial to obtain high  CO2 adsorption. 
In this case,  ZnCl2 post-impregnated biochar exhibited a 
larger surface area of 1093  m2/g than that of pre-impreg-
nated biochar (1081  m2/g). The performance of the biochar 
activated with different activating agents, such as  H3PO4 and 
 ZnCl2 was assessed by Heidari et al. [268]. In this study, the 
Eucalyptus wood was immersed into the  H3PO4 (ratios of 
 H3PO4: Eucalyptus wood = 1.5, 2.0, 2.5:1) or  ZnCl2 (ratios 
of  ZnCl2: Eucalyptus wood = 0.75, 1.5, 2.5:1) and then dried 
overnight. The Eucalyptus wood impregnated with  H3PO4 
was then carbonized at 450 ℃ for 1 h, whereas the ones 
impregnated with  ZnCl2 were subjected to the carbonization 
at 500 ℃ for 2 h. In addition to this, the effect of the multi-
step activation using  H3PO4 and KOH was also investigated, 
where the first activation step was carried out using  H3PO4 
followed by KOH activation at 900 ℃ for 1 h. As a result, the 
 CO2 adsorption capacity of the prepared activated biochars 
was in the following order:  H3PO4 + KOH >  H3PO4 >  ZnCl2. 
The biochar activated with  H3PO4 and KOH exhibited a rela-
tively high adsorption capacity of 180.40 mg/g at 30 ℃ and 
1 bar compared to those activated using  H3PO4 (mass ratio 
of 2.5) and  ZnCl2 (mass ratio of 2.5), which resulted in the 
 CO2 capture capacity of 82.72 and 58.96 mg/g, respectively. 
These findings were in line with the maximum BET surface 
area (2595  m2/g) and micropore volume (1.236  cm3/g) of the 
biochar developed using multi-step activation. According to 
their results, the use of KOH enhanced the  CO2 adsorption 
capacity of biochar by almost 2–3 times compared to those 
activated by  H3PO4 and  ZnCl2 at mass ratio of 2.5. There-
fore, the selection of appropriate activating agent, and the 
determination of optimum biomass/biochar: activating agent 
ratio is important to achieve a high  CO2 uptake capacity.

6.3  Physicochemical activation

Physicochemical activation is a combination of physical 
and chemical treatment. Table 7 shows a summary of phys-
icochemically activated biochars used for  CO2 adsorption. 
Recently, a two-step treatment process, ultrasound irradia-
tion-assisted amine functionalization, has been used as an 
advanced modification technique to modify biochar’s surface 
area, porosity, and surface chemistry [276, 277]. The oxygen 
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functional groups (i.e., hydroxyl, carbonyl and epoxy) on 
the graphene oxide layers of biochar are very significant 
for  CO2 adsorption. However, the graphene oxide layers of 
pristine biochar remain inaccessible for interaction with  CO2 
unless the biochar is exfoliated. By applying the ultrasound 
waves at a certain frequency, the graphitic layers of biochar 
could be exfoliated. Here, the exfoliated biochar has a higher 
surface area and availability of oxygen functionalities; there-
fore, it is more likely to interact with  CO2. The waves can 
also open up the clogged pore and prevents the agglomera-
tion of the graphitic sheet by cleaning the surface of biochar. 
In addition, the cavitation effect induced by ultrasound leads 
to the generation of more micropores and, at the same time, 
reduces the pore blockage by removing the lumps from the 
biochar structure after pyrolysis [277]. A scheme of the 
mechanism of action of microwave on biochar and its effect 
on size reduction is presented in Fig. 13 [278].

In a study conducted by Chatterjee et al. [279] on the 
effect of ultrasonication as a physical treatment on the  CO2 
adsorption capacity of biochar, an enhancement in micropore 
surface area from 312.3 to 354  m2/g after 30 s of sonication 
at the frequency of 20 kHz was observed. The authors dis-
cussed during cavitation, the formation of microjet impinges 
on and penetrates through biochar’s surface; this phenom-
enon creates more micropores and removes the pore block-
age, thus increasing the micropore surface area. However, 
prolonging the sonication duration to 1 min reduced the 
micropore surface area to 268.82  m2/g. It was discussed that 
the intensity of cavitation increased as the sonication dura-
tion increased and disrupted the ordered graphitic layer in 
biochar, which led to pore-clogging. Advantageously, this 
treatment can be performed at near room temperature for a 
short while, less than 1 min, which is beneficial for cost and 
energy saving compared to  CO2 and steam activation meth-
ods. Furthermore, ultrasound irradiation can be a techno-
economic method applied to large-scale processes without 
releasing pollutant gases [280].

In an ongoing study, Chatterjee et al. [281] attempted 
to apply a two-step process to develop biochar with high 
microporosity and surface area for high  CO2 adsorption. 
Pinewood-derived biochar was first sonicated for 30 s at 
ambient temperature, named sono-biochar. In the second 
step, the sono-biochar was functionalized with five differ-
ent amines: (i) monoethanolamine (MEA), (ii) diethanola-
mine (DEA), (iii) piperazine (PZ), (iv) polyethylenimine 
(PEI), and (v) tetraethylenepentamine (TEPA) and their 
binary (MEA-TEPA), (DEA-TEPA), (DEA-PEI), (TEPA-
PEI) and ternary (DEA-TEPA-PEI) mixtures. Here, sono-
biochar, after the incorporation of amine, was known 
sono-aminated biochar. Finally, all the prepared sono-ami-
nated biochars were activated using two activating agents, 
namely N-(3-dimethylaminopropyl)-N-ethylcarbodiimide 
hydrochlo-ride-1-hydroxy benzotri-azole (EDC-HOBt) and 

KOH. Among the single amines, TEPA led to a  CO2 sorption 
capacity of 89.76 mg/g followed by MEA (76.56 mg/g), both 
activated using EDC-HOBt, which were considerably higher 
compared to that of raw biochar (13.2 mg/g). It was reported 
that MEA-functionalized biochar demonstrated a micropore 
volume of 0.12  cm3/g and surface area of 374.66  m2/g. How-
ever, TEPA-functionalized biochar showed lower micropore 
volume and surface area of 0.09  cm3/g and 261.68  m2/g, 
respectively. Thus, it can be concluded that the synergetic 
effect of ultrasound-assisted amination was pronounced in 
the enhancement of  CO2 adsorption capacity of TEPA-func-
tionalized biochar, while in the case of MEA-functionalized 
biochar, physisorption was dominant. Chatterjee et al. [279] 
proposed a three-step mechanism for TEPA functionaliza-
tion of biochar, as depicted in Fig. 14. Firstly, the -COOH 
group of biochar needed to be activated to react with the 
amine group. Here, EDC as a coupling agent activated the 
-COOH group and generated O-acylisourea as an interme-
diate, followed by a nucleophilic reaction from the amino 
group. This reaction led to amide production and generated 
iso-urea as a by-product. Besides, the N-acyl urea could 
be produced during side reaction on O-N migration of the 
-COOH group. For the second step, selecting suitable addi-
tive such as HOBt was necessary to prevent the formation 
of these by-products and enhance the product yield. Advan-
tageously, urea is soluble in water, and the filtration process 
could easily separate the unreacted reagent from its product. 
In the last step (step 3), the epoxy group's interaction with 
TEPA formed TEPA-functionalized biochar.

In the study of Chatterjee et al. [281], among the blended 
mixture, the MEA-TEPA-functionalized biochar activated 
with EDC-HOBt demonstrated the highest  CO2 sorption 
capacity of 84.04 mg/g with a high micropore volume (0.12 
 cm3/g) and surface area (375.12  m2/g) among the other 
mixtures. This result was in line with the highest intensity 
ratio  (ID/IG) of 0.95 obtained from the Raman analysis, con-
firming that more distortion was introduced to the biochar 
surface from dual amination using MEA-TEPA, which pro-
vided a beneficial combination for  CO2 adsorption. For KOH 
activation, MEA-functionalized biochar exhibited the high-
est  CO2 uptake of 71.68 mg/g. In comparison, the sorption 
capacity was lower than the corresponding sample activated 
by EDC-HOBt (76.56 mg/g). Here, the strong base reaction 
onto the biochar surface reduced the micropore volume from 
0.12 to 0.09  cm3/g, and thus reduced the reaction site for 
 CO2 adsorption from surface destruction. Therefore, it is 
important to use the appropriate amine and activating agent, 
as both factors contribute to the generation of micropores 
that influence the efficiency of adsorbent for  CO2 uptake.

In another investigation undertaken by Chatterjee et al. 
[136], various feedstocks, such as miscanthus switchgrass, 
corn stover and sugarcane bagasse, were subjected to pyrol-
ysis (500, 600, 700 and 800 ℃) and then low-frequency 
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acoustic treatment and amine functionalization for  CO2 
adsorption. The SEM images of raw biochar portrayed a 
non-porous structure, while the creation or opening of new 
microporous can be observed on sono-activated biochar due 
to structural degradation (Fig. 15). As can be seen, the struc-
ture of all biochars was irregular, rough and bundle like. 
During pyrolysis at 700 ℃, these structures tend to disrupt 
and crack, thus releasing volatile matter. In this regard, mis-
canthus showed the highest micropore volume (0.15  cm3/g) 
and surface area (324  m2/g) among the prepared biochars 
pyrolyzed at 700 ℃. Accordingly, the micropore volume 
and surface area of this biochar increased to 0.21  cm3/g and 
532  m2/g, respectively, after 30 s of ultrasonication. In  CO2 
adsorption studies, miscanthus-derived biochar synthesised 
at 700 ℃ and sono-activated biochar presented superior 
adsorption capacity of 40.92 and 127.16 mg/g, respectively, 
among the corresponding samples.

In summary, various modification methods affect the 
physicochemical properties of biochar in their own ways 
to enhance the  CO2 adsorption capacity. In the physical 
modification,  CO2 activation is more likely to generate 
micropores in biochar, whereas steam activation contributes 
to developing a wider range of pores, including mesopores 
and micropores. In the chemical activation, the use of differ-
ent activating agents introduces various functional groups, 
such as O- and N-containing functional groups, on the 
biochar surface to facilitate  CO2 adsorption. Most chemi-
cal modification techniques aim to produce biochar with 
basic characteristics favourable for the interaction with  CO2 
acidic gas. Here, the impregnation of biochar with metal 
salts solutions such as magnesium, aluminium, iron (III) and 
calcium increases the surface basicity of biochar, while the 
introduction of amino groups, especially amine, into biochar 

increases the N-containing functional groups. Other than 
that, the introduction of O-containing functional groups on 
the biochar surface from the alkali modification helps to 
increase the biochar’s surface basicity. Among the alkaline 
activators, KOH is widely used in the activation process. 
In the acid modification,  ZnCl2 and  H3PO4 play a role as 
a dehydration agents to initiate pore formation during the 
cross-linking reaction on the carbon structure. Most recently, 
the physicochemical activation by ultrasound-assisted ami-
nation has gained the attention of researchers to boost the 
adsorption of  CO2. In this method, ultrasound irradiation 
exfoliates the graphitic layers of biochar, and the follow-
ing amine-functionalization facilitates  CO2 adsorption. 
Therefore, it is important to apply a suitable modification 
technique to enhance the  CO2 uptake. In modifying the phys-
icochemical properties of biochar, it is also important to 
consider the cost and environmental impacts so that high-
capacity biochar can be developed under optimum process 
conditions.

7  Selectivity towards  CO2

Selectivity is one of the indicators in determining the suc-
cessful development of modified biochar to adsorb  CO2. 
High selectivity highlights the ability of biochar to separate 
 CO2 from gas mixtures. In this context, a suitable modifi-
cation method should be implemented on the biochar sur-
face to produce biochar with high adsorption capacity and 
selectivity towards  CO2. In the selectivity study conducted 
by Zubbri et al. [20], the magnesium nitrate loaded-biochar 
revealed an excellent selectivity towards  CO2 compared 
to other gases with a  CO2 uptake of 76.78 mg/g, which 

Fig. 13  Schematic diagram 
showing the effect of ultra-
sonication on biochar structure. 
Adapted with permission from 
[278]
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Fig. 14  Overall mechanism of 
TEPA functionalization of bio-
char. Adapted with permission 
from [279]. Step 1 Mechanism 
of EDC-HOBt coupling with 
-COOH group of biochar. Step 
2 Mechanism of TEPA func-
tionalization of the activated 
carbonyl group of biochar. 
Step 3 Mechanism of TEPA 
functionalization of activated 
carbonyl group of biochar

Step 1

Step 2

Step 3
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was considerably higher than those obtained for other 
gases such as air (8.11 mg/g),  N2 (3.76 mg/g) and  CH4 
(1.93 mg/g) at 30 ℃ and 1 atm. It was discussed that the 
selectivity of biochar towards  CO2 depends on the polar-
izability and quadrupole moment of  CO2 molecules.  CO2 
has greater polarizability (29.1 ×  1025  cm2) over other 
gases  (CH4 = 25.9.1 ×  1025  cm2,  N2 = 17.4 ×  1025  cm2, and 
 O2 = 15.8 ×  1025  cm2) [285, 286], and this greater polariz-
ability of  CO2 facilitates the adsorbent-adsorbate interac-
tion. Other than that, the higher quadrupole moment of 
 CO2 molecules (14.3 ×  10–40 C  m2) compared to other 
gases such as  CH4 (0 C  m2),  N2 (4.72 ×  10–40 C  m2) and 
 O2 (1.03 ×  10–40 C  m2) [287] justifies the stronger affin-
ity of  CO2 towards the biochar surface. In another study, 
Lahijani et al. [117] observed a high selectivity towards 
 CO2 over other gases on walnut shell-derived metal-loaded 
biochar. Accordingly, the adsorbent exhibited superior 
adsorption performance towards  CO2 (80.0 mg/g) over  CH4 
(8.75 mg/g),  O2 (3.25 mg/g) and  N2 (3.24 mg/g). Recently, 
Zubbri et  al. [87] modified hydrochar, obtained from 
hydrothermal carbonization of biomass using KOH and the 
resultant biochar showed excellent adsorption performance 
towards  CO2 with a sorption capacity of 122.37 mg/g. 
However, the sorbent adsorbed the other gases in a 
small amount with the sequence of air (7.03 mg/g) >  N2 
(3.09 mg/g) >  CH4 (1.93 mg/g).

8  Reusability of biochar

Apart from high adsorption ability, an efficient adsor-
bent must have a good and stable adsorption perfor-
mance in regeneration. Reusability of biochar in the 
operations is crucial when selecting a good adsorbent 
for  CO2 capture, especially for large-scale applications. 
Zubbri et  al. [20] showed the stable performance of 
MgO-loaded rambutan peel-derived biochar after 25 
cycles of  CO2 adsorption–desorption (30 and 110 ℃, 
respectively). In another study, Zubbri et al. [87] modi-
fied the rambutan peel-derived hydrochar with KOH. 
The developed adsorbent exhibited stable performance 
within 10 cycles of adsorption–desorption at previous 
conditions. Lahijani et al. [117] reported an insignificant 
loss in  CO2 adsorption capacity of Mg-loaded walnut 
shell-derived biochar after 10 cycles of adsorption at 
30 ℃ and desorption at 110 ℃. In a study conducted by 

Cao et al. [288], it was shown that pine wood, hickory 
wood, wheat straw, walnut shell, corn stalk, soybean 
straw and rape straw-derived biochars presented excel-
lent reusability, where all the adsorbents could recover 
up to 90% of the adsorption capacity within 10 cycles 
of adsorption–desorption. However, Shahkarami et al. 
[226] reported that  CO2 adsorption capacity of steam 
activated biochar derived from whitewood started to 
diminish after 20 cycles, indicating that steam-activated 
biochar may not preserve a sustainable performance in 
multi-cycle of  CO2 adsorption–desorption.

CO2 adsorption on the pristine biochar surface 
is physical adsorption involving weak intermolecu-
lar forces (van der Waals forces). This physisorption 
interaction does not require a major change in the elec-
tronic orbital arrangement for each species due to the 
weak intermolecular interactions [289]. Therefore,  CO2 
(adsorbate) tends to move freely over the adsorbent sur-
face, where a minimal amount of energy is necessary to 
break the weak interactions. However, in amine-func-
tionalized biochar, where chemisorption takes place, 
 CO2 molecules would be chemically bonded to the 
amine functionalities on the biochar surface by forming 
carbamate through a strong covalent bond and occupying 
the appropriate adsorption sites [289]. Hence, the energy 
required to desorb  CO2 from the amino-modified bio-
char is higher than that of pristine biochar. During the 
desorption process, the presence of orbital overlap and 
charge transfer makes it difficult to remove carbamates 
from the adsorbent [290, 291]. This condition resulted 
in a low generation value of amine-functionalized bio-
char after several cycles of  CO2 adsorption–desorption 
[175, 240, 261]. Yaumi et al. [175] reported a reduction 
of 8.8% in the  CO2 adsorption capacity of melamine-
modified biochar developed from rice husk after 12 
cycles of  CO2 adsorption–desorption at 30 and 110 ℃, 
respectively. It was discussed that the reduction in the 
adsorption capacity was due to the fact that the chemi-
cally bonded  CO2 molecules on the biochar surface were 
not completely released during the desorption process. 
This finding was in agreement with the reports of Li 
et al. [261], who produced biochar from a mixture of 
sewage sludge and pine sawdust. The resultant biochars 
were then activated using KOH at different activation 
temperatures (600,700 and 800 ℃). The biochars acti-
vated at 700 and 800 ℃ exhibited slight reductions of 3 
and 2%, respectively, after 10 cycles of the cyclic test. 
Overall, from the technical and economic viewpoints, 
a stable adsorbent with high  CO2 capture capacity and 
sustainable performance in multi-cycle adsorption–des-
orption is required to ensure the viability of the adsorp-
tion process.

Fig. 15  SEM images of (a) raw miscanthus, (b) ultrasonicated mis-
canthus biochar, (c) raw switchgrass, (d) ultrasonicated switchgrass 
biochar, (e) raw corn stover, (f) ultrasonicated corn stover biochar, 
(g) raw sugarcane bagasse and (h) ultrasonicated sugarcane bagasse 
biochar; all biochars were pyrolyzed at 700 °C. Adapted from [136] 
under the  copyright of RSC license (CC-BY 4.0)

◂
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9  Challenges in using biochar as  CO2 
adsorbent

Biochar as a sustainable and relatively low-cost  CO2 adsor-
bent has gained attention for  CO2 removal over the past 
years. However, despite all the claimed advantages, there 
are still several challenges related to the large-scale applica-
tion of biochar as the  CO2 adsorbent.

First, the regeneration characteristic of  CO2 adsorbent 
after using a few times at a specific adsorption–desorp-
tion temperature is important for economic efficiency 
determination. Therefore, it is necessary to understand 
the regeneration principles, including the disposal of 
biochar. Nguyen and Lee [275] experienced a reduction 
of 12% in  CO2 adsorption capacity after 10 cycles for 
nitrogen-doped biochar. Ding and Liu [262] found that 
the  CO2 adsorption capacity for Sargassum and Entero-
morpha seaweed-derived biochars decreased 15 and 13%, 
respectively, after 10 cycles. Bamdad et al. [240] showed 
that the regeneration capacity of nitrogen-functionalized 
biochar derived from sawmill residue decreased in the 
range of 4–8% after 5 cycles and by 20% after 10 cycles. 
Although such regeneration capacity might be reasonable 
and satisfactory for research studies, biochar’s capability 
as a carbon sequestering material may be rendered by a 
large reduction in adsorption capacity after several cycles 
of  CO2 uptake and release, especially at large-scale oper-
ations. Hence, developing more sustainable and robust 
biochar-based adsorbents should be considered in future 
studies.

Secondly, the performance of some developed biochar 
after certain modifications is still questionable and not 
fully demonstrated. For sure, high adsorption capacity 
at ambient temperature is desirable to guarantee the 
practicability of the proposed modification method in 
a large-scale application. Nevertheless, some studies 
reported that their adsorption capacity increased when 
higher adsorption temperatures (for example 70  °C) 
were applied [279]. From a large-scale perspective, high 
adsorption temperature implies huge energy consump-
tion for the desorption process. Hence the modification 
mechanism and its effect on the adsorbent performance 
should be fully understood to avoid producing biochar 
that favours high adsorption temperature.

Thirdly, the availability of biomass feedstocks in huge 
amounts should be taken into account to produce biochar 
for large-scale operations. The usage of seasonal crop 
residues such as paddy straw, paddy husk, wheat straw, 
etc., might be an issue as these types of feedstocks are 
not readily available throughout the year. Other than that, 
several biomass materials might not be suitable for the 

massive production of biochar. For example, tamarind 
seeds, orange peels and sunflower seed shells might only 
be consumed on a small scale at the respective period of 
time. With the variety of biomass feedstocks through-
out the world, selecting a suitable source is important to 
ensure its availability at a low cost.

10  Conclusions

In this review, the adsorption of  CO2 on several modi-
fied biochars was reviewed and discussed. The literature 
survey indicates that the  CO2 adsorption is significantly 
affected by biochar’s surface area and microporosity and 
its surface functional groups. In this regard, operating 
conditions such as pyrolysis temperature, holding time 
and heating rate play a vital role in developing highly 
microporous biochar. Additionally, the basicity of the 
biochar surface has fundamental impacts on the adsorp-
tion of acidic  CO2 molecules through acid–base inter-
action. Based on the literature survey, a combination of 
physical and chemical activation is beneficial in enhanc-
ing the  CO2 uptake capacity of biochar. This needs a 
careful determination of the optimum process condi-
tion and suitable activating agents. Therefore, future 
research should focus on the physicochemical treatment 
methods to obtain microporous biochar with enriched 
surface functionality to achieve a high  CO2 adsorp-
tion capacity. In addition, a deep understanding of  CO2 
adsorption mechanism is crucial in dealing with various 
modification techniques. Comprehensive studies on the 
resistance to impurities (such as  H2S as a co-occurring 
acidic component in biogas), long-term stability as well 
as cost considerations are required to ensure the suc-
cessful exploitation of biochar for  CO2 adsorption at 
large-scale operations.
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