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Abstract

Marine biomass (such as wild seaweed Gracilaria verrucosa) is highly abundant in Indonesia and has been highlighted as
a potential biomass resource for bioenergy production. Furthermore, agro-industrial waste (such as tofu dregs/TD which
arises from large-scale production in the country) is rich in carbohydrates and proteins, and is therefore considered a viable
feedstock for production of high-value added products. This study aimed to investigate the co-digestion of wild seaweed G.
verrucosa (WGv) with TD and its impacts on biogas and methane production. The biochemical methane potential (BMP) test
was operated for 28 days at temperature of 37 °C. The co-digestion of WGv with TD at 90:10 and 80:20 ratios significantly
increased the specific methane potential (SMP), giving an average of 98 LCH,/kgVS and 120 L. CH,/kgVS, respectively.
Addition of co-digestion substrates promoted co-metabolism in the digesters, increasing the ability of the microorganism to
effectively digest the organic matter present in the feedstock’s mixture. The washing pre-treatment reduced the concentration
of inorganic compounds and salts within the wild seaweed G. verucosa, leading to an improvement in biogas and methane
yield. The mass balance illustrated that this process configuration led to a reduction in the quantity of digestate to be man-
aged (i.e. dewatering, transport, and land/soil application). This will subsequently reduce the cost and energy requirements
for sludge management, estimated at 37%. Therefore, the co-digestion of WGv with TD and the application of a washing
pre-treatment stage prior to AD can positively enhance biogas and methane production. In-depth investigation for optimal
valorisation using AD technology is highly essential.
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M Cattle manure FVW Fruit and vegetable waste
FwW Food waste
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tofu dregs (TD) led to higher process performance compared to MC Moisture content
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e Biogas and methane yields were improved by 1.2- and 1.7-fold MEMR  Ministry of Energy and Mineral Resources,

depending on the mixing ratio Republic of Indonesia
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TDS Total dissolved salt
TS Total solids

TWAS  Thickened waste activated sludge
VFA Volatile fatty acid

VS Volatile solids

WFO Waste frying oil

WGv Wild seaweed Gracilaria verrucosa

WP Waste paper
wWw Wet weight

1 Introduction

Currently, the global world faces the complex challenge of
increasing demands for energy and an increase in fossil fuels
prices due to depletion of non-renewable energy supplies
(i.e. coals and fossil fuels) [1, 2]. Therefore, progressing
the development and implementation of biomass to energy-
based generation is being prioritised in many countries
globally [3]. In Indonesia, specifically, despite abundant
resources, there remains a number of barriers and limita-
tions in converting biomass or waste resources to bioenergy
[4]. Several programmes and measures have been enforced
by the Indonesian Government to expand renewable energy
production from biomass. This is driven by the availability
and sustainability of renewable biomass resources currently
available across the country. According to the Ministry of
Energy and Mineral ResourcessyMEMR [5], approximately
146.7 million tonnes of biomass is produced per year in
Indonesia, which has an energy potential of 32,654 MWe.
This highlights that valorisation of biomass for bioenergy
production has the potential to address some of Indonesia’s
critical energy needs and warrants further promotion in the
country.

Biomass is defined as any organic and biodegradable
materials derived from plants, animals, microorganisms,
or wastes [6]. Agro-industrial waste is one of the potential
waste streams that is also abundant and widely distributed in
Indonesia [7]. However, many agro-industrial wastes remain
under-utilised [8]. Furthermore, due to lack of waste man-
agement facilities and the technical skills and knowledge
to support sustainable waste management, many small- and
medium-scale enterprises (SMEs) dispose of their waste
directly into the environment, leading to detrimental impacts
on both health and the environment [9]. Therefore, further
valorisation of agro-industrial waste is urgently needed [10,
11]. Various studies have reported the valorisation pathways
of agro-industrial waste to bioenergy, such as biogas from
fruit-based agro-industrial waste [12]; bioethanol from apple
pomace [13] or from candy agro-industry wastes (i.e. raw
residual of coconut milk, pineapple juice, and tuna juice)
[14]; biodiesel from sugar beet agro-industrial waste [15];
biohydrogen from molasses, vinasse, and bagasse [16]; and
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bio-pellet production from cacao agro-industrial waste (i.e.
cacao pod husk) [17].

One of the larger agro-industrial industries in Indone-
sia is the tofu processing industry. There are approximately
84,000 SME tofu processors in Indonesia and these are dis-
tributed in clusters within multiple cities across the coun-
try [18]. These tofu industries consumed an estimated 2.56
million tonnes of soybean per year with aproximately 1.024
million tonnes (or 40%) of tofu dregs (TD) produced as a
waste product [19]. However, many of these industries have
ongoing challenges with managing the wastewater and solid
waste (i.e. TD) from processing due to inadequate or absent
on-site waste treatment facilities. Li et al. [20] found that
the main component of TD is polysacharides from the cell
membrane of soybean, with a protein value of 27% (total sol-
ids/TS). They added that the elemental composition of TD
was as follows: H of 6.99%, C of 46.34%, N of 3.99%, and
S 0.25% (on a TS basis). Mateos-Aparicio et al. [21] added
that TD contains protein (33.4%TS), crude fat (8.5%TS),
crude fiber (54.3%TS), and ash (3.7%TS). The TD has been
used for cattle feedstock, culture medium for single protein
production [22]; and biogas production [23]. Furthermore,
the Indonesian government supports the creation of sustain-
able agroindustry through waste to bioenergy approach. For
example, in 2011, the Indonesian government through the
Agency for the Assessment and Application of Technology
(BPPT) has successfully implemented seven pilot-scale
anaerobic digestion plants treating wastewater from the 183
tofu industries located in Banyuwangi City. The project was
under the Renewable Energy and Energy Efficiency Part-
nership (REEEP) grant funded by the UK Department of
Energy and Climate Change (DECC), which aimed to plan
and provide policy support for biogas production from the
Indonesian tofu industry. It is estimated that the applica-
tion of this technology can substitute 56,000 tonnes of fossil
fuels with biogas from tofu wastewater [18, 19]. Choe et al.
[24] added that TD is an inexpensive and highly available
biomass resources with excellent nutrient composition (i.e.
high in carbohydrates and protein) and minerals (i.e. K, Ca,
and Mg), which promotes the growth and the reproduction of
microorganisms. Furthermore, Song et al. [25] reported that
addition of tofu residue as a co-substrate in anaerobic diges-
tion of food waste and garden waste influence the enrich-
ment of methanogen bacteria, especially methanosarcina.
Therefore, considering the TD characteristics, composition,
and availability, there is good opportunity to utilise it as
feedstock for biogas production.

As an archipelagic country, Indonesia has a diverse vari-
ety of marine biomass including both microalgae and mac-
roalgae. In terms of macroalgae (or seaweed), the global
production was reportedly 35.82 million tonnes in 2019,
dominated by China as the first-largest producer (~20.4 mil-
lion tonnes) and Indonesia as the second-largest producer
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accounting for ~ 10 million tonnes [26]. The species Graci-
laria sp. is a macroalgae (or seaweed) that is highly abundant
in Indonesia (particularly in northern parts of Java Island,
Nusa Tenggara Barat, South Sulawesi, and Lampung). This
species is either cultivated in shallow ponds or sourced as
a wild species such as Gracilaria verrucosa [27]. Graci-
laria sp. has been widely used for agar or agarose produc-
tion [28]. However, Gracilaria sp. also has a high concen-
tration of organic macro molecules such as carbohydrate
(42.0%TS), fat (1.3%TS), protein (5.18%TS), and inorganic
ash (43.2%TS) [29]. McDermid and Stuercke [30] found that
the carbohydrate content of Gracilaria sp. was in the range
of 4-83%, in the form of celullose, making it a good poten-
tial feedstock for bioenergy production. For example, use of
Gracilaria sp. as feedstock for bioethanol has been reported
by Meinita et al. [31], while a high methane potential from
Gracilaria sp. was found by Kawaroe et al. [32].

Various approaches to transform macroalgae into bioen-
ergy have been highlighted in several recent studies. Abo-
mohra et al. [33] stated that using microwave vacuum co-
pyrolysis technology for treating seaweeds and waste plastic
was proven to improve recovery and economic feasibility of
crude bio-oil. Yuan et al. [34] reported that the application
of hydrothermal co-liquefaction of seaweed with rice husk
has significantly increased bio-oil recovery by 71.7% with
potential for large-scale commercialisation. Elshobary et al.
[35] demonstrated that sequential biodiesel and bioethanol
production from seaweeds improved the total energy recov-
ery to 9.96 MJ/kg, which was sixfold or 28.3% higher than
mono-production of biodiesel or of bioethanol. Abomohra
et al. [36] highlighted the use of sequential fermentation
and anaerobic digestion (AD) for dual bioethanol and biogas
production from Cu-sorbed dry seaweeds. This approach
resulted in the efficacy of energy recovery with value of
1597.3 Gl/year. Abomohra et al. [37] also emphasised the
integrated valorisation of agar-free seaweed residues using
AD technology coupled with microalgae cultivation for
biogas and biodiesel production showing a superior techni-
cal and economical feasibility.

Anaerobic digestion (AD) is a process which promotes
the degradation of ogranic material by microorganisms in
the absence of oxygen (or anaerobic condition) [38]. AD
generates methane (CH,), carbon dioxide (CO,), and a nutri-
ent-rich waste product (digestate) which can be utilised as a
substitute biofertiliser, soil conditioner, or cultivation media
[39]. Biogas is comprised of methane and carbon dioxide,
with a high-quality biogas having higher methane concentra-
tions, usually in the range of 50-70% [40]. The biochemi-
cal methane potential (BMP) test is a standard method to
measure the biodegradability of substrate under anaerobic
conditions by monitoring the cumulative methane produc-
tion during the test period [41]. The standard BMP test was
developed by Angelidaki et al. [42]. This study identified

the key operational considerations for conducting a BMP
test including characteristics and composition of substrate
samples, particle size, inoculum, nutrients (i.e. micro- and
macro-nutrients), and mixing. Numerous studies have uti-
lised this standard BMP test to investigate methane and
biogas potential of biomass feedstock, such as fruit and
vegetable waste (FVW) [43]; and thickened waste-activated
sludge (TWAS) [44]. It was highlighted that addition of min-
eral can improve the stability of AD process. For example,
Sliem et al. [45] added that after addition of 100 ppm nano-
ferrites Fe;O, and CoFe,O, to AD of cow-dung was found
to enhance biogas cumulative volume by approximately two-
fold, with the value of 4929 mL and 5155 mL over 50 days
operation.

Several studies have reported the potential of native mac-
roalgae which is a non-edible macroalgae in Indonesia for
biogas production using the AD process [32, 46, 47]. Our
previous studies have also highlighted that cultivated sea-
weed (as opposed to wild) G. verrucosa offers good potential
to be co-digest with TD, food waste (FW), and wastewater
[48]. Furthermore, several studies have also investigated
the methane potential from TD as a mono- or co-digestion
feedstock in AD process. For example, Kristanto and Asa-
loe [23] reported that methane production from AD of TD
was 77 mL from 195 mg COD/kg TD in 30 days, while
Ni’mah [49] found that when mixing TD with cattle manure
at ratio of 50:50 with volatile solids/VS of 3%, methane con-
centration increase to 68.98%. In addition, various studies
have also reported that pre-treatments are often required for
improving AD of macroalgae, such as grinding [50]; beating
[51]; hydrolysis with enzymatic and alkaline solution [52,
53]; ultrasonic, hydrolysis with acid and thermo-alkaline
[53]; drying and maceration [54]; and washing [55, 56].
Washing with water (potable or otherwise) is considered as
a sustainable pre-treatment that can significantly increase the
biogas and methane yield of macroalgae [54-56]. Yet, in the
case of Indonesia, there is limited information on washing
pre-treatment and co-digestion of wild seaweed G. verrucosa
(WGv) with locally available biomass. Therefore, this study
aimed to investigate the effect of co-digestion of WGv with
TD and washing as a pre-treatment to improve the biogas/
methane production. This study also investigated the effect
of washing pre-treatment on the characteristics of WGv.

2 Materials and methods

2.1 Feedstocks, control positive, and inoculums
Dried WGv was collected from Ujungpangkah Beach,
Gresik City, East Java, Indonesia, upon arival at the Bioin-

dustry Laboratory, Department of Agro-industrial Tech-
nology, Faculty of Agricultural Technology, Universitas
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Brawijaya. The WGv sample was ground using a comercial
blender and kept at room temperature (~27 °C). The TD
was freshly collected from the tofu small-scale agro-indus-
try in Kendalsari, Malang City, East Java, Indonesia, and
directly kept at fridge upon arrival at Bioindustry Labora-
tory. The TD samples were collected from the closest area
to keep the fresh quality of the sample. Also, tofu industry
is locally available and implementing similar processing
method; hence, the characteristics of TD samples were
assumed to be not significantly different. Control positive
used in this study was a-cellulose powder C8002 (Sigma
Alrdrich, Singapore). Control inoculum was prepared
using digestate from a full-scale digester treating cattle
manure at Balai Besar Pelatihan Peternakan in Batu City,
which operated under mesophilic condition, as previously
used in our previous studies [12, 48, 57, 58]. The digestate
was sieved using a 1-mm screen for removing larger par-
ticles, then it was deggased for 48 h at 37 °C to eliminate
the residual biogas. The feedstocks and inoculum were
analysed for pH, moisture content (MC), ash, total solids
(TS), and volatile solids (VS), while the elemental analysis
(C, H, O, N, S) and calorific value (CV) were carried out
for feedstock substrates. C/N ratio of the substrates was
calculated from the carbon concentration divide by the
nitrogen concentration. The characteristics of inoculum,
a-cellulose, and feedstocks used in this study are shown
in Table 1.

Table 1 Inoculum, a-cellulose, and substrates characteristics

2.2 BMP test set-up

A manual BMP test was used in this study, operated for
28 days at 37 °C, following the method explained in our pre-
vious studies [12, 48, 57, 58]. Each sample was prepared in
triplicate using a 250-mL serum bottle with working volume
of 40 mL. The control inoculum samples were prepared to
measure the ability of inoculum in generating the indigenous
methane production. The control a-cellulose was used to
measure the inoculum’s activity. Samples of mono-digestion
and co-digestion of WGv with TD at ratio of 100:0, 80:20,
90:10, and 0:100 (on a VS basis) were tested in this study.
These selected substrate ratios were aimed to add nutrient
composition and to balance the C/N ratio, as important fac-
tors in co-digestion system [59]. The pressure of the serum
bottle was measured on a daily basis using a digital mano-
metre (Digitron 2026P, Electron Technology-UK), and the
measured pressure was used for calculating the headspace
biogas volume, following the method and formula described
by Suhartini et al. [60].

2.3 Washing pre-treatment

The washing pre-treatment was carried out following the
procedures described in our previous study [61]. The WGv
samples were washed for 10 min using a flowing cold tap
water (which is non-saline and chlorinated water), followed
by a draining step to reduce excess water. The washed WGv

Parameter Inoculum a-cellulose Mono- and co-digestion trials Washing pre-treatment trial
Wild G. verru- WGV:TD ratio (%VS)
cosa (WGv)
80:20 90:10 Unwashed WGv Washed WGv

TS (XWW) 241 95.22 84.84 9.63 14.14 10.27 80.40 30.10
VS (%WW) 1.82 95.04 70.78 9.52 11.51 8.64 63.63 24.21
VS/TS (%TS) 75.63 99.81 83.42 98.84 81.38 84.12 79.14 80.43
MC (%WW) 97.59 4.78 15.16 90.37 85.86 89.73 19.60 69.90
Ash (%WW) 0.59 0.18 16.55 0.11 2.63 1.63 16.76 5.89
Elemental composition (%TS)

C - 43.12* 31.03 42.70 - - 35.00 33.70
H - 6.57* 6.20 6.59 - - 5.49 5.66
o - 50.24%* 60.02 48.06 - - 50.81 57.55
N - 0.01* 2.70 2.65 - - 2.84 3.09
Biochemical analysis (%TS)

Protein - - 17.66 14.28 - - 0.21 0.22
Lipids - - 0.72 4.54 - - 19.20 19.17
Carbohydrate - - 50.69 60.52 - - 47.01 54.61
C/N ratio - - 11.24 16.11 14.97%%* 13.52%%* 12.32 10.91
CV (MJ/kgTS) - - 5.12 10.59 - - 13.74 14.95

*Lim and Fox [73], ** calculated proportionally based on the ratio of substrates added
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samples were then analysed for the parameters of TS, VS,
MC, ash, CV, elemental analysis (CHON), protein, lipids,
carbohydrates, and C/N ratio, as well as the morphology and
its element, and functional bonds units.

2.4 Analysis

pH was measured using a digital pH metre previously cali-
brated with buffers solution (pH 7 and 9.2) while TS and VS
were analysed following the Standard Method 2540 G [62].
Daily biogas production was measured at standard tempera-
ture and pressure (STP) conditions, following the procedure
and formula described in Suhartini et al. [57]. The C, H,
0O, and N content of the feedstock samples were analysed
using elemental analyser (628 Series Elemental Determina-
tor, LECO) [63], while the CV was analysed using Bomb
Calorimetry method using ASTM standard D2015 [64]. The
morphology and element of unwashed and washed WGv
was analysed using scanning electron microscopy-energy
dispersive X-ray (SEM—-EDX) (FEI Inspect-S50 and EDAX
AMETEK) operated at ~20 kV, with the procedure following
the equipment manual book. The Fourier transform infrared
(FTIR) spectra of unwashed and washed wild G. verrucosa
were recorded using the Shimadzu type IRPrestige21 in the
wavenumber scope 4000-400 cm™ to identify the structures
and bonds present in both samples, with the procedure fol-
lowing the equipment manual book.

The theoretical methane concentration was calculated
using the Buswell equation [65] using an assumption that
the seaweed samples have a biodegradation degree of 46%
[66] and 62.57% for TD samples [25]. The biogas and
methane potential is the daily amount of biogas and meth-
ane production, also known as the specific biogas potential
(SBP) and specific methane potential (SMP) which were
calculated using the equation reported by Stromberg et al.
[67], using the theoretical methane concentration. Electrical
conductivity (EC) of digestate was measured using electrical
conductivity metre (Hanna, UK), according to the Standard
Method 2510 [62]. Salinity of digestate was measured as
total dissolved salt (TDS) based on Eq. 1, as explained by
Lloyd and Heathcote [68], with the K, factor selected of 0.8
for inorganic nutrient.

Salinity(g / L) = K xEC (1)

where K_ is the conductivity factor (0.8) and EC is the elec-
trical conductivity (in pS/cm).

2.5 VS destruction
VS destruction was calculated using the formula explained

in our previous study [69], as shown on Eq. 2. In this calcu-
lation, the mass of biogas was calculated using the average

biogas volume obtained from the laboratory experiment,
using the theoretical methane concentration calculated pre-
viously using Buswell equation, with the weight of 1 mol
biogas as 1.34 g/l (water vapour and other trace gases pre-
sent in biogas were not taken into consideration).

(MinXVSin) - (VSdigestatex MinXMbiogus our) % 100
(MinxVSin)

(@)
where M, is mass of substrate added (kg ww), VS;,, is the
VS amount of the substrate added (g VS/kg Ww), VS gigegiate
is the VS amount of the digestate removed (gVS/kg ww),
and My o 18 mass of biogas (kg ww).

VS destruction =

2.6 The mass balance calculation

The mass balance calculation estimates the amount of
biomass converted into biogas and the amount of residual
digestate to be used biofertilizer (i.e. for land application
or for synthetic fertiliser replacement), with and without
dewatering processes. The calculation of biogas production
and mass balance was made from the experimental data.
The calculation formula was described in previous research,
using CH, density of 0.71 kg/m® and CO, density of 1.96 kg/
m? (this is on the basis that 1 kmol of a perfect gas occupies
22.4 m?) [69]. This calculation was based on 1000 kg of
feedstock input on a basis of dry weight (TS).

2.7 Calculation of synergistic or antagonistic effect

The synergistic or antagonistic effects of combining feed-
stocks for co-digestion (and the subsequent impacts on AD
performance and biogas yield) can be evaluated. Combin-
ing feedstocks in various ratios can provide a better under-
standing of these effects and support process optimisation.
The estimation of weighted SMP was calculated using the
experimental data based on the formula described in Kim
et al. [70] as follows:

weighted SMP = (Measured SMP xP,) + (Measured SMP,xP,)

3)
where weighted SMP is the estimation of SMP from co-
digestion, measured SMP, is the SMP values from the labo-
ratory experiment for substrates n, P, is the percentage of
substrate added in the feed mixture, and » is substrate 1, 2,

2.8 Statistical analysis

Microsoft Excel software was used to calculate error bars or
standard deviation. The R Software was used for Cronbach’s
alpha reliability test, aiming to evaluate the reproducibility
of the BMP trials in this study. The test was carried out on
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all replicates in BMP test trials with a confidence level of
95%. The BMP test trials can be considered as reliable and
valid if having Chronbach’s alpha value higher than 0.6 or
in the range of 0.70 to 0.99 [71].

3 Results and discussions
3.1 Feedstock characteristics

Table 1 shows that, for TD, the VS values were greater than
95%TS whereas for the WGv samples, the VS were observed
to be 79.14%TS (unwashed) and 80.43%TS (washed). This
indicates that the TD samples have a relatively higher
organic content. When WGv substrates were mixed with TD
at ratio of 80:20 and 90:10, the VS values were increased to
81.38%TS and 84.12%TS, respectively. However, TD sam-
ples have a higher MC value than unwashed and washed
MGv samples. In this study, the TD samples had a higher
C/N ratio than that of the WGv samples. The addition of TD
as a co-substrate in AD of WG slightly increased the C/N
ratio. Despite the value which is still lower than the ideal
condition (20-30), a slight increase in C/N ratio of mixture
substrate may contribute to increase the biogas and meth-
ane yield, as previously reported in Hagos et al. [59]. Tait
et al. [72] added that factors such as substrate compositions
(i.e. carbon-rich or nitrogen-rich substrates), biodegradabil-
ity, trace elements, and organic loading rate are important
when considering potential co-digestion substrates. The TD
samples also exhibited a higher carbon content (~43%TS)
than the WGv sample of 35%TS (unwashed) and 33.7%TS
(washed). The carbohydrate content of TD was higher than
WGv sample. A previous study revealed that addition of
carbon-rich substrates can enhance the organic loading in the
substrate mixture, thus boosting and stimulating the micro-
bial activity within the AD process [72]. It can also be seen
that the WGv sample has a higher CV than the TD sample..

The feedstock characteristics, as shown in Table 1,
revealed that addition of TD to WGyv at ratio 20 and 10%
VS have a significant effect on reducing the TS, VS, and ash
concentration (on a ww basis). However, the VS concentra-
tion (on a TS basis) increased by 2.83% and 6.29%, respec-
tively. The MC value was also found to be greatly affected
by the addition of TD to the WGv by 3.38- and 3.58-fold.
A high carbohydrate content, VS values (on a TS basis),
and MC of TD sample appear to play a significant factor.
According to Panichnumsin et al. [74], the composition of
co-substrates affect the characteristics of the co-digestion
mixture, thus influencing the digestion process stability.
They added that an increase of an easily degradable frac-
tion from the co-substrates was parallel to an increase in
methane yield and biodegradability. Therefore, addition of
higher concentrations of TD as co-substrates enhanced the
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amount of easily degraded organic matter (measured as VS)
in the mixture. Li et al. [20] stated that carbohydrates in
TD were composed of xylose, manose, galactose, glucose,
and sucrose, which categorised as an easily biodegradable
carbohydrate. While in Gracilaria sp., the carbohydrate was
present in the form of cellulose, lignin, and agar [75], which
are considered more complex and therefore more difficult
to degrade. In addition, a lower C/N ratio of the feedstock
may affect the AD process performance, where the ideal
C/N ratio for biogas production is between 20 and 30 [76].
Milledge and Harvey [77] reported that C/N ratio in the
range of 8—15 could contribute to inhibition of biogas and
methane production in the AD of macroalgae biomas (i.e.
Sargassum muticum).

3.2 The effect of co-digestion of WGv with TD
at different ratio

3.2.1 Specific biogas and methane potential

Figure 1 shows daily SBP and SMP of mono-digestion and
co-digestion of WGv with TD at different ratios over 28 days
operation. Mono-digestion of WGv shows a low biogas and
methane production from day 1 to day 6 possibly due to the
adaptation stage, as shown in Fig. la. Starting from day 7
to day 28, a continuous increase in biogas production was
evident, giving the average value of 119 L biogas/kg VS, 44eq
(Table 2). However, when co-digesting WGv with TD at
ratio of 80:20 and 90:10, biogas was rapidly produced from
day 1 to day 8, followed by stable and plateaued biogas pro-
duction until day 28 (Fig. 1a). The results show that co-
digestion of WGv with TD significantly improved the SBP
by ~155% and ~ 112%, giving the average values of 302 L
biogas/kg VS, 4. (WGV:TD, 80:20) and 253 L biogas/kg
VS.4ded (WGV:TD, 90:10), respectively (Table 2).

The daily SMP values are shown in Fig. 1b and reflect a
similar trend to the SBP values. Anaerobic mono-digestion
of WGy resulted in a lower SMP compared to that of co-
digestion of WGv with TD at all feeding ratio tested. Table 2
shows that the average SMP values of each sample were
45 L CH/kg VS, 44eq (WGYV alone), 98 L CH,/kg VS, 44ed
(WGv:TD, 90:10), and 120 L CH,/kg VS, 44.a (WGV:TD,
80:20), respectively. This indicated that co-digestion of WGv
with TD at ratio of 90:10 and 80:20 improved the SBP and
SMP by ~2.1-fold and ~ 2.6-fold. The SBP and SMP values
for control a-cellulose were 284 L biogas/kg VS, 44,4 and
133 L CH,/ kg VS, 44cq> Which were much lower than the
theoretical SBP or SMP for a-cellulose. The reliability test,
however, shows that all tested samples in mono- and co-
digestion BMP test trials have Cronbach’s alpha values in
the range of 0.972-0.995 (Table 2).

It can be seen in Fig. 1 that there was a reduction in
biogas and methane production from the digestion of WGv
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Fig.1 Trends in daily SBP (a) and SMP (b) from mono- and co-digestion of WGv with TD at different ratios. Error bars represent standard

deviation from three measurements

alone. Kawaroe et al. [32] also reported that G. verrucosa
has a low methane potential, giving the value of 11.6 L CH,/
kg ww. The organic content (particularly carbohydrate and
lignin) in marine macroalgae substrate may play a signifi-
cant role in AD performance, and thus on the biogas and
methane yield. For instance, Costa et al. [75] found that
the concentration of macroalgae (i.e. 1, 2.5, and 5% of TS)
and type of macroalgae (i.e. Ulva sp., Enteromorpha sp.,
and Gracilaria sp.) have an effect on the stability and per-
formance of the AD process. Their results showed that the
SMP of each macroalage sample was as follows: Ulva sp.
(167-196 L CH,/kg VS), Gracilaria sp. (148-182 L CH,/kg
VS), and Enteromorpha sp. (148-154 L CH,/kg VS). They
further added that Ulva sp. has a higher carbohydrate and a
lower lignin concentration compared to other macroalgae,
making it more suitable for methanisation. Gracilaria sp.
has a slightly lower SMP due to its slightly lower carbo-
hydrate and a higher lignin concentration than that of Ulva
sp. Enteromorpha sp. generated the lowest SMP because
of its lowest carbohydrate and its highest lignin concentra-
tion than the other two macroalgae. Furthermore, since the
macroalgae sample used was wild marine macroalgae and
directly used without washing pre-treament, the sea salts’
content in the feedstock may hinder the AD process. Previ-
ous studies have also reported that sea salt (or salinity) con-
tent from marine macroalgae inhibited the microorganism
consortia and AD performance overall [78, 79]. Similarly,
a high salinity contributes to a low biogas production as it
limits the growth of the microorganism consortia in the AD
digester [56]. Kawaroe et al. [47] also reported that biogas
production from macroalgae under high salinity condition
was lower than that of under low salinity condition.

Figure 1 also shows that co-digestion of WGv with TD
gave a significant improvement both in SBP and SMP com-
pared to that of the mono-digestion of WGv. This result
is in agreement with previous result reported by Oliveira
et al. [80] who found an improvement of methane yield by

19-56% from co-digestion of Sargassum sp. with glycerol or
with waste cooking oil. Kumar et al. [81] reported that co-
digestion of waste algal biomass with cattle dung resulted in
high methane potential (315 L/kgVS,44.4) at OLR 5 gVS/L.
Various studies have also reported significant improvement
in biogas and methane yield following co-digestion of mac-
roalgae with other substrates, such as FW and TD [48]; glyc-
erol and sewage sludge (SS) [54]; FVW [82]; TWAS [83];
cattle manure [84]; and waste paper (WP) [85]. Comparison
of other studies on BMP of marine macroalgae in mono- and
co-digestion system is shown in Table 2.

The results highlighted that increasing co-substrate
(TD) concentration was found to enhance biogas and meth-
ane yield, as well as the biodegradability. This is in line
with Panichnumsin et al. [74], as explained previously.
Furthermore, the ability of microorganisms to digest the
organic matter in the substrates may play significant roles
in enhancing the biogas and methane yield. Gu [87] added
that changes in the concentration of co-substrates play a sig-
nificant role in the presence and the activity of microbial
population, as well as the metabolic utilisation of targeted
organic matter. In AD systems, the addition of co-substrates
may provide carbon and energy sources; furthermore, its
co-metabolic matrix can also offer a large number of elec-
tron donors for anaerobic consortia to efficiently degrade
organic matter [88]. Suhartini et al. [82] also reported that
the co-substrate can add nutrient supply, thus enhancing the
production of biogas and methane in co-digestion systems.
This mechanism is identified as co-metabolism and various
studies have highlighted that this enhanced the ability of
microorganism to effectively digest the substrates [87, 88].
In more detail, Jin et al. [89] reported that co-metabolism,
in AD systems inoculated with rumen microorganisms,
enhances performance and therefore biogas production.
They added that co-metabolism improves the efficacy of
microbial-digestion substrates not only providing carbon or
energy sources through readily biodegradable substances,

@ Springer
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but also by generating specific enzyme stimulated by the
degradation process. Chen et al. [90] also reported that
co-metabolism processes in anaerobic co-digestion sys-
tem promoted high organic matter degradation (i.e. high
digestion rate), enhanced nutrient balance and availability,
better synergistic effects on microorganism, and improved
potential detoxification from toxic/inhibitory substances or
derivatives. Furthermore, Riggio et al. [91] studied anaero-
bic co-digestion of cow slurry with olive pomace and apple
pulp at different ratios. The study emphasised a positive
impact of co-metabolism and subsequent benefits includ-
ing improved biogas production, enhanced process stabil-
ity, and reduced inhibitory effects. These findings confirm
that anaerobic co-digestion of wild G. verrucosa with TD
substrate offers numerous benefits in terms of process sta-
bility and performance. Further studies on optimisation of
operational parameters and identification of other potential
co-digestion substrates are advised.

Another factor which may contribute to impact on perfor-
mance is the combined MC and TS values of the substrate
mixture. The WGy utilised in these trials were added in a
dried condition (has higher TS, lower MC) and fresh TD
was in wet condition (has lower TS, high MC); thus, add-
ing WGyv at different concentrations has an impact on the
MC and TS values (see Table 1). Figure 2 also shows that
a decrease in TS and an increase in MC values resulted in
an increase in methane potential, with R? values of 0.7761
and 0.7221, respectively. The results indicating that dried
biomass feedstock may lower the ability microorganism
to degrade its organic materials. Ahmadi-Pirlou et al. [92]
reported that AD process with low solid concentration
(5-10% TS) exhibited higher organic matter degradation
and higher biogas/methane yield than that of at high solid
concentration (15-20% TS). Abbassi-Guendouz et al. [93]
studied the effect of TS concentration of AD performance.
Their study identified that TS concentrations >30% led to
a significant reduction in methane production. A high TS
concentration resulted in a reduction in hydrolysis rate and
an inhibition in methanogenesis due to mass transfer limita-
tions. A previous study also found that an increase in MC
values has correlation to an increase in SMP values, and
vice versa [48].

Sun et al. [84]
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and sieved to get a sample size <4 mm.
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3.2.2 Synergistic and antagonistic effects

* SMP unit is in m* CH,/ kg COD. WGv is marine wild G. verrucosa; TD is tofu dregs; FW is food waste; WP is waste paper; Gly is glycerol; SS is sewage sludge; SW is seaweed waste (com-
posed of F. serratus (41%), F. vesiculosus (12%), Enteromorpha (1%), U. lactua (17%), P. palmata (1%), and L. digita (22%)); MB is municipal biosludge; WFO is waste frying oil; CGv is cul-

tivated G. verrucosa; FVW is fruit and vegetable waste (from traditional market); TWAS is thickened waste activated sludge; and CM is cattle manure

S o © & © 9o
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% % g g 8 5 The synergistic or antagonistic effects of co-digesting

S s s s 5 = several substrates can be evaluated and the findings were
= 22 % % % used to optimise the ratio of substrates added in the AD
Q 2 =R |8 = = = . L.
2 2 2 8 2 = = system. Several studies found that synergistic effects are
g TR R RRR evident if the addition of co-substrates can positively con-
= § § § § § § § tribute to enhance the biogas/methane yield [70, 85, 86],
(o] et . . . .,
2|3 § §§ § § 8 while antagonistic effects are confirmed when addition of
S 2 S 3 3 I 3 3 co-substrates leads to reduction in biogas/methane yield.
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Fig.2 Correlation between concentration of TS (a) and MC (b) on SMP of mono- (washed and unwashed) and co-digestion of WGv with TD at

ratio of 80:20 and 90:10

The synergistic effects of substrates mixing resulted in
improvement of the biodegradability because of additional
nutrients, carbon, trace elements, enzyme, or other ingre-
dients that main substrates are lacking. From Table 3, it
can be seen that synergistic effects were observed from
co-digestion of WGv with TD at ratio of 90:10 and 80:20.
This indicates that addition of higher concentration of TD
gave an additive impact on improving the SMP values.
An inhibitory effect can also result from co-digesting sub-
strates due to the compositions or supply of nutrients/trace
elements, as explained by Pan et al. [94]. A previous study
by Cogan and Antizar-Ladislao [86] reported a synergistic
effect from co-digestion of food waste with seaweed at
ratio of 90:10, and antagonistic effects at ratio of 75:25
and 50:50. Their study indicated that an increase in sea-
weed concentration added contributed to a reduction in
methane potential, potentially due to the sulphur content
in the seaweed samples. A study from Rodriguez et al.
[85], also reported synergistic effects of co-digestion waste
paper (WP) with macroalgae/MA (Pelvetia canaliculata)
at ratio of 75:25, 50:50, and 25:75. Their study highlighted
that co-digestion of WP:MA at ratio 50:50 gave the highest
synergistic effects, possibly due to its ideal C/N ratio of
26 than that of other treatments WP:MA 25:75 (C/N ratio
of 18) and WP:MA 75:25 (C/N ratio of 42), respectively.

3.2.3 Digestate characteristics

Table 4 shows that mono- and co-digestion of WGv with TD
at various feeding ratio has a good performance in terms of
operational stability. For example, the pH value before and
after the BMP test was well within the optimum value for
digestion (6.8-8.2). The pH of all samples tested were in
the range of 7.50-7.70 (before) and 7.30-7.43 (after). This
shows that the AD process was relatively stable. The VS val-
ues of the samples decreased after the BMP test, within the
range of ~65-78%TS. Furthermore, at the end of BMP test,
the acetic acid concentrations from the digestate samples
were low at values in the range of 0.03-0.25%, respectively.

From Table 4, it is clear that the pH values of digestate
in all tested samples, before and after the BMP test, were
well within the ideal range of AD (6.5-8.5). Despite a slight
reduction of pH values in unwashed and washed WGy, the
results indicate that pH is not considered as limiting factor
in this AD process. The results also showed that the washing
pre-treatment had an impact on the digestate quality, espe-
cially on the reduction of ash (an indicator of inorganic con-
centrations), as previously reported by Tabassum et al. [95].
This demonstrates that the biological degradation of organic
materials was effective and this was transformed into biogas,
as stated by Gelegenis et al. [96]. The remaining VS in the
digestate also indicates that the digestate still contains high

Table 3 .The sf};nergifstic and WGv:TD ratio Measured SMP Weighted Differential Methane yield Effects
antagonistic effects from (%VS) (L CH/kg VS,4000)  SMP (Measured SMP-  increase (%)
co-digestion of WGv with TD (L CH,/ke Weight. SMP)
4 .
VSadded)

100:0 45+4.245 45 0 na na

90:10 98 +4.247 62.10 35.90 36.63 Synergistic

80:20 120 +4.005 79.20 40.80 34.00 Synergistic
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Table 4 Performance and digestate characteristics of the BMP test trials

Sample type MC (%WW) TS VS VS (%TS)  Ash (%WW)  EC (pS/cm)  Salinity (g/L)*  pH
(PWW)  (%WW) P

Start  End

Mono- and co-digestion trials

Control inoculum 97.65 2.35 1.55 65.99 0.80 n.m n.m 7.60 7.43

Control a-cellulose  97.26 2.77 1.84 66.58 0.71 n.m n.m 7.70 7.30

WGv:TD (100:0) 97.69 2.31 1.79 77.49 0.52 n.m n.m 7.70 7.30

WGv:TD (90:10) 96.30 3.70 2.84 76.73 0.86 n.m n.m 7.70 7.30

WGv:TD (80:20) 97.04 2.96 2.17 73.35 0.79 n.m n.m 7.50 7.30

Washing pre-treatment trials

Control inoculum 99.60 0.40 0.24 59.72 0.16 2.79 2.23 7.55 6.69

Control a-cellulose ~ 99.22 0.78 0.56 71.68 0.22 2.67 2.13 7.56 6.62

Unwashed WGv 98.84 1.16 0.86 73.92 0.30 3.12 2.50 7.63 6.62

Washed WGv 99.38 0.62 0.40 65.29 0.22 3.18 2.54 7.57 6.83

concentration of organics matter, which has potential for
further application as biofertiliser (either via composting or
direct use), as previously stated by Alburquerque et al. [97].
This indicates that the process of degrading organic matter
into biogas or methane by microorganisms occurred during
the AD process, as explained in various studies [48, 96]. Yet,
further in-depth investigation of the organic and inorganic
nutrients present in the digestate is needed to evaluate the
potential of valorising the digestate either as biofertiliser
[97] or as medium for algal cultivation [98].

3.3 The effect of washing pre-treatment

3.3.1 Characteristics of WGv before and after washing
pre-treatment

The findings in this study demonstrate that washing pre-
treatment has a significant impact on the characteristics,
morphology, elements, functional groups, and biogas/
methane potential of wild G. verrucosa. Table 1 shows the
characteristics of WGv before (unwashed) and after washing
(washed) pre-treatment. The results showed that washing
pre-treatment caused significant changes to the characteris-
tics of WGv. The MC was found to increase after washing
pre-treatment. Unwashed WGv contains a high ash concen-
tration which can be attributed to the salt or mineral con-
tent. After washing pre-treatment, the ash content of washed
WGv was reduced by 65%, possibly due to the removal of
dirt and non-organic compounds such as sea salts. Similarly,
as stated by Tabassum et al. [95], high ash (or salt) content
in macroalgae can be a trigger for operational problems and
process instability in AD systems due to the accumulation
of salt in digester which can impact on the microconsor-
tia. Their study further reported that washing pre-treatment
was able to reduce ash (or salt) by 54%, which subsequently
results in increasing VS content by up to 31% and methane

@ Springer

yield by 25%. The experimental results also indicate that
the CV value showed a slight increase after washing pre-
treatment from 13.74 to 14.95 MJ/kg TS, respectively. Simi-
larly, the VS content was also found to slightly increase after
washing pre-treatment by 1.6%.

Figure 3 shows the elemental composition and mor-
phology of unwashed and washed WGv, analysed using
SEM-EDX, which further confirm the results that washing
pre-treatment was able to remove inorganic nutrients or salt,
in accordance with the findings reported by Milledge et al.
[56]. The SEM images show that both unwashed and washed
WGyv samples have a rough surface and ridged texture. The
SEM image of the unwashed WGv (Fig. 3a) shows the pres-
ence of white deposits (impurities or potentially sea salt con-
tent) on the surface. In contrast, the washed WGv exhibits
more consistent surface and no white deposits (Fig. 3¢), indi-
cating that washing pre-treatment was effective in remov-
ing any impurities or remained sea salts on the surface of
the biomass sample. Evaluation between these two samples
helps to better recognise the effect of washing pre-treatment
on the characteristic of substrates, hence on the biogas and
methane production. The EDX spectra, as shown in Fig. 3b
and 3d, indicate that unwashed WGv contains higher con-
centration of elements than that of its counterpart.

The EDX spectra also shows in more details on the
percentage of all elements contain in both unwashed and
washed WGv (see Table 5). The results demonstrated the
presence of carbon (C), sulphur (S), calcium (Ca), silicon
(Si), aluminum (Al), and magnesium (Mg) as dominant
elements in unwashed samples, while element of sodium
(Na) and potassium (K) were not present in unwashed WGv.
The washed WGv has dominant elements of C, S, Ca, Si,
Mg, Na, and K, without Al element was detected. The EDX
spectra help to identify the elements presents in both sam-
ples, which further be used to evaluate their organic matter
content and suitability as feedstock for biogas (or methane)
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Fig.3 SEM images and EDX spectra of unwashed (a-b) and washed (c—d) WGv. SEM at magnification of X 5000 (20 pm)

Table 5 The EDX elemental composition and its stoichiometric concentration in unwashed and washed WGv

(d)

9.00 10.0

Element Unwashed WGv

Washed WGv

bol
Symbo Atomic conc. (%)

Weight conc. (%)

Stoich. weight.

Atomic conc. (%) Weight conc. (%)

Stoich.

Conc. (%) weight. Conc.
(%)

C 31.90 22.82 47.94 53.08 42.59 75.07
(0] 55.00 52.40 40.49 43.27

Na n.d n.d 0.38 0.59 1.04
Mg 1.16 1.68 3.53 0.40 0.64 1.13
Al 1.70 2.74 5.76 n.d n.d

Si 2.24 3.74 7.86 0.84 1.57 2.77
S 5.13 9.8 20.59 2.81 6.02 10.61
K n.d n.d 0.37 0.96 1.69
Ca 2.86 6.82 14.33 1.63 4.35 7.67

n.d means not detected
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production. These SEM-EDX results indicate that higher
concentration of the elements S, Ca, Si, and Mg were present
on the surface of unwashed WGv than that of the washed
WGyv. The washed WGv sample has the highest concentra-
tion for carbon with values of 42.59% compared to 22.82%
for unwashed WGv sample. Carbon is one of the main com-
ponents of carbohydrates which is an organic matter and
energy sources for microorganisms in the AD system, thus
improving the microbial degrading-ability, as highlighted
in several studies [86, 99]. A previous study has reported
that washing pre-treatment, especially using hot water, is
effective for reducing problematic elements (such as K, Na,
Ca, Mg, Fe, Cl, S, and P) in biomass, hence improving the
biomass conversion yield, as well as reducing ash deposi-
tion and air emissions problems [100]. Costa et al. [101]
found that the SEM—-EDX results of the Sargassum filipen-
dula residues show a reduction in the elements concentration
which associated with removal of diatoms after washing pre-
treatments. A diatom is a unicellular algae which is mainly
composed of biosilica (SiO,) [102], hence contributed a high
Si concentration in unwashed wild G. verrucosa samples.
Figure S1 also shows that unwashed WGv contains distinct
diatoms with a heterogeneous distribution, while no diatoms
were present in washed WGv sample, similar to previous
studies [101, 102].

The effect of washing pre-treatment on the presence of
functional groups was also clearly evidenced from the FTIR
spectra as as transmittance (%) against wavenumber (1/cm)
(Fig. 4). Unwashed WGy, as shown in Fig. 3a, shows the

more complex nature of biomass due to its large number of
peaks compared to its counterpart. This sample has recorded
peak bands at wavelength of 675-995 cm™!, 690-990 cm™!,
1500-1570 cm™', 1500-1600 cm™', 2100-2260 cm™',
2850-2970 cm™!, and 3200-3600 cm™', while the washed
WGv (Fig. 3b) spectra indicated lesser peak bands,
which recorded as of 675-995 cm™', 690-990 cm™',
2850-2970 cm™!, and 3200-3600 cm™'. Washing pre-treat-
ment seems to reduce the presence of functional groups
in wild G. verrucosa. The peaks located at 675-995 cm™!
represent the bond stretching of C-H, indicating the pres-
ence of alkenes, which is similar to that in Sargassum sp.
[102]. The stretching vibrations of peaks at 690-990 cm™!
and 1500-1600 cm~! demonstrate the presence of C-H
and C=C of aromatic ring [103]. The functional groups
recorded at peaks of 1500—1570 cm™! represent the bending
of NO,, identifying that the nitro compounds are present in
the samples, similar to those in the powder of the Ampelocis-
sus latifolia leaf [104]. Peaks located at 2100-2260 cm™!
demonstrates the bond bending of C=C of alkynes func-
tional group [104, 105]. Also, the peak region band at
2850-2970 cm™! corresponds to the presence of aliphatic
group of alkanes, similar to that of natural and enriched
Cladophora glomerata [106] and Ecklonia maxima resi-
dues [107]. The distinct stretching and bending from 3200
to 3600 cm™!, indicating the presence of O—H of hydrogen
bonded alcohol and phenols, similar to previously reported
in various studies [102, 104, 106, 107]. The unwashed WGv
contains alkenes, alkynes, alkanes, C-H and C=C aromatic

Fig.4 The FTIR spectra for (a) 70
unwashed and (b) washed WGv Washed WGv
Unwashed WGy
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compounds, nitro compounds, hydrogen bonded alcohol,
and phenols, while washed WGv shows the presence of alk-
enes, C-H aromatic compounds, alkane, hydrogen-bonded
alcohol, and phenols. These results confirm that washing
pre-treatment has impact on the presence the functional
groups.

3.3.2 Biogas and methane potential of WGv
before and after washing pre-treatment

Table 2 shows that the average SBP and SMP of washed
WGv was 247 L biogas/kg VS, 4. and 92 L CH,/kg VS,
respectively. While unwashed WGv has the average SBP
and SMP of 183 L biogas/kg VS,44.q and 69 L CH,/kg VS
added- The results shows that washed WGv produced higher
SBP and SMP values than that of unwashed WGyv. This
is in accordance with other studies reported that washing
pre-treatment significantly enhanced biogas and methane
potential from macroalgae samples [47, 56, 61], possibly
due to loss of inorganic contents such as salts (or ash) or
salinity [78, 79, 95], as well as characteristic differences
as explained before. Figure S2 demonstrates the effect of
washing pre-treatment on SBP and SMP from AD of WGv.
Starting on day 0 to day 4, there was an adaption phase both
of BMP of unwashed and washed WGv. From day 5 to day
16, the BMP test enters the lag phase where rapid produc-
tion of biogas and methane occurred. This was followed by
a stationary phase where biogas or methane was produced
in small but constant volume. The results indicated that,
starting from day 14 to day 25, biogas and methane pro-
duced from the AD of washed WGv were much higher than
that of unwashed WGv. The washing treatment was found
to improve the efficiency of biogas and methane production
by 33.11%. A study by Oliveira et al. [54] also reported a
better AD performance when it combined with washing pre-
treatment, giving the efficiency of 45.76% improvement in
methane potential. In comparison, enzymatic pre-treatment
using fungal crude enzyme or combined with mechanical
pre-treatment were also able to enhance the efficiency of AD
process, hence increasing the methane and biogas yields.
Thermochemical pre-treatment at higher temperature (above
100 °C), however, was found to reduce the efficiency of AD
performance as indicated by lower methane potential. Karay
et al. [53] and Jard et al. [108] found that the presence of
inhibitors compounds (i.e. furfural, hydroxymethyl-furfural/
HMF) during thermochemical pre-treatment may contribute
to limit the ability of microorganism in degrading organic
material during AD process. In details, the comparison of
the efficiency of the washing pre-treatment with other meth-
ods in mono- or co-digestion of macroalgae can be seen in
Table 6.

The reliability test shows that the SBP and SMP values
of all tested samples have Cronbach’s alpha values in the

range of 0.976-0.981 (Table 2). These findings indicate the
BMP test were acceptable and reliable in term of the degree
of reproducibility and consistency, as explained by Fraenkel
etal. [71].

3.3.3 Digestate characteristics

The characteristics of the digestate resulting from the BMP
test can be seen in Table 4. This indicates that all samples
have pH values well within the ideal range for an optimal
AD process in the range of 7.55-7.67 (start of BMP test)
and 6.62-6.83 (end of BMP test). In addition, the diges-
tate from the unwashed WGv samples have TS and VS val-
ues that were ~ 1.9-fold and ~2.2-fold higher than that of
washed WGv digestate samples, respectively. Similarly, the
VS content (in % of TS) of unwashed WGv digestate was
greater than the washed WGv digestate, by 13.22%. Further-
more, the ash content was also found to be 36.36% higher
in unwashed WGv than in washed WGv digestate sample.
Other parameters such as EC and salinity were not signifi-
cantly different in both samples.

3.4 Mass balance around digester

The mass balance estimation, as shown in Table 7, indi-
cates that more biogas is produced from co-digestion than
mono-digestion, or washed than unwashed WGv samples.
This correlates with more organic matter being degraded,
hence reducing the amount of organic matter remained
in the digestate. Consequently, less volume of digestate
is produced. In general, the digestate generated from co-
digestion of WGv with TD and washed WGv were much
lower than that of the mono-digestion and unwashed WGv.
Co-digestion of WGv with TD at all concentration pro-
duced a lower quantity of digestate to be further trans-
ferred for dewatering, transportation, and land application,
compared with mono-digestion of WGv. These findings
confirm that co-digestion and pre-treatment prior to AD
enhances the biodegradability of organic matter, thus
reducing the volume of digestate to be managed for appli-
cation to soil or land. Similarly, a previous study by Pilli
et al. [111] also reported that AD of ultrasonic treated
sludges (i.e. primary sludge, secondary sludge, and mixed
sludge) produced significantly lower volume of digestate
than without pre-treatment. Their study further demon-
strated that if there is less digestate generated then this
may offer indirect benefits in terms of disposal, dewater-
ing process, transportation, and land application of diges-
tate sludge. Thus, the energy input and operational cost
associated with managing the digestate can be effectively
reduced. A study reported that anaerobic co-digestion can
contribute to 37% reduction in the net cost [112] and pro-
vide overall electricity saving at 88—170 €/t TS, 4.4 [113].
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Table 7 Estimation of mass balance in feedstock and digestate

Unit Mono- and co-digestion trial Washing pre-treatment trial
WGv:TD (100:0) WGV:TD (90:10) WGV:TD (80:20) WGv:TD (0:100) Unwashed WGv Washed WGv
Feedstock added kg TS 1000 1000 1000 1000 1000 1000
VS % TS 83.42 84.12 83.38 98.83 79.15 80.44
VS kg TS 834.20 841.20 813.80 988.30 791.50 804.40
SBP Lbiogas/ 119 253 303 453 183 247
kg
VSudded
VS destruction % 77.56 90.89 89.70 88.89 85.19 96.39
Biogas produced kg TS 147.54 303.43 359.44 611.67 215.28 296.79
Total weight of kg TS 647.22 739.67 730.01 878.45 674.26 775.39
Vsdestroyed
Mass of residual kg TS 352.98 260.33 269.99 121.55 325.74 224.61
digestate

Furthermore, Fasahati et al. [114] concluded that, based on
the material and energy balance, as well as economic anal-
ysis, AD of brown algae (Laminaria japonica) has good
potential. Their study suggested that co-digestion of brown
algae with organic waste from neighbouring plants offers
a good alternative to improve biogas/methane yields and
electricity, as well as simultaneously reducing the waste
treatment cost of the industrial plants area. This is also
in line with other studies using different substrates which
highlighted the positive effects of co-digestion in AD sys-
tem. For instance, Tait et al. [72] use co-digestion of agro-
industrial organic waste. Oladejo et al. [115] reported that
co-digestion of FW, cow dung (CD), and piggery dung
(PG) showed the highest mass balance and better biogas
yield. Another study by Kumar et al. [116], for instance,
also showed that co-digestion of microalgal biomass with
cow dung produced higher biogas potential at value of
720-1040 L/kgVS,44c4/day (during summer) and 96-336
L/kgVS,44eq/day (during winter).

Hence, co-digestion and/or application of pre-treatment
prior to AD processes may contribute to better AD per-
formance, higher biogas/methane production, and cost-
effective conversion routes to biogas production. Many
studies have highlighted the impact of pre-treatment prior
anaerobic co-digestion. For instance, Unpaprom et al.
[117] studied anaerobic co-digestion of water hyacinth
with swine dung, after physical (i.e. crushed) and chemi-
cal (NaOH) pre-treatment. The results showed that at
mixing ratio of 1:1, the highest methane production and
concentration (68.89%) was achieved, combined with pro-
duction of digestate containing higher nutrient suitable
as biofertilizer. Nong et al. [118] also found that alkaline
pre-treatment following co-digestion of water primrose
and cow dung enhanced biogas production and methane
concentration, in particular at ratio of 2:1 gave the superior
performance.

@ Springer

4 Conclusion

The findings confirm that co-digestion of the wild sea-
weed species Gracilaria verrucosa with tofu dregs offer
superior anaerobic digestion performance than that of
mono-digestion process. Increasing ratio of co-substrates
demonstrated positive co-metabolism, thus increasing the
microbial-digesting ability, leading to higher biodegrada-
bility and biogas/methane yield. Performance of mono-
digestion of Gracilaria verrucosa can be improved by
reducing or removing the salt concentration or salinity
through washing pre-treatment. Combination of biomass
or waste resources as co-substrates in anaerobic digestion
system should consider both the availability and the nutri-
ent composition. Furthermore, given the scale of supply of
both macroalgae and TD in Indonesia, this presents a good
opportunity to address both waste and energy challenges
in the country.
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