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Abstract
Kinnow (Citrus reticulata) peels consist of innumerable oil glands that are easily separable and very valuable due to their 
nutrition. Citrus essential oils are rich source of antioxidants and polyphenols and possess antimicrobial activity and thus 
have a wide range of applications in the food, pharmaceutical, and cosmetic industries. Henceforth, the present study has been 
focused on the extraction of essential oils by supercritical fluid extraction (SFE) from kinnow peels and their characteriza-
tion. Statistical optimization technique using response surface methodology (RSM) was applied to obtain the optimum value 
of process parameters (i.e., temperature, pressure, and time) to maximize the yield, antioxidant activity, and total phenolic 
content (TPC) of essential oil extract. Maximum extraction yield (1.57%), antioxidant activity (79.94% DPPH reduction), 
and TPC (41.22 mg GAE/g extract) of essential oil extract were obtained at 43 °C, 297 bar, and 120 min. The essential oil 
extract obtained using SFE was characterized using color, FTIR, and GC–MS analyses which confirmed the desirable color 
and presence of functional compounds. The essential oil extract obtained can be purified further and used by food or phar-
maceutical companies for the development of novel functional foods or nutraceuticals.

Keywords  Supercritical fluid extraction · Citrus reticulata peels · Essential oil · Process optimization · Waste valorization

1  Introduction

Kinnow fruit is a hybrid of Citrus nobilis (King) and Cit-
rus deliciosa (Willow leaf) mandarins. Kinnows are largely 
grown in India as well as Pakistan and exported all over the 
world. Major producing states of kinnow in India are Pun-
jab, Haryana, Himachal Pradesh, Rajasthan, Uttar Pradesh, 
and Jammu [1]. Kinnow production in Punjab (India) alone 
was 1.12 MT/annum (in 2018–2019) which is 75% of total 
production in India [2]. After the extraction of juice from 
Kinnow, a huge amount of by-products such as peels, pulp, 
seed, and pomace are produced. As the anatomy of kinnow 
represents 44% peels, it may be estimated that 0.49 MT of 
peel waste is generated during kinnow processing [3]. Due to 

high sugar and moisture content, kinnow waste management 
has been a challenging task for the citrus-processing indus-
tries. Kinnow peels have been identified to be rich in health 
beneficial compounds such as polyphenols, antioxidants [4, 
5], and carotenoids [6]. Numerous oil glands are present 
in kinnow peels, which can be separated easily, as they are 
loosely bound to the skin [3]. The bioactive compounds pre-
sent in kinnow peels hold tremendous potential to meet the 
nutritional demands of the consumers and hence are gaining 
the interest of functional food manufacturers.

Essential oils of kinnow peels are valuable due to their 
strong antioxidant, anti-inflammatory, and antimicrobial 
properties and are classified as generally recognized as safe 
(GRAS) by USFDA [7]. Essential oils have been extensively 
used for their application as food preservatives [8] and are 
also preferred as a food additive [9]. Essential oils have been 
extracted from fruit peels by both conventional and non-
conventional techniques. Conventional methods include 
Soxhlet extraction, hydro-distillation, and maceration. 
Non-conventional methods include solvent-free microwave-
assisted extraction [10], ultrasound-assisted extraction [11], 
and supercritical fluid extraction [12]. Due to the benefits of 
non-conventional techniques such as higher extraction yield, 
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shorter times, lesser/no solvent, and environment-friendly, 
the present research focuses on an exploration of the super-
critical fluid extraction technique (SFE) for separation of 
essential oils from kinnow peels.

Supercritical fluid extraction is a green extraction tech-
nique and requires less time, lower temperature, and lower 
quantity of non-toxic solvents for extraction [13]. Usually, 
carbon dioxide (CO2) is used for supercritical fluid extrac-
tion due to its unique properties such as low critical tem-
perature (31.1 °C) and low critical pressure (73.8 bar). CO2 
is available in high purity at a reasonably low cost and can 
be easily removed from the extract [14]. Supercritical fluids 
have many benefits such as non-flammability, non-toxicity, 
low to moderate operating temperature and pressure, and 
the inability to leave residual chemicals [15, 16]. Studies on 
conventional and green techniques such as ultrasonication 
[4, 11], microwave [5, 10], and supercritical fluid [12, 15] 
have been carried out for the extraction of bioactive com-
pounds (polyphenols, antioxidants, essential oils) from vari-
ous citrus peels. In comparison to conventional techniques 
and other green techniques, supercritical fluid extraction 
provided a higher yield of solvent-free, better-quality, essen-
tial oil extracts that exhibited higher antioxidant potential 
[13–15]. The literature survey revealed that meager stud-
ies have been reported on the extraction of essential oils 
from kinnow peels and their bioactive potential, using SFE. 
Hence, the present study has been carried out to optimize 
supercritical fluid extraction of essential oils from kinnow 
mandarin peels, using response surface methodology.

2 � Material and methods

2.1 � Materials

Kinnow (mandarin) peels were procured from local juice 
centers in Longowal, Punjab, India. The collected peels were 
sun-dried (2–3 days approx.) until the moisture content of 
9–10% (d.b.) was attained, and ground into a fine powder 
(particle size < 0.5 mm). The sieved powder was stored in 
air-tight and refrigerated conditions.

2.2 � Supercritical fluid extraction of kinnow 
(mandarin) peels

Supercritical fluid extraction (SFE) was carried out using 
the WATERS-SFE500 System for the extraction of essential 
oils using the extraction procedure as described by Trabelsi 
et al. [17] with minor modifications. The extraction system 
consists of a 500-mL extraction vessel and a separator. The 
powdered sample (50 g) was loaded into the extraction unit. 
Pressure (150–300 bar), extractor temperature (40–50 °C), 
and CO2 flow rate (10 g/min; constant) were controlled by 

using ChromScope software, as per the design. The static time 
(90–150 min) was monitored after the desired value of process 
parameters was achieved. After completion of time and depres-
surization, the extract was collected in amber-colored vials and 
stored in a refrigerator for further analysis.

a)	 Extraction yield
	   The yield of kinnow peel essential oils was calculated 

by using the following equation:

where We = weight of extract and Ws = weight of sample 
(kinnow peels).

b)	 Antioxidant activity
	   The in vitro antioxidant capacity using the synthetic 

radical DPPH is one of the methods mostly used to 
measure the antioxidant potential of different biologi-
cal samples. The antioxidant activity of essential oil 
was calculated using, the method described by Brand-
Williams et al. [18] with few modifications. DPPH solu-
tion (100 μM) was prepared, and its initial absorbance 
was measured. Then, 950 μL of the DPPH solution was 
added to 50 μL of the extract at an 8 mg/mL concentra-
tion. The mixture was incubated for 1 h and its absorb-
ance was measured at 517 nm. The antioxidant activity 
(% inhibition) was calculated using the following equa-
tion:

where Ao = absorbance of control sample and 
A = absorbance of extract.

c)	 Total phenolic content (TPC)
	   TPC was determined using the Folin-Ciocalteu 

method as described by Vrhovsek et al. [19], with some 
modifications. Twenty microliters of extract at 8 mg/
mL of ethanol was taken, and then, 1580 μL of distilled 
water with 100 μL of Folin-Ciocalteu reagent was added. 
It was allowed to stand for 8 min, and then, 300 μL of 
a 20% sodium carbonate solution was added. The mix-
ture was incubated for 45 min in a dark place at room 
temperature, and the absorbance was read at 765 nm in 
a spectrophotometer (HACH DR 5000), using a gallic 
acid (GA) calibration curve. The results were expressed 
as mg gallic acid equivalents (GAE) per gram extract.

2.3 � Experimental design and statistical analysis

Response surface methodology was used for the optimiza-
tion of process parameters for supercritical fluid extraction 
of essential oils from kinnow peels. The experimental design 

Yield (%) =
We

Ws
× 100

% Inhibition =
Ao − A

Ao
x100
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matrix was created using central composite rotatable design 
(CCRD) via Design-Expert software v. 11.1.2.0 (Stat-Ease 
Inc., Minneapolis, USA), and process parameters chosen for 
optimization were temperature, pressure, and time. The tem-
perature ranged from 40 to 50 °C, pressure ranged from 150 
to 300 bar, and time ranged from 90 to 150 min. The CO2 
flow rate was kept constant at 10 g/min, and essential oils 
extraction yield was considered as the response variable. The 
best fit quadratic model for ANOVA was used for statistical 
analysis of experimental data.

2.4 � Characterization of essential oil extract

2.4.1 � Color of essential oil extract

Hunter Lab color spectrophotometer (GretagMacbeth, color 
i5, USA) was used to determine the color of various sam-
ples. Standardization of instruments was done with a black 
and white tile each time and the surface L values, a values, 
and b values of the sample were calculated. L values vary 
from 0 (darkness) to 100 (lightness) on the hunter scale. The 
average color values of triplicates have been reported.

2.4.2 � FT‑IR of essential oil extract

Fourier transform infrared (FT-IR) analysis of extract was 
determined by using FT-IR spectrometer (Perken Elmer 
Spectrum, RX-I, USA). The sample was prepared by add-
ing potassium bromide to the dried extract (essential oils) to 
obtain a solid disc. The FT-IR spectrum was analyzed at the 
wavenumber range from 4000 to 600 cm−1 [20].

2.4.3 � GC–MS analysis of essential oil extract

GC–MS was carried out using GCMS-TQ8050 NX (Shi-
madzu) equipped with RTX-5MS column (30 m × 0.25 mm 
I.D.) following the Hudaib et al. [21] method with minor 
modifications. Helium was used as a carrier gas at a flow rate 
of 1 mL/min and a split ratio of 1:5. The column tempera-
ture was raised from 50 °C (holding time: 2 min) to 300 °C 
(holding time: 10 min) at a rate of 5 °C/min and the runtime 
was 62 min. The ion source temperature was 200 °C and the 
interface temperature was 260 °C. The acquisition mode was 
Q3 Scan and solvent cut time of 4.5 min. Injector pressure 
of 250 kPa and temperature of 250 °C. Mass spectra were 
obtained by electron ionization (EI) at 70 eV, using a spec-
tral range of m/z of 50–800. The major components of the 
extract were evaluated using the Standard Reference Data 
Series of the NIST Library—Mass-Spectral Library.

3 � Results and discussion

The yield of essential oil extract was calculated as the dry 
weight of extract obtained after the removal of solvent. 
The yield, antioxidant activity, and TPC obtained from 
the extraction were observed in the range of 0.44–1.57%, 
25.87–89.74% DPPH reduction, and 11.54–40.66  mg 
GAE/g extract, respectively, whereas maximum yield 
(1.57%), maximum antioxidant activity (79.94% DPPH 
reduction), and TPC (41.22  mg GAE/g extract) were 
obtained at 44  °C temperature, 244  bar pressure, and 
time 103 min (Table 1). The interactive effect of differ-
ent parameters was studied using response surface 3D 
plots (Fig.  1) of process parameters, i.e., temperature 
(X1), pressure (X2), and time (X3); the analysis of vari-
ance (ANOVA) has revealed that X1, X2, X3, X1X2, X1X3, 
X2X3, (X1)2, (X2)2, and (X3)2 were significant model terms 
(Table 2). The model was significant with F value of 69.9, 
lack of fit (0.1606 p value and 5.52 F value) was non-
significant, and R2 of 0.989 was observed.

3.1 � Effect of temperature on essential oil extract, 
antioxidant activity, and TPC

The effect of temperature on yield during SFE of kinnow 
peels was studied by varying the temperature and keeping 
the other two variables constant (Fig. 1). From 3D response 
surface plots, it has been observed that the essential oil 
yield increased with an increase in temperature up to 45 °C 
and then declined with a further increase in temperature. 
The major reason for this pattern is that as the temperature 
changed the density of supercritical CO2 (SC-CO2), the dif-
fusion rate of the extract in SC-CO2 also changes [22]. It 
has been observed that the diffusion rate of extract increased 
with increasing temperature henceforth, resulting in a higher 
yield of essential oils. On the other hand, when the tem-
perature increased above 45 °C, both the density of SC-CO2 
and the solubility of the extract decreased which led to a 
decrease in the yield of essential oils from the kinnow peels. 
The combined effect of the two opposing mechanisms which 
determines the change in yield has been described in previ-
ous reports [23, 24]. The two opposing mechanisms of the 
temperature observed were as follows: an increase in tem-
perature decreased the density as well as solvation power of 
SC-CO2, and on the contrary, an increase in temperature also 
increased vapor pressure resulting in increased solubility 
of SC-CO2 [25]. Similarly, during SFE of tangerine peels, 
as the temperature increased from 35 to 45 °C (at 20 MPa, 
90 min), the extraction yield of essential oils increased from 
0.7 to 0.85%, whereas any further increase in temperature 
led to a decline in essential oils yield [22].

14607Biomass Conversion and Biorefinery (2023) 13:14605–14614
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Other than the solubility of essential oils from kinnow 
peels in supercritical CO2 fluid, vapor pressure should also 
be considered a key factor for extraction. Higher oil vapor 
pressure at higher temperatures allows for easier dissipa-
tion through sample matrices, while higher SC-CO2 diffu-
sivity and lower surface tension facilitate the transport of 
target compounds through the matrix and into the solvent, 
resulting in higher extraction efficiency [26].

The linear effect of temperature was observed on 
the antioxidant activity of essential oil. As temperature 
increases, solvent density increases, and solvent diffu-
sion coefficient also increases which further leads to an 
increase in antioxidant activity of essential oil (Fig. 1b). 
The temperature may also affect interaction with other 
independent variables by improving the diffusion rate of 
analytes [27].

Total phenolic content increased with an increase in 
temperature, but any further increase beyond the threshold 
temperature led to a decline in the TPC values, the same can 
be observed in Fig. 3a. It can be explained by an increase in 
vapor pressure with the increasing temperature that accel-
erated the thermal decomposition of the components from 
the matrix [28]. Alternatively, the rupture of the cell wall 
increased the mass transfer rate which led to the availabil-
ity of bioactive components for extraction. An increase in 
temperature results in the decline of recovery of bioactive 
components because of the decomposition of volatile com-
pounds and reduction in density of CO2 [29, 30].

3.2 � Effect of pressure on essential oil extract yield, 
antioxidant activity, and TPC

Results indicated that pressure has a significant (p < 0.05) 
effect on the extraction yield of essential oil extract from 
kinnow peels. The results revealed that yield increased per-
petually until its optimum point of 1.55% at 225 bar, and 
after that point, a reduction in yield is observed (Fig. 1a). 
The extraction from Pomelo (Citrus grandis) peels by 
supercritical fluid method at 70 °C increased extraction 
yield from 1.48 to 1.69% extract with pressure from 280 
to 390 bar [31]. The yield of tangerine peel oil increased 
from 0.78 to 1.1% essential oil yield with an increase in 
pressure from 100 to 150 bar and then reduced up to 0.9% 
essential oil yield after 150 bar at 45 °C for 90 min [22]. 
The influence of pressure can be attributed to an increase 
in the specific mass of SC-CO2 with pressure which leads 
to improved solvation power of SC-CO2. The increase in 
density with pressure reduces the mean intermolecular 
distance between the carbon dioxide molecules which 
turns out as a positive outcome for interaction specifi-
cally between the solvent and solute molecules and the 
solubility for the extract in SC-CO2. When pressure is too 
high, the diffusion of SC-CO2 and the rate of mass trans-
fer will limit the increase in tangerine peel oil yield [22]. 
Moreover, kinnow peel grease and wax can be extracted 
at higher pressures, lowering the quality of essential oils 
[32].

Table 1   Central composite 
rotatable design matrix for 
optimization of process 
parameters for extraction of 
essential oil

Run No Temperature
(°C)

Pressure
(bar)

Time
(min)

Yield
(%)

Antioxidant 
activity
(%DPPH 
reduction)

TPC
(mg 
GAE/g 
extract)

1 37 225 120 1.27 71.05 32.6
2 45 225 170 0.77 44.20 20.91
3 45 351 120 1.28 71.70 32.86
4 45 225 120 1.55 87.85 39.88
5 40 150 150 0.44 26.08 13.03
6 40 150 90 0.68 35.82 17.26
7 50 150 150 0.91 49.18 23.24
8 50 150 90 0.77 41.20 19.60
9 40 300 90 1.45 82.87 37.28
10 50 300 90 0.94 51.37 24.02
11 45 99 120 0.46 25.87 11.54
12 50 300 150 0.68 35.82 17.26
13 53 225 120 0.99 54.26 25.32
14 45 225 70 0.93 50.77 23.76
15 40 300 150 1.16 64.53 29.74
16 45 225 120 1.58 89.74 40.66
17 45 225 120 1.52 86.05 39.10

14608 Biomass Conversion and Biorefinery (2023) 13:14605–14614
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Antioxidant activity increased at a pressure of 150 to 
225 bar and a temperature of 40 to 45℃ (Fig. 1b, c). It can 
be justified by the correlation between solubility, density, 
and selectivity of supercritical CO2 (SC-CO2). The pressure 
augmentation causes an increase in the density of SC-CO2 
as well as the solubility of the targeted compounds [33]. 

Moreover, when the density of SC-CO2 increases, it widely 
allows components to dissolve in SC-CO2 even the dense 
molecules such as coumarins and other non-saponifiable 
components such as phospholipids and phytosterols which 
leads to an overall increase in antioxidant activity (% DPPH 
reduction) [33].

Fig. 1   Interactive effect of a 
pressure and temperature on 
the extraction yield of essential 
oil extract; b, d pressure and 
temperature, and c, e time and 
pressure, respectively, on the 
antioxidant activity and total 
phenolic content (TPC) of 
essential oil extract
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Pressure is one of the dominant parameters for the extrac-
tion of phenolic compounds. As pressure increased, two 
prominent trends were observed. As the pressure increased 
from 150 to 225 bar, the TPC increased slightly, but with 
further increase in pressure up to 300 bar, a minor decrease 
in TPC was observed (Fig. 1d, e). Increasing the pressure 
could increase the fluid density which decreases the dis-
tance among the molecules and rupturing effect of pressure 
thus strength interaction between fluid and matrix [33].

3.3 � Effect of time on essential oil extract yield, 
antioxidant activity, and TPC

The yield of essential oil extract from kinnow peels 
increased continuously as the time increased from 90 to 

120 min; any further increase in temperature led to a slight 
decline in the yield of essential oil extract (Fig. 1a). A previ-
ous study reported that the yield of orange peel essential oil 
extract yield increased with time (35 to 45 min) at a constant 
pressure of 265 atm from 0.32 to 0.59% total yield and then 
slightly decreased with time, i.e., from 45 to 55 min [34], 
whereas another study indicated that tangerine peel essential 
oils increased from 0.2 to 1% yield with time from 20 to 
180 min at 100 bar pressure [22]. Also stated is that as time 
increased, yield gradually increased and reached a maxi-
mum, and the present study found and validated this rule.

Antioxidant activity is also influenced by time with 
changes in temperature and pressure [28]. In research con-
ducted by Ndayishimiye and Chun [35], antioxidant activ-
ity (% inhibition) was 0.98 ± 0.01 mg/cm3 of extract from 
citrus (Citrus ichangensis x C. reticulate) peels and seeds by 

Fig. 2   Plot for FT-IR analysis of 
essential oil extract
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Table 2   ANOVA for response surface quadratic model for the yield of essential oil extract

Effect Source Responses

Yield Antioxidant activity Total phenolic content

F value p value F value p value F value p value

Model 40.55  < 0.0001 48.8167  < 0.0001 40.54  < 0.0001
Linear effect X1 = temperature 9.99 0.0159 15.91744 0.0053 12.37 0.0098

X2 = pressure 97.13  < 0.0001 112.4775  < 0.0001 96.53  < 0.0001
X3 = time 10.40 0.0146 9.65762 0.01714 7.42 0.029

Interactive effect X1X2 50.48 0.0002 59.44856 0.0001 47.9 0.0002
X1X3 3.53209 0.1023 3.18066 0.1177 2.45 0.1617
X2X3 4.25 0.0781 7.79975 0.0268 6.13 0.0424

Quadratic effect (X1)2 46.25 0.0003 61.18267 0.0001 48.5 0.0002
(X2)2 116.69  < 0.0001 140.9039  < 0.0001 122.45  < 0.0001
(X3)2 123.44  < 0.0001 150.0363  < 0.0001 120.68  < 0.0001
Lack of fit 8.85 0.10458 6.41754 0.14029 8.41 0.10971

Fit statistics Std. dev. = 0.077
Mean = 1.022
R2 = 0.986

Std. dev. = 4.067
Mean = 56.96
R2 = 0.982

Std. dev. = 1.96
Mean = 26.36
R2 = 0.985
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using supercritical fluid extraction at 41 ℃ of temperature 
and 300 bar of pressure. Franco-Arnedo et al. [15] observed 
31.92% antioxidant activity (% inhibition) of essential oil at 
120 bar pressure, 50 ℃ temperature, and 5% ethanol, whereas 
44.92% antioxidant activity was observed at 220 bar pressure 
and 50 ℃ temperature, and 5% ethanol from tangerine (Citrus 
reticulata var. Arryana) peel extract. Extraction time showed 
an interactive effect with the temperature and pressure, and it 
affected the TPC of essential oil extract significantly.

3.4 � Numerical optimization

Independent variables (temperature, pressure, and time) 
were in range, and the extraction yield of essential oil extract 
was set to maximum in the numerical optimization option 
of the Design-Expert software. The maximum extract yield 
of 1.57% was predicted at 43 °C temperature, 297 bar pres-
sure, and 120 min time with the desirability of 1.00 in the 
solutions. Experiments in triplicate had been conducted at 
obtained optimized values of process parameters for vali-
dation of predicted maximum oils extraction yield. The 

maximum oil extraction yield of 1.56 ± 0.02% was achieved 
which has been in close agreement with the predicted one. 
All the results reported in the present study were from the 
previously reported studies. Minor deviations observed in 
the study may be attributed to different fruit harvesting 
locations, fruit varieties, climate, soil, fertilizers, different 
varieties, cultivars, environmental factors, water supply dur-
ing fruit ripening, maturation stage, and effect of extraction 
parameters that influence the essential oil yield significantly 
[36].

3.5 � Characterization 

3.5.1 � Color of essential oil extract

The consumer acceptability of any food material is judged 
by its color value. Color values are indicated by L* (light-
ness), a* (redness), and b* (yellowness) values. L* values 
signify 0 as black, 50 as mid-gray, and 100 as white color. 
The positive a* value signifies a red color and the negative 
value a green color. The positive b* value denotes a yellow 

Fig. 3   GC–MS chromatogram 
of essential oil extract

Table 3   GC–MS peaks observed in essential oil extract from kinnow peels by using the supercritical fluid extraction technique

Sr. no Peak number R. time Area% Height% A/H Compound name

1 1 15.942 0.03 0.09 2.47 Decanal
2 2 18.557 0.02 0.07 2.52 2,4-Decadienal, (E, E)
3 3 19.233 0.02 0.06 2.05 2,4-Decadienal, (E, E)
4 4 20.041 0.03 0.08 2.88 Limonene-1,2-diol
5 10 24.351 0.02 0.06 3.17 Limonene-1,2-diol
6 47 35.016 1.91 1.69 9.51 n-Hexadecanoic acid
7 48 35.19 0.12 0.22 4.62 l-( +)-Ascorbic acid 2,6-dihexadecanoate
8 64 38.553 3.85 1.84 17.67 Isopropyl linoleate
9 65 38.715 1.71 2.95 4.89 Isopropyl linoleate
10 108 47.843 0.75 1.35 4.72 Tetrapentacontane
11 118 49.554 1.64 3.58 3.86 Squalene
12 123 50.362 1.4 2.51 4.69 3-Ketocarbofuran
13 145 54.252 4.87 4.45 9.25 Alpha-tocopherol-, beta-D-mannoside
14 148 55.05 7.98 4.33 15.54 Bisphenol A, 2TMS derivative
15 156 57.97 5.68 4.01 11.94 Beta-sitosterol acetate
16 163 61.286 0.39 0.3 10.82 9,19-Cyclolanost-24-en-3-ol, (3.beta.)-
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color, and the negative value denotes blue color. Kinnow 
peels were taken as the standard, and the color values for L*, 
a*, and b* were 68.53 ± 0.51, 14.49 ± 0.22, and 42.11 ± 0.36, 
respectively, and the color values of the essential oil extract 
were 54.78 ± 0.19, 19.06 ± 0.15, and 31.45 ± 0.39, respec-
tively. The lightness and b values of the essential oil extract 
were lower, whereas the redness value was higher than the 
kinnow peels.

3.5.2 � FT‑IR of essential oil extract 

FT-IR was used to examine the functional groups observed 
in essential oil components extracted by the supercritical 
fluid extraction technique (Fig. 2). Major peaks of func-
tional groups observed in SFE extract were at 3318 cm−1 
(O–H which represented alcohol), 2922  cm−1 (N–H 
stretching represented amine salt and O–H stretching of 
carboxylic acid), 2852 cm−1 (C-H stretching represented 
alkane group), and 1260  cm−1 (C-O stretching repre-
sented aromatic ester functional group). Vibrational peaks 
at 2900 cm−1, 1700 cm−1, and 1100 cm−1 showed C-H, 
C = O, and C-O bonds, respectively, which are stretching 
of terpenoid compounds [37]. In the present study, absorp-
tion peaks near 2922 cm−1, 1728 cm−1, and 1148 cm−1 
depicted the presence of terpenoid compounds. The peak 
at 1738 cm−1 represented ester carbonyl functional group 
of triglycerides [38]; phenols, tocopherols, and sterols 
were also detected within 3007–722 cm−1 [39]. The vibra-
tional peak at 887 cm−1 (C = H disubstituted double bond) 
represented the presence of limonene [20].

3.5.3 � GC–MS analysis of essential oil extract

Important components that contribute to the characteristic 
aroma of citrus essential oils are aldehydes and esters [40]. 
GC–MS analysis showed 164 peaks which were identified 
on basis of retention time, height, and area of the com-
pounds (Fig. 3). The major compounds such as ascorbic 
acid, tocopherol, limonene-1,2-diol, decanal, linoleic acid, 
squalene, and oleic acid (Table 3) were observed in the 
essential oil extract. These compounds were also reported 
in the previous studies [41, 42].

4 � Conclusions

SFE technique was found to be an effective method for 
the extraction of essential oils from kinnow peels. Opti-
mization of process parameters helped to achieve the 
optimal conditions to obtain maximum extraction yield. 
Optimized parameters for maximum extraction were 43 °C 
temperature, 297 bar pressure, and 120 min time which 

resulted experimentally in a maximum extraction yield of 
1.57%, maximum DPPH activity of 79.94% reduction, and 
total phenolic content (TPC) of 41.22 mg GAE/g extract. 
Characterization studies using color, FT-IR, and GC–MS 
revealed that extracted essential oils sustain all vital com-
ponents in the essential oils from kinnow peels. Color val-
ues of extract indicated the presence of colored compo-
nents (carotenoid) at lower concentrations, whereas FT-IR 
and GC–MS analyses confirmed the presence of important 
essential oil components, phenolic antioxidants, and flavor 
compounds in the essential oil extract. This extract can be 
purified further to obtain pure essential oil components 
from the extract.
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