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Abstract
Lignocellulosic biomass is a raw material appropriate for obtaining a wide variety of value-added products through differ-
ent technologies. In the oil palm agroindustry, only 10% of the total products are oils. The remaining 90% is represented 
by lignocellulosic biomass and effluents. As these residual materials have enormous potential to produce bioproducts, 
several strategies have been proposed to aggregate value for all plant constituents, further supporting the development of 
the oil palm industry. This review summarizes the advances in using lignocellulosic residues from the oil palm industry to 
obtain sugars, biomaterials, bio-oils, biofuels, and animal feed. Additionally, it presents and discusses the integration of 
mushroom-forming fungal cultivation on these lignocellulosic residues to enable value-added products such as enzymes, 
edible mushrooms, and animal feed. The technologies and products in development indicate the potential establishment of 
a biorefinery based on oil palm.
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Abbreviations
EFB  Empty fruit bunch
KS  Kernel shell
MF  Mesocarp fiber
OPDC  Oil palm decanter cake
OPF  Oil palm fronds
OPKC  Oil palm kernel cake
OPT  Oil palm trunks

1 Introduction

Bio-based processes have been developed to substitute pro-
cesses based on fossil resources, reducing the environmental 
impact caused by fossil fuels such as oil, gas, and coal, and 
enabling the reuse of biological waste from industries. In 
this context, several groups have been working in the devel-
opment of processes and treatments of lignocellulosic bio-
mass to generate intermediate chemicals such as sugars, phe-
nols, and organic acids that will subsequently be upgraded 
to chemicals or biofuels [1, 2].

The carbohydrate in biomass can be employed for the 
synthesis of numerous chemical products, such as bioetha-
nol and several other compounds that can be applied in the 
chemical, food, and pharmaceutical industries, including 
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ethylene, propylene glycol, 1,4 –butanediol, polylactic acid, 
acrylic acid, ascorbic acid, polyisoprene, xylaric/xylonic 
acids, polyols, and methyl tetrahydrofuran, which serve as 
raw material in the production of plastics, resins, solvents, 
coatings, adhesives, rubber, and additives [3–5]. The lignin 
moiety can also be employed as raw material in the produc-
tion of absorbents, fertilizer releasers, emulsifiers, chelating 
agents, bioplastics, and in the construction of energy storage 
devices [6].

The oil palm industry is mainly based on the extraction 
of oil for different applications. However, the environmental 
concerns and the different opportunities to aggregate value 
to residues in this chain are important to consider. This 
agroindustry produces high amounts of plant, mineral, and 
liquid residues following harvesting and milling processes. 
A total of 90% of the production generated corresponds 
to solid and liquid waste, 80% of which is lignocellulosic 
biomass (Fig. 1). During the last two decades, research has 
focused on the development of sustainable applications of 
both liquid and solid residues, ranging from biofuels to ferti-
lizer, charcoal, bioplastics, biocomposites, adsorbents, pulp, 
animal feed, and mushroom cultivation [7].

Fungi can contribute to maintaining the ecological bal-
ance by participating in the decay and recycling of organic 
matter in the soil, which includes plant material and animal 

waste. These micro-organisms aid these processes through 
the secretion of an enzymatic arsenal composed of cellu-
lases, laccases, esterases, and pectinases that break down the 
structure of the cell wall and membrane of plants and ani-
mals [8, 9]. During decay and recycling, simpler molecules 
are released in the microenvironment which serve as nutrient 
sources for fungi and which ultimately, through release into 
the biosphere, enrich the soil and favor plant growth [10].

The potential of fungal-based organic matter degradation 
has been exploited in various fields of biotechnology, such 
as in the pretreatment of lignocellulosic biomass to obtain 
value-added products [11, 12]. Macrofungi or mushrooms 
(belonging to fungal classes that produce visible sporocarps) 
have been exploited historically as foods and as medicinal 
sources. However, there is now growing interest in the appli-
cation of macrofungi for value aggregation of plant biomass 
residues through the generation of different chemical prod-
ucts within a biorefinery scheme. This lignocellulosic bio-
mass, of different structures and compositions, can be used 
for the cultivation of edible mushrooms. As a result of such 
cultivation, it is also possible to obtain further products of 
high added value such as enzymes, bioactive molecules, fer-
mentable sugars, and animal feed.

Palm oil production globally resulted in 71.4 M tons of 
oil in the 2021 [13], which represents only 10% of the total 

Fig. 1  World production of palm oil. The data of the 15 countries with the highest production are shown in Megatons and percentile of global 
production (insert). Data were obtained from FAOAST [18]
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plant biomass involved in the entire production process. This 
indicates that in countries with significant palm oil produc-
tion such as Indonesia and Malaysia in Asia or Colombia 
and Brazil in South America, oil palm residues are high, 
which could become environmental liabilities of consider-
able impact. As such, it is necessary to develop and imple-
ment strategies for the application of waste beyond the usual 
practices of burning or composting. In this review, given that 
integration of production practices from different industrial 
sectors with green technologies is a necessity for the future, 
the focus is given to the valorization of plant residues from 
palm oil production in different aspects of biotechnology, 
mainly with regard to obtaining value-added products such 
as edible fungi, bioactives, and enzymes. Focus is also given 
to the opportunities of Spent Mushroom Substrate as animal 
feed in a biorefinery scheme.

This review is divided into five sections. The first sec-
tion consists of a brief description of the oil palm industry, 
emphasizing its performance as an industry in recent years, 
and the main aspects of processing, production, and waste 
generation. The second section deals with the current uses 
of each of the plant residues explained from a biotechno-
logical context. The third section focuses on the production 
of enzymes from fungal cultures cultivated on waste plant 
material from the industry as a carbon source. The fourth 
section seeks to explore the possibilities and advantages of 
using oil palm residues as a substrate for mushroom cultiva-
tion. Finally, in the fifth section, we expose the potential of 
using the oil palm residues in Spent Mushroom Substrate 
for animal feed.

2  The oil palm agroindustry

Oil palm (Elaeis guineensis) is one of the main agricultural 
cash crops cultivated across the world’s tropical regions, 
with efficient oil extraction from fruit mesocarp and kernel 
material representing the basis of the macroeconomy for 
numerous African and Asian countries [14, 15]. In Brazil, 
“dendê-culture” is in expansion and represents a promising 
resource for the local economy. The industry is restricted 
mainly to the north of the country, particularly the state of 
Pará, with the Northeast region in the state of Bahía also 
responsible for considerable production [16]. These regions 
offer favorable climatic conditions for crop production, with 
high precipitation and uniform solar radiation.

Palm oil is used mainly in the food industry (85–90% of 
total produced), due to its physicochemical characteristics as 
high solid fat content, high oxidative stability, high and/low 
melting, and crystallization properties of triacylglycerols, in 
addition to its constant supply and competitive price [17]. 
Palm oil is a raw material for the manufacture of foods such 
as shortenings, margarine, oils for frying, salads, candies, ice 

creams, and infant formula. Palm oil can be also employed 
in the manufacture of dietary supplements such as vitamins, 
carotenoids, and phytosterols, in the preparation of non-food 
products such as surfactants, and as a building block for 
the synthesis of other chemicals, such as fatty acids, fatty 
alcohols, methyl esters, and fatty amines. According to the 
United States Department of Agriculture [13], the world’s 
production of palm oil reached 71.4 million metric tons in 
2018, in response to needs in the production chains.

2.1  Palm oil production and uses worldwide

Crude palm oil is globally the most important vegetable 
oil, in terms of production and consumption. In 2021, CPO 
production reached 71.4 M tons worldwide [13], with pro-
duction currently concentrated in South-East Asia (Fig. 1), 
where Indonesia and Malaysia are the major producers and 
responsible for 85.37% of world production. South America 
is the second-highest producing region, particularly Colom-
bia (1.85 M tons) and Brazil (0.45 M tons) (Fig. 2).

In Brazil, palm oil production has been increasing dur-
ing the last 70 years, with this trend expected to continue. 
In 2019, Brazil ranked ninth globally in terms of palm oil 
[18], producing 2.583.293 tons of oil palm fruit and 400,560 
tons of CPO (Fig. 2). In terms of consumption, however, the 
country is ranked only in 31st place, behind countries such 
as China, India, and the USA, which together account for 
47.9% of global imports. Globally, an estimated 233.82 Mha 
of fertile land is potentially suitable for oil palm cultiva-
tion. Brazil has the largest potential area with 44.3 Mha (or 
18.6% in the world), excluding lands of high environmental 
value and those applied to agricultural uses such as pasture 
or cropland [19]. As such, there is considerable potential 
for sustainable expansion of the palm oil agro-industry in 
Brazil.

Oil palm is the second most widely produced oil crop 
in Brazil after soybean. Cultivation occupies approximately 
140.000 ha, with production divided across large-scale 
agroindustry plantations, as well as medium-scale and small-
holder plots, where bunches are sold to agroindustries for 
processing [15].

2.2  Oil palm processing

Oil palm processing begins at the 3-year stage when palms 
produce approximately 16 bunches annually. A schematic 
version of the process is detailed in Fig. 3. Processing of 
fresh fruit bunches (FFB) begins with the sterilization of 
bunches, at 140 °C, to destroy oil-splitting enzymes and to 
arrest hydrolysis and autoxidation. This treatment also weak-
ens the fruit stem and facilitates removal from bunches. This 
FFB processing generates most of the Palm Oil Mill Effluent 
(POME), a liquid waste with significant amounts of organic 



3080 Biomass Conversion and Biorefinery (2024) 14:3077–3099

1 3

Fig. 2  Evolution of palm oil production over time

Fig. 3  Production chain for the oil palm industry, with main prod-
ucts and residues from the plantation and milling processes. Percent-
ages correspond to calculations based on the dry weight, according 
to [188]. The subdivision of the percentages of the biomass gener-

ated in the plantations is detailed in red boxes. The subdivision of the 
percentages of biomass generated in factories or mills is detailed in 
orange boxes (wastes) and blue boxes (products/oils)
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matter [20]. FFB are then transported to a threshing drum 
where the fruits are separated from bunches, which, then are 
referred to as Empty Fruit Bunches (EFB), representing the 
first lignocellulosic residue of the oil palm mill processing 
(Fig. 3). Fruits are subsequently transferred to digesters and 
pressing machines to extract the Crude Palm Oil (CPO), 
where mesocarp fiber (MF) is generated as a second ligno-
cellulosic residue (Fig. 3). Crude oil is decanted and cen-
trifuged to clarify the oil by separating particles and water, 
producing a “cake” formed as sediment (Oil Palm Decanter 
Cake, OPDC), the third lignocellulosic residue. The endo-
carps separated from pressed fruits are cracked to obtain 
the kernel, then used to produce the Palm Kernel Oil (PKO) 
(Fig. 3). The Kernel Shells (KS) and Oil Palm Kernel Cake 
(OPKC) represent further lignocellulosic residues. Both 
CPO and PKO are then transported to refining processes 
to reduce undesirable compounds that include heavy-metal 
traces, phosphatides, and free fatty acids [21].

3  Current practices and applications of oil 
palm lignocellulosic biomass residues

Lignocellulosic biomass is today associated with the pro-
duction of clean energy, either in form of sugars for fermen-
tation to biofuels or different types of bioproducts. Thus, 
plant residues previously underutilized are now a commod-
ity for different market platforms. Depending on the vari-
ety of composition and technologies, bio-based chemicals 
with high added-value can be obtained from lignocellulosic 
biomass, and potentially shifting consumption away from 
petroleum-based chemicals [22]. Lignocellulosic biomass 
consists of a hetero-matrix mainly of the carbohydrate-
based polymers cellulose and hemicellulose, together with 
the phenolic macromolecule lignin. A detailed description 
of the molecular structure of lignocellulosic biomass can 
be found in Bajpai [23]. The structural composition of oil 
palm residues can vary, depending on the type of biomass, 
as detailed in Table 1.

To efficiently utilize plant biomass as an energy source, it 
is, therefore, necessary to fractionate the major components 

into monomers or to separate those components by breaking 
molecular linkages. Biomass deconstruction to release the 
sugars requires sequential pretreatment and hydrolysis steps, 
which can be grouped as physical, chemical, biological, or 
combinatorial approaches [11, 24]. Pretreatment principles 
and approaches were recently reviewed in Shirkavand et al. 
[25] and Kumar & Sharma [26]. Approaches vary in func-
tion of the composition of plant biomass, with, for example, 
steam explosion typically used with hardwoods, whereas 
lime pretreatment is more appropriate for softwoods or 
biomass with high lignin content. Considerable research 
is underway into the integration of different methods to 
increase the performance of individual processes. Such 
pretreatment approaches should also ideally offer high 
lignin removal, low hemicellulose/cellulose loss, and low 
operational costs in terms of energy and capital input at an 
industrial scale. Methods employed should also guarantee an 
absence of accumulation of toxic compounds or inhibitors 
of hydrolysis and fermentation [27]. Under such approaches, 
the integration of biomass pretreatment in biorefineries has 
been proposed as a promising route to coordinate different 
biotechnological methods and agricultural practices, ena-
bling production not only of sugars and biofuels but also 
biochemicals and biopolymers [28, 29].

Oil palm lignocellulosic residues correspond to 90% of 
the total biomass generated in oil palm cultivation, with 
oils representing only 10% (Fig. 3) [30]. Currently, oil palm 
byproducts are used in several agricultural practices or con-
verted into added value via the conversion technologies [31]. 
Examples of these added-value products are summarized in 
Table 2.

3.1  Trunks and fronds

Trunks and fronds differ from other lignocellulosic resi-
dues in that they are generated in the field when FFB is 
harvested. A total of 25–30 years after planting, plant pro-
ductivity decreases significantly, such that replanting of the 
next generation of seedlings is required. During replanting, 
felled oil palm trunks (OPT) may be left to decompose in 
the field, contributing to soil conservation, erosion control, 

Table 1  Structural composition 
of lignocellulosic residues of 
the palm oil industry. All values 
are presented as a percentile of 
dry weigh

Oil palm lignocel-
lulosic biomass

Cellulose Hemicellulose Lignin Ashes Extractives Ref

OPF 28.7–42.8 12.5–26.02 19.7–37.6 0.2–5.8 7.64–22.2 [43, 173, 174]
OPT 41.1–56.1 16.5–34.4 11.7–19.11 3.4 0.5–19.1 [38, 175, 176]
EFB 44.4–59.7 22.1–30.9 14.2–18.1 2.8–5.4 0.1 [177, 178]
KS 29.7–33.04 18.0–23.8 45.6–53.4 1.1–6.7 9.8 [179]
OPKC 35.55 30.81 22.6 4.47 6.82 [163]
MF 23.0–40.12 12.9–28.2 25.2–36.0 1.4–9.0 5.2–10.0 [94, 180]
OPDC 16.8 5.8 17.4 9.2 10.5 [94]
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and nutrient supply. Alternatively, OPT can be burned and 
ashes applied in mulching. Both scenarios, however, can 
present negative impacts in terms of obstructing replanta-
tion, favoring insect pests and pathogen inoculum build-
up, and increasing carbon emissions [32]. Potentially more 
energy-efficient applications of OPT have, however, now 
been described. As sap represents up to 70% of the total 
weight of OPT, its conversion, by naturally present enzymes, 
into monosaccharides such as glucose, fructose, sucrose, and 
galactose, for example, offers considerable potential in bio-
mass applications [33].

OPT pressing results in solid residues that contain up 
to 49% glucans. Prawitwong et al. [34] described ethanol 
production from parenchymatous and vascular tissue resi-
dues following OPT pressing. High solid-state simultaneous 
saccharification and fermentation (HSS-SSF) using amylase 
and cellulase enzymes for hydrolysis and Saccharomyces 
cerevisiae for fermentation enabled a yield of up to 76.7% 
of the maximum theoretical ethanol yield. Sugars obtained 

from pretreated and hydrolyzed OPT have also been used in 
fermentation by Actinobacillus succinogenes and the pro-
duction of succinic acid, an important chemical in markets 
of bioplastics, coatings, pharmacy, food, and pigments [35].

OPT can also be used in the production of bio-oil, a dark 
brown liquid comprised of highly oxygenated compounds 
that can be produced after depolymerization and frag-
mentation of structural components of the cell wall with a 
rapid increase of temperature [36]. Bio-oils are currently 
used to improve soil quality, eliminate pests, and control 
plant growth. Oramahi et al. [37] investigated the effect 
of pyrolysis conditions for obtaining higher amounts of 
bio-oil from OPT. The optimal conditions were 456.1 °C, 
139.98 min, and 9.26% of moisture present in the pyroly-
sis process. OPT has also been used to obtain cellulose 
nanocrystal. Lamaming et al. [38] obtained nanocrystals 
of 7.67–7.97 nm in diameter and 397.03–361.70 nm in 
length after acid hydrolysis. Nanocrystals of cellulose have 
several applications, including in enzyme immobilization, 

Table 2  Added-value products 
or chemical blocks obtained 
through biotechnology process 
using oil palm lignocellulosic 
biomass as raw material

Oil palm lignocellulosic biomass Added-value products References

Oil palm trunks (OPF) Ethanol (via fermentation) [41]
Succinic acid (via fermentation) [42, 43]
Furfural [44]
Microcrystals of cellulose [181]
Activated carbon [46]

Oil palm fronds (OPT) Ethanol (via fermentation) [34]
Succinic acid (via fermentation) [33]
Bio-oil [36, 37]
Nanocrystals of cellulose [38]
Natural adhesives [40]

EFB Sugars (via hydrolysis) [50]
Ethanol (via fermentation) [52]
Activated carbon [53]
Bio-oil [54–56]
Nanocrystals [58]
Acoustic absorbers [59]
Bio compost [60]

Kernel shells (KS) Bio-oil [71, 72]
Activated carbon [71]
Concrete aggregate [76]

Oil palm kernel cake (OPKC) Animal feed [77, 81–84, 86]
Mesocarp fiber (MF) Sugars (via hydrolysis) [65–68]

Bio-oil [180]
Bio-char [180]
Antioxidants (α-tocopherol and β-carotenes) [69]
Antioxidants (phenolic compounds) [70]

Oil palm decanter cake (OPDC) Composting [89]
Metanol [91]
Biohydrogen [90]
Butanol [92]
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drug/gene delivery, biosensors, adsorbents, supercapaci-
tors, emulsion stabilizers, and nanocomposite components 
[39]. Finally, potential natural adhesives from the starch 
of OPT were evaluated by Choowang and Luengchavanon 
[40]. According to the authors, the dry powder obtained 
from the core zone of OPT could bond rubberwood veneer, 
with the water resistance increased by blending the powder 
with citric acid.

Oil palm fronds (OPF) are produced daily, throughout 
the year, following palm pruning. Two hundred and fifty 
(250) million metric tons of OPF are produced globally 
and correspond to 46.2% of overall oil palm biomass. 
OPF is typically applied in fields in the same way as OPT, 
either as fertilizers or burned to produce ash [32]. The 
vast quantities of OPF (approximately 82.5 kg fronds/
palm/year) offer the potential for use as a value-added 
raw material.

Alternative uses of OPFs can include the production of 
fermentable sugars for conversion to ethanol. For example, 
Kumneadklang [41] used both acid  (H2SO4) and alkali-
based (NaOH and NaOH in  H2O2) pretreatments of OPF 
for simultaneous saccharification and fermentation using 
cellulase Cellic® Ctec2 (Novozymes) to enable hydrolysis 
of pretreated OPF and employment of the yeast S. cer-
evisiae to ferment sugars to ethanol. Following fermenta-
tion, the maximum ethanol concentration achieved was 
17.2 g/L, obtained with OPF pretreated with NaOH in 
 H2O2 and 56.9 g/L of sugars.

In addition to bioethanol, sugars and other components 
obtained from OPF can be used for other biotechnological 
purposes. For example, a total of 40 g/L of sugars includ-
ing glucose, fructose, sucrose, and fructose were obtained 
from one portion of fronds (1–3 m from the base of the 
petiole), where 73% of sugars were used for A. succino-
genes to produce succinic acid [42, 43]. In Lee et al. [44], 
OPF was pretreated with an ultrasonic probe and aqueous 
choline chloride-oxalic acid to produce furfural, reach-
ing a yield of 56.5% (based on xylose concentration from 
hemicellulose). Furfural is a versatile chemical that can be 
used in fuels, solvents, pharmaceuticals, materials, and as 
a chemical intermediate.

The cellulose fractions of OPF pulps have been 
employed to obtain microcrystalline cellulose (MCC) and 
activated carbon as a potential adsorbent to methylene 
blue and herbicides, respectively [45, 46]. Also, isolated 
lignin was tested to improve solubility and antioxidant 
properties of the organic scavenger p-nitrophenol [47]. 
Another application of OPF is as animal feed. In Rah-
man et al. (2011) the digestibility of fronds was improved 
after white-rot fungi colonization with the fungal species 
Ceriporiopsis subvermispora and Phanerochaete chrys-
osporium, which lead to a decrease in lignin content and 
partial degradation of cellulose.

3.2  Empty fruit bunches

The EFB have been used to generate energy for milling fol-
lowing incineration. Nevertheless, the high moisture content 
of around 60% makes this residue unsuitable for burning, 
such that it is generally dispensed in plantations [49]. Given 
this limitation, alternative applications of EFB have now 
been evaluated. The release of fermentable sugars from 
pretreated and hydrolyzed EFB was recently evaluated by 
different authors. In Palamae et al. [50], EFB was pretreated 
with paracetic acid/alkali peroxide and then used to produce 
monosaccharides through enzymatic hydrolysis. Pretreated 
biomass generated 629.8 g of glucose per kg of dry biomass, 
in contrast to hydrolysates of raw EFB that generated 3.0 g. 
Cui et al. [51] reached a value of 85.2% of polysaccharide 
conversion (83.6 g.L−1) after 72 h of hydrolysis by using 
cellulases for EFB pretreated with Ca(OH)2 and formic acid. 
These fermentable sugars obtained from oil palm biomass 
can be applied in bioethanol production; an example of this 
was carried out by Kamoldeen et al. [52], where EFB pre-
treated with mild alkali conditions allowed the total pro-
duction of 418.9 L.tonne−1 or 33% (w.w−1) ethanol yield of 
treated EFB after co-fermentation of glucose and pentose by 
S. cerevisiae and Pichia stipites, respectively.

In addition to being a source of fermentable sugars, EFB 
has been described as a potential substrate for technolo-
gies enabling the generation of additional bioproducts. For 
example, Osman et al. [53] developed a statistical model 
to obtain higher quantities of activated carbon from EFB 
through a pyrolysis process. The authors claimed that the 
treatment of EFB through this pyrolysis method is a poten-
tially inexpensive alternative to obtain activated carbon. In 
this context, the bio-oil production from EFB using pyrolysis 
was also demonstrated in several studies (CHANG, 2014; 
VECINO MANTILLA et al., 2014; YIIN et al., 2014). For 
example, fast pyrolysis was carried out to obtain bio-oils 
from EFB by testing various temperatures (400, 500, and 
600 °C); with maximum bio-oil content obtained at 500 °C, 
with 27% conversion yield, and a bio-oil composed mainly 
of lauric acid [57].

EFB has also been used to produce sustainable bioprod-
ucts such as cellulose nanocrystals [58], acoustic absorb-
ers [59], and bio compost [60]. In addition, a few recent 
examples are applying EFB as animal feed. Some studies 
demonstrated a promising result by using mushrooms such 
as Pleurotus sajor-caju and Coprinus cinereus as lignocel-
lulosic degraders, which increase the ruminal digestibility 
by decreasing the crude fiber. This also increases the pro-
tein content in the substrate and enables the production of 
edible mushrooms, which will be discussed in more detail 
later [61]. A more recent study evaluated the use of different 
edible mushrooms to increase the digestibility of lignocellu-
losic biomass for animal feed [62]. Thus, there is a potential 



3084 Biomass Conversion and Biorefinery (2024) 14:3077–3099

1 3

opportunity to integrate the edible mushroom industry and 
animal feed production by using this type of vegetable mate-
rial, especially EFB, as it represents 23% of the biomass 
residues in the milling process (Fig. 3).

3.3  Mesocarp fiber

MF is generated from pressing fruits to obtain palm oil. Usu-
ally, one ton of fresh fruit bunches (FFB) produces 0.12 tons 
of Mesocarp Fiber (MF). The MF is collected and used in 
boilers to produce energy, and more sparingly as organic fer-
tilizer in plantations. In the biorefinery context, MF is today 
lignocellulosic biomass produced from palm oil process-
ing with only a limited number of studies reported on the 
application in obtaining bioproducts [63]. With appropriate 
thermochemical treatment, however, the chemical composi-
tion of MF offers potential for exploitation. This assumption 
includes, for example, the extraction of bio-oils and biochar 
in pyrolysis reactions. Kabir et al. [64] obtained 47% bio-oils 
and 53% of biochar/gases from MF decomposition by pyrol-
ysis performed at 550 °C, mainly composed of carbonyl and 
aromatic groups. In addition, oil palm MF has also potential 
as a fermentable sugar supplier. In Zakaria et al. [65] cell 
wall breakdown of MF was conducted with a combinatorial 
ball milling and thermochemical pretreatment, enabling a 
reduction of cellulose crystallinity and lignin content, and 
maximum glucose and xylose yields of 62.9% and 46.5%, 
respectively. Other studies have also proposed the release of 
sugars following MF pretreatment and hydrolysis processes 
[66–68]. These results indicate that MF is a promising lig-
nocellulosic source to produce biofuels and other chemicals.

MF has also been considered as a raw material for the 
production of bioactive molecules [69]. In this context, 
ultrasound-assisted extraction has been used to obtain 
carotene and α-tocopherol. In addition to α-tocopherol and 
β-carotenes, the extracts, which possess high antioxidant and 
high sun protection activity, included the molecules squalene 
and β-sitosterol. Thus, MF has been considered as a source 
to produce molecules for use in the cosmetic and phar-
maceutical industries. Additionally, the bioactivity of MF 
extracts may also be used as antimicrobial agents, including 
for the control of certain important phytopathogenic fungi 
affecting oil palm production. In condensed extracts from 
MF pretreated with Superheated Steam (SHS) at 240 °C, for 
example, a total of 62 molecules were identified, compris-
ing mainly furans, phenolic, and acids [70]. The occurrence 
of phenolic compounds such as 4-methylbenzoaldehyde, 
2,5-dihydroxybenzaldehyde, and 2-methoxyhydroquinone 
may explain the effective antifungal activity against Gan-
oderma boninense, which is the causal organism of basal 
stem rot, an important disease of oil palm in S.E. Asian and 
Pacific plantations.

3.4  Kernel shell and oil palm kernel cake

Kernel Shells (KS) and Oil Palm Kernel Cake (PKC) are 
produced after the separation of fruit endocarp and meso-
carp, respectively, during the milling processes. The KS cor-
responds to the endocarp portion of fruits and traditionally 
is used in steam boilers as an energy source. KS has been 
used to produce added-value bioproducts such as bio-oils 
with high phenolic compounds, glycerides, and fatty acids 
[71, 72], and activated carbon which is used as an absorber 
of toxic wastewater chemicals such as dyes (basic blue 9, 
remazol black 5, and methylene blue), copper, lead, and 
nickel [73–75]. The KS has also been extensively employed 
as lightweight concrete aggregate, as reviewed in Alengaram 
et al. [76]. This biomass has comparable characteristics to 
conventional aggregates and is highly suitable as concrete 
aggregate in asphalt preparations, with high potential in 
pavement construction in rural zones.

Unlike the kernel shells, Oil Palm Kernel Cake (OPKC) 
has been investigated as a supplement in animal feed, par-
ticularly for the ruminants [77]. Protein content (≥ 15%) is 
the most attractive feature for this purpose. Sixteen amino 
acids have been characterized in OPKC, where arginine and 
glutamic acid account for the higher percentage [78]. These 
two amino acids play various roles in the animal, including 
regulatory function, immune response, DNA and protein 
synthesis, body-weight gain, antioxidant effect, and cell pro-
liferation [79, 80]. These functions are relevant in the choice 
of dietary supplements to increase the performance of the 
animal, with OPKC representing a potential resource in the 
feed not only for ruminants but also for monogastric species.

OPKC as a dietary supplement ranges between 10 and 
30% as a substitute for conventional formulas in feeding, 
with no significant differences in the performances of broiler 
chickens, grazing lambs, and pigs when compared with other 
conventional crops [81–84]. In addition to carbohydrates and 
proteins, OPKC provides animal feed formulations with a 
large number of polyunsaturated fatty acids (e.g., omega-3) 
[82]. However, OPKC intake is related to low digestibil-
ity in ovine, swine, and bird species due to the high non-
starch carbohydrate and lignin content. This, however, can 
be resolved using strategies such as fermentation and enzy-
matic treatment of OPKC, with promising results observed 
in the improvement of nutritive value. For example, Paeni-
bacillus polymyxa was used in solid-state fermentation prior 
to broiler chickens feeding, improving nutrient digestibil-
ity compared with control and non-fermented OPKC [85]. 
Similar results were observed in swine and poultry chickens 
fed on OPKC treated with enzymes such as cellulases, xyla-
nases, mannanases, and phytases, increasing nutrient avail-
ability [83, 84].

Despite the successful application of OPKC in animal 
fed, some authors argue that it possesses low nutritive value 
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because of the lack of amino acids like lysine, tryptophan, 
and methionine and lesser protein percentage compared with 
other feedstocks [86]. Considering this, different alternatives 
to using OPKC in the biorefinery context have been evalu-
ated. One of the strategies is based on the application of the 
high carbohydrate content (≥ 50%) to produce bioethanol. 
Among the carbohydrates, mannan is approximately 20% 
of total OPKC polysaccharides and can be converted from 
mannose to ethanol via fermentation by S. cerevisiae. This 
process can yield 90% of conversion to ethanol and induces a 
more concentrated protein product, which is interesting with 
regard to the use as an animal feed [86]. In contrast, the use 
of OPKC sugars to produce butanol is less advantageous, 
since the major butanol fermenting bacteria (e.g., Clostrid-
ium) typically prefer glucose rather than mannose [87, 88].

3.5  Oil palm decanter cake

OPDC is obtained after the crude palm oil clarification pro-
cess. Weight represents approximately 4–5% dry weight or 
42 kg per ton of fresh fruit bunches. In practice, OPDC is 
generally dispensed in plantations or mixed with other oil 
palm lignocellulosic residues such as MF, KS, and OPKC 
for subsequent disposal in boilers. OPDC has high organic 
matter content and lipid residues of mesocarp extraction, 
so are highly suitable for use in composting, animal feed, 
and biogas production [89–91]. The structural carbohydrate 
content of OPDC also makes this residue suitable for the 
production of lignocellulolytic enzymes, which can then be 
applied to obtain sugars that can be fermented to produce 
polyose, biobutanol, and bioethanol [92–94].

4  Mushroom‑derived enzymes produced 
on oil palm residues

Mushrooms are capable of growing in a great diversity of 
lignocellulosic materials [95–97]. In nature, they produce 
enzymatic complexes to degrade vegetal constituents, 
releasing nutrients for uptake via hyphae and distribution 
within the organism [98]. The vegetal constituents degraded 
include the well-recognized cellulose, hemicellulose, lignin, 
and pectin, as well as molecules related to antinutritional 
effects in animal feed. Furthermore, mushrooms secrete pri-
mary and secondary metabolites during the growth phase, 
which may be biologically active [99, 100]. These activities 
increase the nutritional value of potential plant-derived feed 
to animals, particularly those that are unable to naturally 
decompose specific vegetal constituents.

Fungi produce a mixture of enzymes (cellulases, hemi-
cellulases, esterases, and oxidases) to degrade the large and 
recalcitrant polymers of lignocellulose to simple monosac-
charides and phenolic derivates [101, 102]. This process is 

also referred to as biological pretreatment and is the basis for 
using biomass to produce biofuels, chemicals, animal feed, 
or bioremediation mediators. Biological pretreatment is an 
eco-friendly process with no release of toxic compounds 
and low energy input requirements, with the potential to 
contribute to the reduction of greenhouse gas emissions and 
stimulation of rural economies [103]. Currently, the enzyme-
catalyzed processes are gradually replacing chemical pro-
cesses in many areas of industry, and at this point, several 
methods have been developed to improve the properties of 
known enzymes and to identify and synthesize new enzymes 
[103]. Macrofungi, including mushrooms, are recognized 
as high producers of several types of enzymes [104]. Thus, 
the biological pretreatment of lignocellulosic biomass can 
be coupled with the production of enzymes of industrial 
interest, such as those employed in industries of detergent 
(proteases, cellulases, lipases, and oxidoreductases), textile 
(laccases and cellulases), paper, and pulp (cellulases and 
xylanases), leather treatment (proteases and lipases), animal 
feed (xylanases, cellulases, and phytases), and food prepara-
tion (pectinases, cellulases, proteases, and oxidoreductases) 
[105].

In this context, residual lignocellulosic biomass from 
oil palm has been used as a substrate for the cultivation of 
mushrooms for biological pretreatment and enzyme produc-
tion (Fig. 4), mainly using EFB (Table 3). In Widiastutu 
et al. [106], EFB was used as a growth substrate for mush-
room species Omphalina sp. and Pleurotus ostreatus, for 
the production of ligninolytic activities during solid-state 
fermentation. Laccase (LAC), manganese peroxidase (MnP), 
and Lignin peroxidase (LiP, in P. ostreatus only) activi-
ties were greater during the somatic phase of both fungi, 
decreasing during the formation of fruiting bodies. EFB was 
also used to culture Trametes lactinea and Pycnoporus san-
guineus [107]. In this work, both fungi were able to produce 
lignocellulolytic enzymes growing only in EFB; however, 
this substrate enhanced P. sanguineus enzymatic activities 
MnP (42.51 U  mg−1 protein), LiP (103.20 U  mg−1 protein), 
and carboximetilcellulase (34.39 U  g−1 protein) (Table 3).

Certain mushroom species within the Basidiomycete 
class are usually related to the phenomenon of white rot, 
which is characterized by the ability of the fungus to decom-
pose plant cell walls and reduce lignin content through the 
activity of oxidative enzymes such as LiP and laccase. The 
structural characteristics of EFB, presumably also due to 
the high content of holocellulose, induce mushrooms to pro-
duce these types of enzymes [108], increasing digestibility. 
Indeed, the high ligninolytic enzyme production by mush-
rooms may also lead to a high degradation of lignin content, 
and subsequently, increased biodegradability. For example, 
in Mamimin et al. [95], Volvariella volvacea secreted laccase 
and hemicellulase activities in its growth phase, which led 
to a reduction in the percentage of lignin and hemicellulose 
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in EFB. This reduction enabled greater access of bacteria 
to the cellulose fibers, and subsequently, the production of 
biogas (methane) by anaerobic digestion.

Although OPT and OPF are the two lignocellulosic resi-
dues generated in the field (Fig. 3), their use as a substrate 
for enzyme production is scarce. OPT has been used as a 
substrate for the growth and production of lignocellulo-
lytic enzymes and bio pulping by Trametes versicolor in 
submerged fermentation [109]. Here, ligninolytic enzyme 
activity was detected with laccases (218.6 U  L−1), MnP 
(134.2 U  L−1), and LiP (94 U  L−1), but with less xylanase 
and cellulase activity. T. versicolor was evaluated recently 
for the production of ligninolytic enzymes using different 

agro-industrial wastes such as sugarcane bagasse, vinasse, 
barley bagasse, and white sludge [110]. The results showed 
a range of laccase activities between 100 and 1600 U.L−1, 
which indicates that OPT is a suitable carbon source for the 
production of ligninolytic enzymes. OPF was also used as a 
substrate to obtain laccases using the medicinal mushroom 
P. sanguineus, with maximum production values of 403 U. 
 Kg−1 [111] and 7600 U.  Kg−1 [112] of parenchyma tissue.

The OPDC, despite being less easily available than 
other lignocellulosic biomasses of oil palm, has been the 
subject of some studies for enzyme production with fungi. 
In Thamvithayakorn et al. [113], to optimize the produc-
tion of ligninolytic enzymes from the white-rot fungus 

Fig. 4  The oil palm agroindustry is a biorefinery model to obtain new 
products from oil palm processing. Palm oil processing and main 
products, orange circles; lignocellulosic biomass generated in the dif-
ferent stages of oil processing, green circle; lignocellulosic biomass 
used as a substrate to mushroom cultivation, which generates spent 

mushroom substrate and at the same time, raw material for use in bio-
technology and engineering, gray circles. Main potential bioproducts 
of the integration of the oil palm industry and fungi culture: edible 
mushrooms (blue), animal feed (red), enzymes and chemicals (pur-
ple), and fertilizers (yellow)
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Table 3  Enzyme production of mushroom species cultivated on lignocellulosic biomasses of the oil palm industry

Mushroom specie Maximum enzyme production Oil palm residue substrate Type of culture Ref

P. sanguineus • Lacase (< 20.0 U.mg−1 protein), 7th day
• MnP (42.5 U.mg−1 protein), 7th day
• LiP (73.23 U.mg−1 protein), 7th day
• CMCase (34.0 U.mg−1 protein), 21st day
• Xylanase (22.0 U.mg−1 protein), 21st day
• Amylase (20.0 U.mg−1 protein), 21st day

EFB Solid-state fermentation [107]

Trametes lactinea • Lacase (500 U.mg−1 protein), 7th day
• MnP (12.0 U.mg−1 protein), 7th day
• LiP (57.3 U.mg−1 protein), 7th day
• CMCase (14.0 U.mg−1 protein), 21st day
• Xylanase (18.0 U.mg−1 protein), 7th day
• Amylase (98.0 U.mg−1 protein), 21st day

EFB Solid-state fermentation

P. ostreatus • Lacase (1.76 U.mL−1), 3rd week
• MnP (0.79 U.mL−1), 5th week
• LiP (0.78 U.mL−1), 4th week

EFB Solid-state fermentation [106]

Omphalina sp. • Lacase (1.99 U.mL−1), 3rd week
• MnP (< 0.5 U.mL−1 protein), 2nd week

EFB Solid-state fermentation

Volvariella volvacea • Lacase (0.14 U.g−1 EFB), 7th day
• Xylanase (0.013 U.g−1 EFB), 7th day
• Endoglucanase (0.005 U  g−1 EFB), 7th day
• Exoglucanase (0.002 U  g−1 EFB), 10th day

EFB Solid-state fermentation [95]

P. chrysosporium • MnP (6.52 U.mL−1), 20th day
• LiP (17.0 U.mL−1), 20th day

OPF Solid-state fermentation [182]

P. chrysosporium • Laccase (1472 U.L−1), 23rd day EFB Solid-state fermentation [183]
Pseudolagarobasidium sp. • Laccase (5.84 U.gds−1), 7th day

• MnP (5.16 U.gds−1), 7th day
OPDC Solid-state fermentation [113]

Isolated fungus Lacc C • Laccase (1.5 U.mg−1), 14th day EFB Submerged fermentation [184]
Marasmius sp • Laccase (330.1 U.L−1), 8th day EFB Submerged fermentation [185]
Trametes versicolor • Laccase (218.6 U.L−1), 10th day

• MnP (134.2 U.L−1), 12th day
• LiP (94 U.L−1), 12th day
• Cellulase (53.34 U.L−11), 10th day
• Xylanase (1.48 U.L−1), 10th day

OPT Submerged fermentation [109]

P. sanguineus • Laccase (403 U.Kg−1 OPFPT), 10th day OPT
Parenchyma tissue

Solid-state fermentation [111]

Amauroderma rugosum • Phytase (8.28 U.gds−1), 7th day EFB Solid-state fermentation [186]

Pseudolagarobasidium sp, cultures were grown on OPDC 
as substrate, and variations in the concentration of com-
ponents of the medium were performed using a Plack-
ett–Burman design and response surface methodology as 
statistical tools. Statistical optimization showed the great-
est values of laccase and MnP of 5.84 U.gds−1 and 5.16 
U.gds−1, respectively, at 30 °C after 7 days. Recently, 
Peláez et al. [94] used OPDC for screening monocultures 
and cocultures of different species of mushroom-forming 
fungi using 2.5% (w.v−1) of OPDC as substrate in sub-
merged fermentation to produce enzyme extracts with 
lignocellulolytic activities capable of converting biomass 
into glucose monomers. The species Panus lecomtei dis-
played higher laccase and peroxidase activities, and co-
cultivation with Trichoderma reesei increased laccase 
activities and the hydrolysis of pretreated sugarcane 
bagasse. In this study, it was also found that the OPDC 

composition induces greater enzyme release compared to 
MF. It is worth noting that the biomass employed in this 
study as a substrate for fungal growth of oil palm was 
used without previous treatment, only sterilization, with 
the addition of only supplements such as glucose, yeast 
extract, and minerals.

The majority of published studies on the degradation 
of lignocellulosic biomass from oil palm with mushrooms 
are focused on the either production of lignocellulolytic 
enzymes or the examination of their potential in biologi-
cal pretreatment. However, there is potential in such an 
approach for the production of other enzymes of industrial 
interest, such as tannases and phytases, that can reduce 
tannins and phytates in plant material used for animal feed 
[114, 115]. The cost–benefit of using these enzymes in 
animal feed may also be improved when methods such as 
the cultivation of phytase/tannase-producer mushrooms are 
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used instead of reliance on purchasing specific enzymes. 
Phytase activity has been detected in fruiting bodies and 
SMS of the commercial mushrooms Agaricus bisporus, 
Lentinula edodes, Pleurotus cornocupiae, and Grifola 
frondosa [116]. Tannases have also been isolated in the 
non-commercial white-rot fungi Phellinus pili, Fomes 
fomentarius, and Tyromyces pubescens [117], although this 
enzyme is typically obtained from cultivation of Aspergil-
lus and Penicillium species [118, 119]. The highly toxic 
Jatropha curcas L. seed cake can be significantly detoxi-
fied by reducing phytate and tannin concentration after 
the cultivation of the edible mushroom P. ostreatus. This 
treatment has also been shown to decrease phorbol esters 
(99%) and enhance inorganic phosphorous and protein bio-
availability, relevant concerning increasing digestibility of 
residual lignocellulosic materials [120].

5  Production of edible mushroom in oil 
palm residues

In addition to enzymes, mushrooms produce numerous bio-
logically active substances, which can perform structural 
functions in the cell wall, such as polysaccharides (mainly 
β-glucans), proteins, and protein-carbohydrate complexes, or 
that are secreted as secondary metabolites, such as phenolic 
compounds, terpenoids, and steroids [121]. The medicinal 
properties of commercial edible mushroom species have 
been recently explored, indicating possible uses as antidia-
betics, antioxidants, or antimicrobials, as well as antitumor, 
anti-inflammatory, or immunomodulating activities [121]. 
The presence of bioactive substances in mushrooms also 
increases the nutritional value to both humans and animals, 
taking into account that they also provide considerable lev-
els of proteins (10–40%), essential amino acids (34–47%, 

Table 3  (continued)

Mushroom specie Maximum enzyme production Oil palm residue substrate Type of culture Ref

P. lecomtei • Laccase (383.1 U.mL−1), 7th day
• Peroxidase (341.4 U.mL−1), 7th day
• Cellulase (FPase) (0.17 U.mL−1), 7th day
• Xylanase (0.24 U.mL−1), 7th day

OPDC Submerged fermentation [94]

• Laccase (0.85 U.mL−1), 7th day
• Peroxidase (99.39 U.mL−1), 7th day
• Cellulase (FPase) (0.15 U.mL−1), 7th day
• Xylanase (0.06 U.mL−1), 7th day

MF Submerged fermentation

T. versicolor • Laccase (270.4 U.mL−1), 7th day
• Peroxidase (87.0 U.mL−1), 7th day
• Cellulase (Fpase) (0.14 U.mL−1), 7th day
• Xylanase (0.11 U.mL−1), 7th day
• Betaglucosidase (0.23 U.mL−1), 7th day

OPDC Submerged fermentation

• Laccase (6.30 U.mL−1), 7th day
• Peroxidase (7.65 U.mL−1), 7th day
• Cellulase (Fpase) (0.15 U.mL−1), 7th day
• Xylanase (0.07 U.mL−1), 7th day

MF Submerged fermentation

Coprinus sp. • Laccase (2.46 U.mL−1), 7th day
• Peroxidase (5.74 U.mL−1), 7th day
• Cellulase (Fpase) (0.42 U.mL−1), 7th day
• Xylanase (0.50 U.mL−1), 7th day
• Betaglucosidase (0.12 U.mL−1), 7th day

OPDC Submerged fermentation

• Cellulase (Fpase) (0.14 U.mL−1), 7th day
•Xylanase (0.05 U.mL−1), 7th day

MF Submerged fermentation

P. lecomtei/T. reesei (Coculture) • Laccase (1111.4 U.mL−1), 7th day
• Peroxidase (599.7 U.mL−1), 7th day
• Cellulase (Fpase) (1.17 U.mL−1), 7th day
• Xylanase (0.58 U.mL−1) 7th day
• Betaglucosidase (0.19 U.mL−1), 7th day

OPDC Submerged fermentation

Pleurotus sp. • Laccase (18 U.mL−1), 21st day
• Peroxidases ( 21 U.mL−1), 7th day
• Lignin peroxidase (9 U.mL−1), 6th day
• Manganese peroxidase(15 U.mL−1), 13th day
• FPase (0.4 U.mL−1), 21st day
• Xylanase (5 U.mL−1), 13th day

EFB Solid fermentation [187]



3089Biomass Conversion and Biorefinery (2024) 14:3077–3099 

1 3

including cysteine, threonine, valine, lysine, leucine, isoleu-
cine, tryptophan, and methionine), vitamins (0.031–0.65%, 
including riboflavin, niacin, folates, vitamin C, D, and B 
complex), carbohydrates (35–70%, mainly oligosaccha-
rides), and fatty acids (2–8%, mostly polyunsaturated fatty 
acids as oleic and linoleic acids) [121, 122].

Currently, the mushroom market is estimated at least US 
$ 35,000 million and is expected to continue growing to US$ 
53,000 million by 2027 [123]. Per capita consumption per 
year has reached 4.7 kg (fresh weight), with China the coun-
try with the highest production, with 87% of the global total 
[124]. The greatest production is currently for the species 
P. ostreatus, L. edodes, A. bisporus, and Auricularia spp., 
which are typically cultivated on plant substrates, usually 
from agricultural residues.

In the case of oil palm lignocellulosic residues, there is 
as yet no established formula for mushroom cultivation for 
any of the various residue types that are generated in the 
field or the mills. Given the seven possible forms of ligno-
cellulosic biomass generated in the oil palm industry, it is 
likely that each will affect cultivation, with the availability 
of nutrients potential limiting factor for the qualitative and 
quantitative yield of mushrooms (Fig. 4). Several experi-
ments have shown that oil palm lignocellulosic residues can 
indeed increase the productivity of some species of mush-
rooms. In Triyono et al. [125], EFB was used as the main 
substrate for mushroom production of V. volvacea. Maxi-
mum mushroom productivity was 29.50 kg.tonne−1, with 
41.0% of protein content achieved when 1000 kg of EFB 
was supplemented with chicken manure (80 kg), rice bran 
(70 kg), and lime (60 kg). According to the authors, local 
farmers usually obtain up to 17 kg.  tonne−1 for the com-
mercial cultivation of V. volvaceae. In a study to integrate 
bioconversion of EFB for the production of biogas with V. 
volvacea mushroom cultivation, maximum production of 
47.30 kg.tonne−1 of EFB and methane at 73.3  m2.tonne−1 
of the spent mushroom substrate was achieved with POME 
[95], indicating feasibility in integrating various processes 
such as high-yield mushroom cultivation and other types of 
high-value-added products using oil palm biomass as raw 
material, as described in Fig. 4. In Marlina et al. [126], a 
study that also employed EFB as the main substrate, supple-
mented with rice bran, sawdust, calcium carbonate, and min-
eral fertilizer, a maximum P. ostreatus mushroom production 
of 459.5 kg per  tonne−1 of EFB supplemented with rice bran, 
 CaCO3, sawdust, and mineral fertilizer, was achieved after 
124 days cultivation. It is important to mention that in this 
study, the control treatment without EFB did not result in the 
formation of fruiting bodies of P. ostreatus, highlighting the 
great potential of EFB for the cultivation of commercially 
important fungi.

In a study carried out to determine the social, economic, 
and environmental impact of the use of different types of 

lignocellulosic biomass from the oil palm industry [127], 
it was found that EFB used for the cultivation of mush-
rooms provides a Social Return of Investment (SROI) index 
of 2.35. This value is only minor when compared to using 
OPF as animal feed. The SROI index makes it possible to 
evaluate the benefits in social and environmental aspects in 
addition to the economic focus, which is important for an 
industry that has family farming in its structure and that at 
the same time has a strong negative environmental impact 
due to deforestation.

The use of lignocellulosic biomass from oil palm for 
mushroom cultivation has not been limited to EFB alone. In 
Saidu et al. [128], Mesocarp Fiber (MF) was used as the sub-
strate for the production of P. ostreatus. It was demonstrated 
that a formulation composed of 100% MF does not have 
the nutritional requirements to sustain the production of P. 
ostreatus mushrooms, mainly due to the very high moisture 
retention capacity and oil residues present. As such, it is nec-
essary to maintain a proportion between 50 and 80% of MF 
and supplement with other types of substrates such as rice 
bran, sawdust, and lime. In Silva et al. [129], the formulation 
(w/w) 84.6% Oil Palm Mesocarp Fiber (MF), 9.4% cocoa 
almond peels, 3% triturated charcoal, and 1%  CaCO3 was 
used to obtain a maximum P. ostreatus mushroom yield of 
560.5 kg·tonne1 and biological efficiency of 148.8% (mush-
room fresh weight/substrate dry weight). Interestingly, the 
authors compared different proportions of MF and showed 
that the higher proportions (86.4, 76.8, and 67.2%) resulted 
in better mushroom production than the lower values (8.0%), 
indicating that increased proportions of MF in a formulation 
for the culture of P. ostreatus can lead to better results of 
biological efficiency and yield.

There are many opportunities to mix two types of plant 
biomass from oil palm in formulations for mushroom cul-
tivation. In Wan et al. [130], P. ostreatus growth and yield 
were evaluated in a formulation with biochar obtained from 
vacuum microwave pyrolysis of KS and rice bran and saw-
dust. The addition of 2.5% (w.w−1) biochar of KS in the 
substrate enabled maintenance of the percentage of humid-
ity during cultivation (99%), and a neutral pH (6.8–7) of the 
medium, which contributed to mycelium growth and produc-
tion of mushrooms with a maximum yield of 560 g.Kg−1 (or 
560 kg.tonne−1) of substrate rice bran, sawdust, and KS bio-
char. It is interesting to note that the study compared results 
to those obtained following the addition of lime powder, a 
supplement used in mushroom cultivation to neutralize the 
culture media, which, when it was added at 2.5% in the sub-
strate of rice bran and sawdust, presented a maximum yield 
of mushrooms of 600 g.Kg−1 (or 600 kg.tonne−1), a very 
similar yield value. This indicates that it is possible, through 
physicochemical treatments such as pyrolysis, to convert a 
plant residue that does not have ideal characteristics for the 
production of mushrooms into a substitute for supplements 
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such as lime powder, and also can reduce heavy metals and 
other toxic components [131].

Although there is no fixed formulation for the various 
types of oil palm biomass in the production of mushrooms, 
it is understood that the composition of these formulations 
requires a specific C/N ratio, between 20/1 and 50/1 accord-
ing to Elisa-Esposito [132]. Thus, at least with EFB, MF, 
and KS vegetable biomasses, there is an opportunity to 
integrate other agribusiness chains that also generate large 
amounts of plant residues as a strategy to establish more 
nutritious formulations for mushroom cultivation.

6  Spent mushroom substrate from oil palm 
residues as animal feed

The application of lignocellulosic biomass from oil palm to 
feed ruminants is not recent, especially for OPF [133, 134]. 
According to studies, producers affirm that the use of OPF as 
a constituent of animal feed generates a cost-saving effect, in 
addition to not affecting weight gain or the quality of animal 
meat. In addition, in terms of socio-economic and environ-
mental impact, the use of OPF as animal feed presents a 
high SROI index of 5.47, according to Phoochinda [127]. 
However, here, we explore the potential of the different lig-
nocellulosic biomasses of the oil palm industry for animal 
feed, following biological treatment by mushrooms (Fig. 4). 
SMS, rather than raw biomass, is advantageous because 
of the higher protein and nutraceutical content, as well as 
increases in digestibility for monogastric consumption.

SMS is a fermented soil-like material product after har-
vesting mushrooms and represents a potential source of ani-
mal feed. In addition to increasing digestibility after cell 
wall moieties degradation, in SMS the crude protein content 
is also increased, making it a useful source of nitrogen for 
various animal species [135]. Fazaeli et al. [136] used SMS 
of A. bisporus grown in wheat straw to feed calves. The 
addition of < 15% of SMS did not lead to significant differ-
ences in the carcass and internal organs of the calves that 
received this diet compared to controls. Furthermore, it has 
been shown that fungal fermentation processes also lead to 
the detoxification of molecules such as gossypol and phorbol 
esters, as was demonstrated through solid-state fermentation 
using the mushrooms Fistulina hepatica, P. lecomtei, and 
P. pulmonarius cultures in seed cakes of Jatropha seed and 
cotton, respectively [137, 138].

Mycelial residual in SMS retains similar bioactive prop-
erties to fruit bodies of mushrooms [139]. Strong antioxidant 
activity in vitro was detected in SMS of P. eryngii, related to 
the high concentration of crude and refined polysaccharide 
from liquid extracts obtained from this cultivation [140]. In 
ruminant feeding, the liquid extract obtained from SMS of 
Ganoderma balabacense had no negative effect on yield and 

quality of dairy cow’s milk, nor on the biochemical index 
in blood compared to a basal medium composed mainly of 
corn. In addition, there was a reduction in the somatic cell 
count, possibly related to the antimicrobial bioactivity of 
polysaccharides of Ganoderma, indicating an immunomodu-
latory and antimicrobial property of the extract [141].

The positive effect of SMS in feeding has also been 
demonstrated in monogastric species, such as birds and 
fish. In Wang et al. [142], broiler chickens were fed on 
10% SMS of P. eryngii cultured on wheat bran in solid-
state fermentation, with no negative effect in growth per-
formance, body weight, feed intake, and feed conversion 
compared with unfermented and control treatments. Molec-
ular analysis revealed an increase in antioxidant regulator-
Nfr2 expression in the chickens, a transcription factor of 
the cytoprotective antioxidant enzymes haem oxygenase-1 
(HO-1) and glutathione s-transferase (GST). In SMS, high 
laccase, phytase, and manganese peroxidase activities were 
detected, associated with an increase in bioavailability of 
nutrients and an increase in flavonoids, phenolic com-
pounds (gallic acid), and polysaccharide content, indicating 
that SMS of P. eryngii is highly suitable in poultry feeds. A 
positive effect on the growth performance of geese fed on 
SMS of P. ostreatus was also demonstrated [143]. It was 
shown that using 5% of P. ostreatus SMS as a component 
in feed for geese, no adverse effects on growth performance 
or meat characteristics were observed; blood biochemical 
analysis also showed higher antioxidant activities after 
12 weeks of treatment. This condition also enhanced the 
sensory evaluation of geese meat flavor, juiciness, color, 
and acceptability. As the presence of high antioxidant ele-
ments in feed could reduce the cell damage of animals by 
protecting against free radicals, this is an important factor 
when choosing feed.

6.1  Fungal‑treated plant‑derived supplements 
for monogastric animal feed

Various concerns should be considered when employing 
plant-derived materials as supplements for monogastric ani-
mal feed. The first to consider is digestibility. This aspect 
implies not only considering the natural composition of feed, 
but also the absorption degree of nutrients and energy. In 
ruminants, absorption of nutrients from the plant cell wall 
is aided by a symbiont relationship with microorganisms 
that can degrade structural polysaccharides (hemicellulose 
and cellulose) using hydrolytic enzymes [144]. However, 
lignin concentration and composition (mainly syringyl-type) 
show a negative correlation with digestibility in the rumen, 
by shielding against the enzymatic hydrolysis of polysac-
charides. On the other hand, in monogastric animals, the 
ruminant system is absent and there are specific adaptations 
to feed digestion.
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The second concern is related to antinutrient factors pre-
sent in plant-derived supplements. In general, these affect 
the assimilation of proteins, minerals, and vitamins, decrease 
growth performance, and also induce intoxication reactions. 
They include protease inhibitors, oligosaccharides, non-
starch polysaccharides, cyanide, tannins, lectins, phytates, 
gossypol, oxalates, alkaloids, glucosinolates, antivitamins, 
saponins, and phorbol esters [145]. Antinutrient content dif-
fers according to plant origin and, in some cases, can be 
reduced in concentration by heating (e.g., protease inhibi-
tors, lectins, tannins), alkali pretreatment (tannins, oligosac-
charides, and non-starch polysaccharides), adding chelating 
substances, or using enzymes (phytates) [145]. However, 
this may consequently reduce the simplicity of using plant-
derived material as animal feed.

Increasing the digestibility of lignocellulosic bio-
mass for ruminants has been evaluated by using fungal 
pretreatment. Shrivastava et al. [146] demonstrated an 
increase in organic matter digestibility and crude pro-
tein content after solid-state fermentation of wheat straw 
with the white-rot fungi P. ostreatus and T. versicolor. 
Chen et al. [147] evaluated solid fermentation with P. 
ostreatus to reduce the lignin content in cornstalk and 
thus, increased the biodigestibility for animal feed. The 
data showed a reduction in acid-insoluble lignin and 
crystallinity (highest reduction with 7.6% and 15.2% 
after 30 days, respectively) and formation of cavities 
in the plant cell wall, indicating structural damage. Tao 
et al. [148] investigated co-cultures (a consortium of two 
or more species) of the white-rot fungus Phanerochate 
chrysosporium with Aspergillus niger/Trichoderma 
viridae cultivated in solid-state fermentation of maize 
stalk for development of feed for sheep. Results demon-
strated that the co-culture of P. chrysosporium–T. viri-
dae increased the ruminal degradability of dry matter, 
organic matter, neutral and acid detergent fiber, acid 
detergent lignin, and cellulose.

Fungal pretreatment of plant biomass by white-rot 
fungi breaks linkages between lignin and cellulose 
or hemicellulose, making fiber fractions more easily 
accessible for utilizing and also for the breakdown of 
peptide bonds of fiber-bound protein [149]. Aldoori 
et al. [150] evaluated the effect of dietary replacement 
of barley with SMS of P. ostreatus on Awassi lambs, 
demonstrating that 15% of SMS could be included 
without any negative effect on carcass characteristics. 
Improving the nutritional quality of cocoa pods (Theo-
broma cacao) for lamb feed has also been investigated 
through different treatments, including colonization 
with P. chrysosporium. The spent mushroom substrate 
from P. chrysosporium improved the in vitro dry mat-
ter and organic matter digestibility of this material to 
levels similar to those achieved using urea treatment. In 

addition, this method increased crude protein content, 
attributed to the mycelial growth [151].

Monogastric species have been the focus in feed devel-
opment with SMS as they cannot degrade cellulose as 
efficiently as ruminants. Broiler chicken production was 
evaluated after including SMS from P. ostreatus in the 
diet. The replacement of standard diet by colonized sub-
strate resulted in body weight gain and no meat taste 
alteration. This approach also increased the hematocrit, 
heterophils, typical lymphocyte, total cholesterol, high-
density lipoproteins, and decreased low-density lipopro-
teins [152]. The mushroom-supplemented feed can modify 
the intestinal microbiota composition in birds and con-
sequently improve gastrointestinal function, digestibility, 
and performance. Certain mushroom polysaccharides are 
hydrolyzed and fermented at the intestinal level, produc-
ing straight-chain fatty acids (SCFA) and net utilization of 
ammonia for the growth of bacteria, which is beneficial for 
health. Additionally, these polysaccharides also provide 
bioactive properties in monogastric animals, mainly due to 
their sugar composition, molecular weight, and structure 
[153, 154].

6.2  Oil palm residues fermented by fungi for fish 
feed

Currently, the main food sources for fish feed in aquacul-
ture are fish meal and fish oil. Plant-derived supplements, 
however, appear to offer an excellent opportunity in fish 
feed development. Among plant-derived supplements, the 
most prominent example is soybean meal, given the high 
content of protein and carbohydrates, balanced amino acid 
profiles, global availability, and lower prices compared to 
the fish meal [155, 156]. Recently, soybean meal has shown 
promise as a feed supplementation in marine and carnivo-
rous fish species such as black sea bream (Acanthopagrus 
schlegeli), turbot (Scophthalmus maximus), and tench (Tinca 
tinca), where a suitable percentage of fish meal replacement 
is around 25–40% [157, 158]. Other relevant crop products 
include barley, canola protein concentrate, corn gluten pro-
tein, wheat gluten protein, and cottonseed meal that have 
been proposed as feed supplements [159].

Studies related to the use of oil palm by-products as fish 
feed are limited. Reports of this material in animal feed after 
biological pretreatment by microorganisms are also scarce, 
possibly because priority is given to other types of plant 
residues with better geographical availability and quanti-
ties. In Lim et al. [160], OPKC was employed as a feed 
of Oreochromis mossambicus after solid-state fermentation 
with the fungus Aspergillus flavus. OPKC could partially 
substitute other protein feeds as high as 30% without any 
adverse effect on fish growth and feed utilization efficiency. 
Ng [161] also used OPKC in the Oreochromis sp. diet after 



3092 Biomass Conversion and Biorefinery (2024) 14:3077–3099

1 3

solid-state fermentation by Trichoderma koningii or enzy-
matic digestion, showing that OPKC could be included in 
the diet as high as 20% using both fermented and enzymatic 
treated biomass, without affecting the growth performance 
of fish. The same author demonstrated that including up to 
20% of OPKC in the Clarias macrocephalus × C. gariepinus 
diet could show similar results [162]. These investigations 
exemplified the potential use of fungal species to enhance 
the nutritive value of lignocellulosic biomass.

6.3  Oil palm residues fermented by fungi 
for poultry feed

In Malaysia and Indonesia, where oil palm production is 
high, oil palm kernel has been used as a supplement in a 
compound feed of ruminants, mainly due to its crude pro-
tein content ≥ 15% [163]. Nevertheless, the use in feed for 
monogastric is very limited, given the high fiber content and 
low metabolizable energy [164]. Poultry shows a low diges-
tive enzymatic activity to process the non-starch polysaccha-
ride (NSPs) of the cell wall of PKC, and some components 
such as arabinoxylans, pectins, and β-glucans of NSPs create 
a viscous environment in the gastrointestinal tract that has 
negative effects on nutrient utilization, especially in younger 
birds [165].

To improve the nutritional value of OPKC, physical or 
chemical treatment can be performed to reduce the fiber 
content [163]. However, studies related to the improve-
ment of OPKC for poultry feed used enzymes as catalytic 
agents, especially carbohydrate-degrading and proteolytic 
enzymes, or through the fermentation process using micro-
organisms. Pasaribu et al. [166] evaluated OPKC fermenta-
tion using a microbial cocktail of Bacillus amyloliquefacien 
and Trichoderma harzianum. The results showed a 2.3% 
reduction in crude fiber, related to the activity of endo- 
β-glucanase, (CMCase), and β-glucanase enzymes. The 
treatment also increased the protein content by 24–32% and 
the amino acids glutamate, arginine, and methionine com-
pared with the untreated OPKC, indicating that fermented 
OPKC by microbial cocktails is suitable for use as poultry 
feed. A previous study demonstrated that solid-state fer-
mentation of OPKC by A. niger can completely substi-
tute the soybean meal protein, with no negative significant 
effect on feed consumption, body weight, feed conversion, 
or percentage of carcass [167]. Recently, OPKC was also 
evaluated as a suitable feed compound after fermentation 
using A. niger, Trichoderma viride, or P. ostreatus [168]. A 
positive effect on the nutrition of broilers was shown in the 
treatments, with 10% and 20% fungi fermented OPKC, but 
especially in the 20% treated with A. niger, which resulted 
in higher body weight in broilers than observed in control 
basal diets.

7  Knowledge gaps and perspectives

The use of lignocellulosic biomass generated from the oil 
palm industry has shown a wide range of applications for 
biotechnological processes (Table 2). This potential has an 
important commercial component since it allows obtaining 
bioenergy in the form of biofuels or different types of low-
cost biomaterials because this type of raw material is low-
cost and it is characterized by its high availability [169]. 
One of the main opportunities of oil palm lignocellulose 
biomass is as a substrate for the growth of edible mushroom-
forming fungi, from which high value-added products can 
be obtained. However, the feasibility of integrating industry 
and biotechnology supported by techno-economic studies 
has not yet been widely discussed.

During fungal growth, lignocellulose is converted into 
more digestible fragments for animal consumption, rich in 
bioactive compounds. This bioconversion is carried out by 
the secretion of enzymes whose catalysis allows the obtain-
ing of sugars, and at the same time it is possible to recover 
these lignocellulolytic or proteolytic enzymes with great 
commercial potential. The main advantage of bioconver-
sion mediated by microorganisms such as fungi, in contrast 
to chemical or physical pretreatments, is that it does not 
require sophisticated equipment, large energy investment, 
or the need to clean chemical effluents that inhibit sacchari-
fication or fermentation, which means high application costs 
[170]. However, the growth dynamics of microorganisms are 
limited by time and specific conditions such as humidity, 
temperature, and sterility, which are an obstacle to scale-up 
from laboratory to industrial level. New strategies have been 
proposed to overcome these obstacles. Strategies such as the 
elimination of the sterilization step and the reduction of the 
culture time were evaluated to improve the conditions of the 
processes and reduce the effects of bottlenecks from biologi-
cal pretreatment on an economic level [169].

In biological pretreatment, it is possible to obtain edible 
mushrooms, and this may be another important economic 
opportunity in a scenario where oil palm biomass is used as 
a substrate. Comparison of various technologies and types 
of oil palm biomasses regarding benefits, costs, and risks for 
smallholders in rural areas of Riau province (Indonesia) have 
shown the main opportunities of using EFB in mushroom 
production relies on the fact that the food market is opera-
tionally easy and there is high availability of raw material 
(4.42 ton/ha/year)[171]. In addition, the environmental risks 
or failures in processes and markets are low, the revenue 
is high, and the labor is relatively low compared to other 
strategies, such as the use of the EFB for the manufacture 
of charcoal briquettes. However, studies in different regions 
and scales are still necessary to further support and expand 
these findings.
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Enzymes such as cellulases are important in obtaining 
ethanol since they represent 43.5% of production costs [172]. 
Obtaining enzymes using the fungal pretreatment of oil palm 
biomass has been the subject of various application studies; 
however, the techno-economic bases of possible scenarios 
at small- or industrial-scale production have not yet been 
elucidated. In addition, the evaluation of costs in special-
ized equipment that provides the specific conditions for the 
growth and production of enzymes is an essential subject 
of research.

8  Conclusions

Given the high demand for palm oil across different mar-
kets and the large potential for expansion of cultivation in 
regions such as Brazil and Indonesia, increased efficiency 
of the production chain and development of appropriate 
biorefinery schemes with regard to oil palm plant resi-
dues are priorities. This latter focus is essential, consider-
ing that oils produced by pressing of mesocarp and fruit 
nuts represent only 10% of the plant biomass generated in 
the field. The rest of the biomass, if dispensed in fields, 
results in additional negative environmental impacts to 
those resulting from the deforestation conducted by this 
industry.

The implementation of renewable processes in an oil 
palm biorefinery scheme is still at the research and devel-
opment phase. To reach viable industrial processes and 
applications, diverse biotechnology strategies have been 
evaluated by different groups around the world for the gen-
eration of products with high added value from the various 
types of lignocellulosic biomass residues obtained from 
this palm species. As lignocellulosic biomass is composed 
mainly of carbohydrates, most studies have focused on 
obtaining simple sugars through physicochemical pretreat-
ments and hydrolysis for later use in fermentative pro-
cesses. In addition, the application of pyrolysis and other 
techniques for bio-oils and gases has been increasing in 
recent years. The use of thermal techniques facilitates the 
conversion of different residues. Finally, the application 
of lignocellulosic residues from the palm oil industry in 
animal feed has gained attention recently. Here, the main 
challenge is to reduce recalcitrance and increase digest-
ibility for certain species of farm animals. The enzymatic 
potential of specific fungi grown on these materials has 
now enabled the development of formulations without 
negative effects on animal performance.

The employment of lignocellulosic biomass from the 
oil palm industry for mushroom cultivation still requires 
further exploration to enable products with greater added 

value. Empty Fruit Bunches, Mesocarp Fibers, and Oil 
Palm Fronds are residues with the greatest number of stud-
ies conducted with regard to mushroom cultivation, mainly 
with regard to biological pretreatment, the production of 
ligninolytic enzymes such as laccases (which are impor-
tant in the food industries, in detergent production, in bio-
energy, and bioremediation), and as formulations of sub-
strates for the production of edible fungi with significant 
yields and biological efficiency values. In terms of animal 
feed production, data is more limited, although promising 
results indicate that the oil palm industry and fungi culture 
have great potential within a biorefinery scheme.
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