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Abstract
The global bioplastics market shows tremendous growth potential in producing sustainable products for diverse applica-
tions. The production of polyhydroxybutyrate (PHB) from natural and unutilized (wasted) organic compounds is especially 
advantageous for achieving simultaneous resource recovery and pollution prevention. This paper investigates the possible 
avenues to enhance the PHB production from different types of wastewater by virtue of their inherent microorganisms and 
carbon sources. In contrast to the common notion, waste activated sludge (WAS) is reported to be a highly promising sub-
strate for PHB production; however, it necessitates proper nutrient balancing. It is confirmed that significant recovery of 
essential nutrients can be obtained by optimizing the substrate-microbe combination, reactor selection and process control 
techniques. The study further identifies latest technological developments in improving the metabolic pathways for different 
combinations of carbon and nutrients sources, by varying the operational conditions and identifying suitable microorgan-
isms so that PHB production can be maximized. The study also highlights the scope of possible end-of-life applications for 
bioplastics in commensuration with achieving sustainable economic feasibility in their processing. Thus, this study aims to 
present a comprehensive overview on the production, application and reuse options for PHB as a sustainable bioplastic with 
emphasis on resource recovery strategies.
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PET  Polyethyleneterephthalate
PHA  Polyhydroxyalkanoates
PHB  Polyhydroxybutyrate
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PNSB  Purple non-sulphur reducing bacteria
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SND  Simultaneous nitrification–denitrification
SRT  Solids retention time
TCA   Tricarboxylic acid
TKN  Total Kjeldahl nitrogen
VFA  Volatile fatty acids
VSS  Volatile suspended solids
WAS  Wasted activated sludge
WTP  Wastewater treatment plant

1 Introduction

The world of plastics has created deadly remarks on every 
face of the planet Earth, even in the deeper beds of the 
oceans and in the outer space with its endless products 
capable of staying alive for generations to come. The global 
plastic production has reached 367 million metric tons in 
2020, compared to 200 in 2002 and just 50 in 1976 [1]. 
Annually, 4–8% of petroleum feedstock is consumed for pro-
duction of 140 million tonnes of synthetic polymers globally 
[2]. Plastics are widely consumed in different areas, such 
as packaging (39.5% of total production), construction sup-
plies (20.1%), automotive machineries (8.6%), electronic 
machines (5.7%) and agricultural products (3.4%), and the 
rest includes merchandises like everyday use appliances and 
sporting kits [2]. It is reported that 26 billion tons of plastic 
post-consumer waste will be produced by 2050 (simulta-
neously accounting for 20% of the total oil consumption), 
half of which will be discarded in the environment, generat-
ing a ubiquitous waste management question [3]. Apprais-
ing the beauty of creation of synthetic resinous/polymeric 
substances, however, has ultimately ended up in a global 
environmental crisis for their safe disposal and recovery, 
especially on account of their direct ecologic footprints.

The genesis of plastics dates back to the synthesis of 
organic polymers from natural materials and extraction of 
petroleum hydrocarbons, credit to their recalcitrant behav-
iour, keeping them alive for decades and centuries in the 
environment [4–6]. Another catastrophic impact with the 
end-of-life practices for conventional fossil-based plastics 
is the release of many harmful residues to the atmosphere 
(dioxins, hydrogen chloride, sulphur oxides, cadmium, 
arsenic, zinc and lead) during their bio-/thermal degra-
dation [7]. For example, studies have shown that about 
12,000 plastic particles were found per litre of sea ice 

in the Arctic in 2018 [8]. It is therefore not surprising 
that approximately 90% of seabirds had plastic particles 
in their intestines [9]. More disturbingly, however, not 
only the ocean is damaged by plastic, but also the land 
and freshwater cannot escape the fate of plastic pollution 
[10]. Several nations have begun banning the sale of plas-
tic bags, charging customers or levying taxes from stores. 
China, the largest plastics producer and consumer of the 
world, also banned imports of some plastics in 2018 [11]. 
The scale and extent of plastic pollution and the experi-
ences of their inevitable consequences, therefore, demand 
sustainable production strategies without damaging the 
economic and related industrial targets adversely. Though 
sustainability has multiple dimensions of operations in the 
plastic industry, it is believed that producing alternative 
materials such as bioplastics using functionally similar 
materials that are easily bio-degradable can revolutionize 
the market without compromising on the workability and 
ease of usage [12].

The world of bioplastics comprises of polymers which 
are either bio-based (e.g. polyhydroxyalkanoates, PHA) 
or fossil-based (e.g. polyethyleneterephthalate, PET); 
more specifically, it indicates those polymers which tend 
to degrade in shorter life spans (e.g. polycaprolactone, 
PCL). Though many of the mechanical properties of 
poly-lactic acid (PLA) are quite similar to that of PET, 
they are structurally no longer expected to have only pure 
hydrocarbons as obtained from the fossil feedstock. In 
other words, the molecular differences in their monomeric 
structures would be sufficient enough to explain the vari-
ability in their physico-chemical characteristics and appli-
cations. Technically, these biopolymers are synthesized 
by numerous types of bacteria as the excess carbon (and 
energy) storage material within the cell cytoplasm during 
microbial fermentation processes in response to various 
nutritional and environmental stress conditions. Among 
the popular PHA, polyhydroxybutyrate (PHB), a polyester 
produced by the glucose-fermenting bacteria attracts spe-
cial attention due to their excellent structural, morphologi-
cal, thermoplastic and mass transfer properties [13, 14]. 
They typically contain short-chain chemical structure for 
their monomers owing to the presence of methyl func-
tional group (-CH3) and an ester linkage group (-COOR) 
exhibiting superior barrier permeability, thermoplasticity, 
hydrophobicity, crystallinity and brittleness compared to 
the synthetic polymers [15, 16]. The market for bioplas-
tics is still naive, capturing only about 1% of the global 
production in 2017 owing to their increased production 
cost and lack of social acceptance [17]. Nonetheless, the 
increasing research attention to the production of bioplas-
tics indicates the emerging trend of replacing conventional 
plastics in various industries delivering domestic products 
such as packaging, crockery and cutlery items. Bucci et al. 
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[18] studied the applicability of PHB in food packaging 
and observed a reasonable life of 60 days before its endog-
enous decay.

Biosynthesis of PHB from various feedstock materials 
was attempted by many scientists recently. Many recent 
studies highlight that the variations in the functionalities of 
their raw materials (especially carbon source) can influence 
the biochemical and mechanical characteristics of the PHB 
products, thereby limiting their commercial-scale produc-
tion [19–28]. Identification of suitable bacterial fermentation 
process is also found to be vital to accentuate the microbial 
kinetics and PHB accumulation for making bioplastic manu-
facturing profitable. In addition, there are various techno-
economic challenges existing in the promotion of bioplastics 
in large-scale applications, mainly low yield, high produc-
tion cost and susceptibility to degradation.

Biotechnologists, over the past few years, have succeeded 
to acquire a fair deal on simultaneous recovery of nutrients 
and energy from biochemical systems by manipulating the 
microbial functioning under various feed-grow conditions 
[14, 29]. By maintaining proper nutrient loading condi-
tions, the carbonaceous wastewater can be effectively reused 
as carbon source for PHB production. In this aspect, the 
mixed activated sludge (MAS) from the wastewater treat-
ment plants (WTP) offers favourable characteristics towards 
effective recovery of additional resources (bio-energy and 
bio-products) [30]. It has been reported that the role and 
activity of each species in such multi-faceted bioreactors 
depend largely on the organic loading rate (as the nutrient), 
environmental conditions (temperature, pH, salinity, avail-
ability of electron acceptor, etc.) and the hydraulic condi-
tions (residence time, mixing, recirculation, etc.) [31–35].

Though most of the conventional fermentation meth-
odologies such as chemostats (continuous), batch and fed-
batch reactors are widely being used in PHB production, 
their effectiveness towards achieving cost-effective, clean 
and pure products is not well understood. For example, 
maintaining distinct phases of nutrient supply and starvation 
to enhance the biopolymer accumulation is highly limited 
under constant feed conditions [15]. Since pH and tempera-
ture can alter the structure and composition of monomers 
used for polymerization, the up-scaled production strate-
gies depend highly on the reactor operations. At present, 
most of the technologies dealing with activated sludge focus 
primarily on the singular recovery mechanisms while opti-
mizing the treatment. Consequently, there exist conflicts in 
the efficient utilization of bio-resources (nutrients, biomass 
and energy) in a synergistic approach. There are multiple 
research perspectives on the selection and control of process 
variables, primarily depending on the type of raw materials 
and the methods of production employed. Hence, a thorough 
understanding is necessary to entertain biochemical process 
modification for sustainable bioplastic production.

The present study therefore investigates the latest devel-
opments in understanding the mechanisms of efficient PHB 
production and utilization from various types of waste-
water. It also aims to provide an overview of the global 
trends in simultaneous bioplastics production and nutrient 
recovery to achieve sustainable solution for cost-effective 
PHB production as well as sludge handling issues, such as 
their underutilization and disposal. About a hundred recent 
research papers on this topic have been selected, of which 
85% belongs to the innovative production strategies for PHB 
from wastewater. A systematic description of the research 
trends with a few highlighted future prospects is presented 
in this study.

2  Salient features of bio‑processing for PHB 
production

2.1  Metabolic considerations

PHB can be referred to as the most common intra-cellu-
lar polymeric compound present in the cell cytoplasm 
which is produced under environmental/nutrient stressed 
conditions (limitations on nitrogen, phosphorous, oxy-
gen or magnesium). The various forms of PHB include 
poly-3-hydroxybutyrate (P3HB), poly-4-hydroxybutyrate 
(P4HB), polyhydroxyvalerate (PHV), polyhydroxyhexanoate 
(PHH), polyhydroxyoctanoate (PHO) and their co-polymers 
(Fig. 1). The potential use of PHB in food packaging indus-
try depends on its residual resistance against degradation 
which accounts for the overall physical properties. A sum-
mary of the interesting features of PHB is listed in Table 1 to 
highlight the importance of PHB in industry-ready applica-
tions. The variations in the observed physical properties rely 
primarily on the source, method of extraction and presence 
of co-substrates as reported in various studies.

The PHBs are known for their readiness to accumulate 
additional carbon source as well as for their dependable deg-
radability of the same under preferred circumstances by act-
ing as both carbon and energy source (Fig. 2). Acetate and 
diammonium hydrogen phosphate (DAHP) are found to be 
the most preferred carbon and nitrogen sources, respectively, 
for PHB production [50]. Acetyl-CoA, being the primary 
metabolic substrate in PHB synthesis, can provide suitable 
central carbon metabolite through various enzymatic reac-
tions. Most of the studies confirmed neutral pH (7.0–7.3) 
and mesophilic temperature (30–37 °C) as favourable con-
dition for the microbial fermentation for PHB production 
[21, 51, 52].

In majority of the studies, it is observed that selec-
tive microbes under induced nutrient limiting conditions 
are capable of producing PHB in lab-scale bioreactors as 
intra-cellular polymeric substances and the extent of their 
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accumulation depends on the carbon source and hydraulic 
properties of the bioreactor. Most of the scientists are of 
the opinion that mass-based (either substrate or biomass) 
ratio can be a better expression for PHB rather than the 
measured concentration values in order to avoid the limita-
tions of size and scale of the experiments. One reason for 
this could be the inseparable contribution of PHB towards 
storage and synthesis is to be commensurate with substrate 
utilization and oxygen uptake calculations. Another prob-
able reason may be due to the fact that a mass-based (rather, 
yield-based) expression could be more significant towards 

evaluating strategies for sustainable PHB production. Khard-
enavis et al. [50] reported maximum accumulation of PHB 
(65.84% w/w) for a carbon–nitrogen ratio (C-N) of 50. The 
production of PHB under anaerobic conditions was found to 
be about 28.8% of dry biomass (by weight), while a higher 
generation of PHB (49–50%) was observed under aerobic or 
anaerobic/aerobic conditions [53]. Consequently, a system 
combining initially anaerobic conditions and then aerobic 
conditions would be more beneficial for better PHB yield 
under excess acetate addition due to the consumption of 
intra-cellular polymers (carbohydrate and polyphosphate) 

Fig. 1  The structural compari-
son of various forms of PHBs 
(R represents higher alkanes in 
the case of PHH and PHO)

Table 1  Important physical and 
structural properties of PHB

Property Value References

Density (g/cm3) 1.23 [36] Machado (2010)
Molecular mass (×  105 kg/mol) 0.1 to 30 [37] Sudesh (2000)
Glass transition point (°C) 5 [38] Casarin et al. (2013)

5 to 6 [39] Rodrigues et al. (2005)
4 to 7 [40] Sharma (2006)
0 to 5 [41] Ayorinde (1998)
 − 15 to 9 [42] Srubar III et al. (2012)

Melting point (°C) 173 [43] Mousavioun et al. (2012)
175 [38] Casarin et al. (2013)
180 [44] Santos et al. (2009)
175 to 180 [40] Sharma et al. (2006)
170 to 180 [45] Jendrossek (2002)
160 to 180 [46] Alejandra et al. (2012)

Melting point at the balance (°C) 179 to 186 [47] Barham et al. (1984)
Enthalpy of fusion (J/g) 146 [48] Ho et al. (2014)
Tensile stress (MPa) 32 to 33 [49] Batcha et al. (2014)
Flex stress (GPa) 2.7 to 2.8 [49] Batcha et al. (2014)
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as energy sources. Hence, from a metabolic point of view, 
selection of carbon source is the prime factor affecting the 
enzymatic activities upon the metabolites, leading towards 
variations in the thermal and physical characteristics of the 
biopolymers.

2.2  Emerging carbon sources for PHB production

Recent studies proclaim more scientific evidences for the 
apparent transitions existing in the fermentation pathway 
to accommodate a wide variety of carbon sources. One 
unique solution for PHB production from activated sludge 
using renewable carbon sources is achieved by increasing 
the production of volatile fatty acids (VFA) through acido-
genic fermentation [31]. Depending on the prevailing pH, 
temperature and feeding pattern, the relationship between 
VFA and PHA influences the storage capacity of PHA/PHB.

2.2.1  Agro‑based wastewater resources

The production of PHB is found to be high (57.98% w/w) 
from anaerobic wastewater compared to agro-based depro-
teinized wastewater (milk whey and soyawhey) owing to 
the high amount of VFA [50]. Earlier, Huey [54] reported 
PHB production using cafeteria wastewater as the substrate. 
It is observed that high PHB productivity (67% w/w) can be 

achieved from mixed culture using wastewater as substrate 
[55]. Synthesis of PHB using jatropha oil by Cupriavidus 
necator H16 was attempted by Batcha et al. [49]. In another 
similar study, the parboiled rice mill effluent was investi-
gated for its replacement as a cheap carbon source for PHB 
production using Acinetobacter junii BP 25 in a two-stage 
batch experiment [56]. Recent studies highlight the direct 
correlation of carbon source from wastewater on the PHB 
yield in terms of highest and lowest CODs using pure cul-
tures [57].

2.2.2  Industrial wastewater resource

Wastewater from sugar industry provides another possible 
source of PHB production due to the presence of nitrogen 
in the molasses. Dalsasso et al. [58] demonstrated that dilu-
tion of molasses with vinasse makes a good combination 
for enhanced PHB production with high yield and low cost. 
When the organic matter present in the spentwash was sub-
jected to PHB production (while varying chemical oxygen 
demand (COD):total Kjeldahl nitrogen (TKN) ratio as 30:1 
to 60:1), most of the nutrients in the spentwash were immo-
bilized resulting in reduced microbial activity, decreased 
COD removal and low PHB synthesis [59]. However, under 
dual limiting conditions (both carbon and nitrogen with 
a low C-N ratio), high biomass concentration resulted in 

Fig. 2  A summary of various metabolic pathways for PHB produc-
tion. CoA and CoA-SH represent coenzymes; A1 represents the spe-
cific enzyme acting as catalyst for the reduction and polymerization; 

ATP represents the adenosine triphosphate; NADH represents nicoti-
namide adenine dinucleotide with hydrogen (Ref. [15])
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increased PHB accumulation and high COD removal under 
simultaneous nitrogen removal mechanism.

2.2.3  Industrial products

Chandrika et al. [56] reported the possibility of utilizing 
glycerol as carbon source for industrial level production of 
PHA due to its high productivity ((2.38 ± 0.23 g/L). How-
ever, this also indicated an associated high growth of bio-
mass (2.73 ± 0.08 g/L) with high PHA content (87.17%). In 
a recent study, Werlang et al. [29] observed PHB produc-
tion from a combination of glucose and glycerol as carbon 
source, by utilizing hydrolysate of the Arthrospira platensis 
biomass. Cavaille et al. [60] suggested butyrate as a better 
carbon source for mixed culture instead of acetate result-
ing in increased substrate utilization rate, PHB yield and 
production rate. Dobroth et al. [61] observed the potential 
of crude glycerol as a carbon source using mixed microbial 
consortia (MMC) and determined that the enriched MMC 
produced exclusively polyhydroxybutyrate (PHB) utilizing 
the methanol fraction.

3  PHB production enhancement scenarios

An important modification from the conventional process 
dynamic models of activated sludge process (focusing on 
biomass growth) is the possibility of multiple removal 
mechanisms for the organic compounds (usually expressed 
as COD) such as sorption, accumulation and storage. 
Numerous studies have been carried out with the objective 
of optimizing the various parameters involved in the PHB 
production process from WAS. The accumulation of PHB 
in the biomass cells has been successfully achieved mainly 
by optimizing the nutritional conditions, aeration modes, 
carbon source concentrations and pH levels [62]. A detailed 
comparison of various enrichment conditions in batch exper-
iments is compared and presented in Table 2.

3.1  Reactor operation conditions

Based on the limitations in continuous reactors to achieve 
growth control by spontaneous feed control, a sequencing 
batch reactor (SBR) operating under fed-batch mode or 
feast-famine mode is usually recommended for controlling 
the biomass growth and PHB production [93]. Considering 
the frequency of operation, a short cycle time is most recom-
mended for SBR to achieve high PHB production [51]. High 
concentration of influent nitrate was found to have detrimen-
tal effect of PHB accumulation during the anoxic opera-
tion of SBR by Ciggin et al. [74]. Wang et al. [66] reported 
higher production of PHB (7% more) using two-stage batch 
process compared with fed-batch fermentation of sucrose 

with Alcaligenes latus ATCC 29,714. Limitation on nitro-
gen source was effected by optimizing the upstream process 
time. It is also possible to conduct the studies in three-stage 
system where the first-stage reactor will convert organic 
matter to VFA through acidogenesis, and the second-stage 
reactor will enrich the acid-producing microorganisms while 
the third stage is unique for PHB accumulation.

One remarkable implication of the repeated feast-famine 
cycle is the respective accumulation and deprivation of PHB 
in the SBR setup. It is to be noted that greater operational 
cycle length can lead to the disruption of stored PHB as 
the internal carbon source during the famine phase [76]. 
Under conditions of ammonium starvation, the SBR oper-
ated in feast-famine mode and produced high PHB yield 
(89%) after 7.6 h [80]. While comparing the conventional 
fed-batch reactors with two-stage reactors for fermentation 
reactions, higher biomass yield can be expected in fed-batch 
mode due to the presence of extended log phase. However, 
two-stage mode enabled better process control, economic 
operation and higher PHB yield with minimum requirement 
of carbon source [66, 70].

3.2  Modification of physical variables

A central composite rotary design (CCRD) was proposed 
by Pandian et al. [84] to optimize the medium for PHB pro-
duction in terms of concentrations of dairy waste, rice bran, 
sea water and pH. The same approach was used by Tripathi 
et al. [94] to optimize pH, temperature and agitation speed 
for enhanced PHB production in batch cultivation by Alca-
ligenes sp. using dry molasses as the substrate. They have 
observed a yield of 76.8% (mass based) under the condi-
tions of pH as 6.54, temperature as 34.5 °C and agitation 
speed as 3.13 Hz. The process optimization by one factor 
at a time by Chandrika et al. [56] resulted in high yield of 
homopolymer PHB (2.64 ± 018 g/L with 94.28% PHB con-
tent) and a copolymer, polyhydroxybutyrate-co-hydroxy-
valerate (P3(HB-co-HV)) (85.93% content) from Acineto-
bacter junii BP 25 using two-stage batch cultivation mode. 
Another promising application of the optimal design of an 
integrated microalgae-based bio-refinery using mixed inte-
ger nonlinear programming was addressed by Prieto et al. 
[95] for the production of bio-diesel with PHB as one of the 
main by-products. The operation of a SBR with wastewater 
feed was optimized by a uniform design approach coupled 
with grey relational analysis considering influent character-
istics such as pH, COD, nitrogen and phosphorous as the 
critical parameters [83].

Carucci et al. [63] demonstrated the significance of oxy-
gen uptake rate (OUR) as an indication of PHB storage dur-
ing the utilization of readily decomposable organic matter 
(11.4 mg/g VSS h for filtered wastewater against 2.4 mg/g 
VSS h for acetate media) which accounts for about 20–22% 
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of the total oxygen requirement. They reported that storage 
of PHB from other substrates is also to be considered apart 
from acetate, which still gives the major contribution. High 
PHB production was reported by Primasari et al. [64] in 
the presence of excess carbon source, but without aeration. 
Controlling pre-aeration to enhance PHB accumulation was 
achieved by Liu et al. [96] with short and moderate pre-
aeration volumes.

3.3  Induced co‑substrates and nutrient limitations

The PHB production from different substrates exhibited dif-
ferent metabolic pathways, at least until the production of 
acetyl-CoA while entering the Krebs cycle. While fatty acids 
and alcohols show direct pathway for acetyl-CoA, substrates 
like glutamic acid differ in their metabolic pathway [81]. 
Limiting nitrogen has resulted in increased PHB storage and 
reduced direct growth of biomass. However, the accumula-
tion of nitrite as an intermediate compound is found to be 
significant in estimating the dynamic growth response from 
the microbes [74]. Also, the limitation of phosphorous can 
lead to reduced protein synthesis, leading towards higher 
PHA accumulation using mixed activated sludge and waste-
water as substrate [86]. Reddy and Mohan [75] reported 
high PHA storage at high substrate load (40.3% CDW), low 
nitrogen (45.1% CDW) and low phosphorous (54.2% CDW) 
conditions.

Experiencing substantial nutrient limitation (nitrogen and 
phosphorous) was observed to be beneficial for the microbial 
transformations of carbon source (most commonly, sodium 
acetate) to PHB under excess conditions, while some sodium 
acetate was consumed for biomass growth [62]. A strong 
phosphorous limiting condition (and even phosphorous star-
vation) was found to activate the PHA-accumulating organ-
isms to decrease their catalytic biomass growth and direct 
majority of the carbon source towards PHA storage [60]. 
Even though high PHB content was obtained from such stud-
ies, the overall production of PHA was found to be low due 
to the inherent growth limitations on the activated sludge 
culture.

3.4  Extraction and recovery of PHB

Solvent extraction is the most commonly used method to 
separate PHB from the bulk biomass. It is advantageous 
due to the high extraction efficiency, absence of bacterial 
endotoxin and reduced structural deterioration of the PHB 
polymers. However, it is highly uneconomical at large-scale 
production with high amount of toxic by-products such as 
chlorinated solvents and cyclic carbonates. Pandian et al. 
[84] reported that surfactant-chelate digestion could be a 
promising solution for efficient and sustainable extraction 
of PHB molecules at a mass ratio of 0.0075 and 0.01 with 

respect to dry biomass. Other techniques like digestion, 
solubilization and solvent-free extraction are reported to be 
effective only on a limited type of feed organics. Since the 
efficient extraction of PHB defines the immediate scope for 
industrial scale production, more innovative strategies have 
to be evolved to optimize the PHB production.

4  Recent advances in sustainable PHB 
production strategies

4.1  Strategies to achieve simultaneous nutrient/
energy recovery with PHB production

Enhancing the production of PHB based on activated sludge 
from wastewater primarily depends on optimizing the pro-
cess control, realizing the metabolic pathways and storage 
mechanisms and improving the mechanical properties of 
produced PHB based on advanced characterization tech-
niques [62]. Based on the understanding of the preferred 
metabolic pathways, PHB production is followed by the 
acetyl-CoA production along with the reducing power 
of NADH molecules while the biomass synthesis prefers 
acetyl-CoA and ATP molecules (sometimes NADPH also) 
[93]. It is to be noted that higher nitrogen conditions can 
facilitate the biomass cells to undergo tricarboxylic acid 
(TCA) cycle metabolic pathway for energy production, 
thereby reducing the availability of acetyl-CoA towards PHB 
synthesis. Thus, the key factor in maintaining the conditions 
favourable for PHB production lies in the distribution of 
acetyl-CoA between these two pathways based on the avail-
ability of NADH as well as ATP, respectively.

Production of PHB with simultaneous removal of phos-
phorous from wastewater depends on the selectivity of 
microbes and phosphorous release-carbon uptake ratio [78, 
97]. When glucose is the prime carbon source under the 
abundance of glycogen accumulating bacteria, Embden-
Meyerhof-Parnas (EMP) pathway to produce acetyl-CoA 
was replaced by succinate-propionate pathway to produce 
propionyl-CoA. This is found to have detrimental effect on 
removal of phosphorous and as well as PHB production [86]. 
In a similar study, the decrease in phosphorous content of 
active biomass resulted in a reduced PHB yield (and content) 
with an increase in the biomass yield [52]. In general, limi-
tations on nitrogen and phosphorous were found to be ben-
eficial for PHB accumulation in aerobic conditions, while 
limiting phosphorous sources enhanced PHB accumulation 
in anaerobic conditions [91].

As seen before, high carbon content can be bypassed 
largely towards cell growth inhibiting the microbial syn-
thesis of PHB, or it can cause cell lysis due to the over-
flow accumulated PHB leading towards cell death, thereby 
reducing the PHB yield. Based on the batch experiments, 
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Mulders et al. [52] observed that the volumetric productiv-
ity (g PHB/L/h) of PHB is higher in phosphorous-limited 
systems compared to the nitrogen-limited systems due to 
the trivial C:N:P ratios in the feed substrate. Mulders et al. 
[52] reported high cellular content of PHB (> 75% w/w) for 
higher carbon-nutrient ratios (C:N or C:P). This also infers 
the sensitivity of the biopolymer accumulation mechanisms 
as well as the requirement of using a nutrient-limited waste-
water regardless of the microorganism. Hence, it is impor-
tant to ensure the proper nutrient balance in the reactor as 
expressed by various ratios specific to the environmental 
conditions.

On another aspect with terminal electron acceptor, PHB 
production from both aerobic and anaerobic conditions expe-
riences systemic drawbacks. Under strictly aerobic condi-
tions, only a fraction of the carbon source is converted to 
PHB so as to meet the requirements for other purposes. Fur-
thermore, the polyphosphate content inside the biomass may 
degrade PHB as the readily available intra-cellular energy 
source, thereby decreasing the PHB content in the biomass 
and increasing the recovery cost. In the case on anaerobic 
conditions, the presence of PHB in biomass is too low to be 
recovered sustainably. Hence, a better option for simultane-
ous nutrient removal and resource recovery (phosphorous 
and PHB) could be a sequential anaerobic–aerobic treatment 
[53, 91]. This is confirmed by Liu et al. [96] indicating the 
supremacy of anaerobic/aerobic process over the feast-fam-
ine cycles for PHB accumulation in laboratory-scale batch 
experiments. A similar approach for enhanced biological 
phosphorous removal (EBPR) in batch experiments under 
anaerobic, aerobic and anaerobic/aerobic conditions also 
resulted in substantial PHB production [53].

4.2  Considerations in PHB production kinetics 
and microbial characterization

The optimum period for fermentation and the yield of PHB 
depends on the nature of nutrient sources (e.g. carbon and 
nitrogen) as well the type of microbial strains [69, 98]. The 
selection of microorganisms is important because of their 
ability to utilize inexpensive carbon source, growth rate, 
biopolymer production rate and possible extent of biopoly-
mer accumulation in their cells (Table 3). Enrichment of 
selective methanotrophic-heterotrophic bacteria from sew-
age sludge can potentially accumulate more PHB [77]. The 
presence of nitrogen sources such as peptone and yeast 
extract resulted in increasing the cell growth of Bacillus 
subtilis EPAH18 while reducing PHB accumulation in the 
cells [90]. This illustrates the necessity of maintaining nitro-
gen limiting conditions to sufficient PHB production with 
reduced cell growth. They found that highest PHB produc-
tion was achieved at the end of the exponential growth phase 
where lactose as a carbon source was consumed to 25% of its 

initial value, inferring the reduction in biomass accumula-
tion. Bernat and Wojnowska‐Baryla [99] observed degrada-
tion of PHB during denitrification (for nitrogen removal) 
instead of polyphosphate accumulation by P. denitrificans 
without any cell growth. They also reported that addition of 
a suitable carbon source can readily accelerate the denitrifi-
cation rate in the activated sludge model.

On a similar note, the substrate utilization rate under 
nitrogen-limited condition was not showing any increase 
despite biomass growth indicating the exhaustion of expo-
nential phase [52]. This is in accordance with the interpreta-
tion of activated sludge model-3 (ASM3) showing that rapid 
aerobic degradation of organic matter will be limited by the 
PHB accumulation due to the prevailing denitrification con-
dition [93]. This also suggested the existence of simultane-
ous nitrification–denitrification (SND) condition under lim-
ited oxygen supply which is favourable for PHB production. 
Thus, the reducing power of organic carbon to PHB by the 
heterotrophic PHB-storing bacteria confirms simultaneous 
nitrogen removal and PHB storage under oxygen-limited 
conditions. This is also explained in terms of the varying 
oxidation states during SND under feast-famine conditions 
[100]. While acetate can act as the electron donor, the SND 
during the feast phase was limited by the ammonium oxida-
tion. However, during the famine phase, SND was limited 
by the depletion of acetate and ammonium oxidation was 
inhibited by the heterotrophic species. Thus, SND essen-
tially involves two contrasting conditions: aerobic nitration 
(in the absence of organics) and anoxic denitritation (in the 
presence of organics as electron donors). The process con-
trol on reaction time can favour more PHB accumulation 
without direct oxidation especially during the aerobic feast 
conditions. The above process has been presented using a 
schematic diagram (Fig. 3).

Higher PHB storage at the start of anoxic stage was 
observed with a strong oxygen supply in aeration, thus 
favouring endogenous denitritation [100]. In addition to the 
utility as internal carbon source for SND during the aera-
tion phase, the accumulated PHB serves as electron donor 
for denitritation in the absence of external substrate (espe-
cially particular organics). With respect to the difference in 
the mode of operation, two-stage fermentation by A. latus 
(ATCC 29,714) using sucrose as the carbon source and with 
nitrogen limitation (induced after aerobic phase, between 16 
and 26 h of operation) was found to be optimal for enhancing 
PHB production [66].

Attempts to vary the organic acid substrates ultimately 
result in selecting different metabolic pathways during the 
synthesis and accumulation of PHB. Some bacterial species 
(A. eutrophus, A. Latus and mutant strain of Azotobacter vine-
landii) are capable of accumulating PHA during their growth 
without experiencing any nutrient stress. Rebah et al. [88] 
reported that rhizobial strains have higher PHB productivity 
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(27–40% w/w) in standard medium compared to the wastewa-
ter sludge (3.7% w/w). The recombinant E. coli was reported to 
have significant PHB productivity (40% w/w) using fermenta-
tion acids [67]. Mulders et al. [52] observed that a combination 
of microorganisms based on their preference for PHB produc-
tion can result in improved accumulation over longer period 
even with a lower concentration. In a similar study, Primasari 
and Wei [20] reported that longer acclimatization period could 
take up more organic compounds, thereby increasing the PHB 
accumulation capacity. If the P. acidivorans culture is allowed 
to grow on the leachate from the organic fraction of municipal 
solid waste, substantial accumulation of PHB (> 75% content) 
can be obtained only for higher carbon-nutrient ratios (COD: 
P > 511 and COD: N > 26) [52]. The high temperature lysates 
during the anaerobic fermentation of sludge through thermal 
cracking can result in increased production of acetic acid to 
increase the PHB production [30].

Utilization of cyanobacterial biomass for PHB production 
is emerging as a sustainable option since it can easily culture 
on wastewater, but for one limiting condition that exists on 
the threshold inorganic carbon sources. Unlike other carbon 
sources, high concentration of dissolved inorganic carbon 
promotes glycogen accumulation while decreasing PHB pro-
duction during the dark phase [21]. Hence, small amount of 
dissolved inorganic carbon is favourable for the biosynthesis 
of carbon storage polymers.

4.3  Bioplastics versus bio‑energy—priority analysis 
of PHB utilization

While comparing the operational strategies for the pro-
duction of bioplastics versus extraction of bio-energy, it is 
important to realize that PHB production can be achieved 
without any supplementary enrichment stage due to the 

Table 3  A summary of investigations with important microbes for PHB production

Type of microbe/
strains

Waste resource Isolation tech-
nique

Molecular weight Growth rate Yield Analytical 
method—growth

Ref

Bacillus sp. CYR1 Rantoh wastewa-
ter treatment 
plant, Muroran 
city, Japan

269 kDa, poly-
dispersity 
index = 2.09

TEM,  H1 NMR, 
TGA, GPC

[57]

Recombinant 
E. coli with 
pnDTM2, con-
taining A. eutro-
phus; λpR-pL 
promoter cI 857 
repressor and 
phb CAB gene

Restaurant waste Cell dry weight 
2.9 g/L

Substrate 
use rate 
0.139 g/g/h

PHB content 
36.4%

[67]

Acinetobacter 
junii BP 25

Rice mill effluent 89.9% FTIR,  H1 NMR, 
GC–MS

[56]

Cupriavidus neca-
tor H16

Jatropha oil 11.6 g/h; 0.16/h 0.68 g/g [49]

Phylum Fir-
micutes (71.4%) 
and Proteobac-
teria (28.6%)

Synthetic waste-
water

Partial 16S rRNA 
sequencing

FTIR,  H1 NMR, 
GC–MS

[75]

Zoogloea and 
Plasticicumu-
lans acidivorans

Wastewater 16S rRNA; PCR-
DGGE

Fluorescence 
in situ hybridi-
zation

[76]

Corynebacterium, 
Rhodocyclus and 
Paraccocus

Synthetic waste-
water

16 s rDNA FTIR,  H1 NMR, 
GC–MS

[78]

Type II methano-
trophs

Waste activated 
sludge

16 s rDNA 0.021 ± 0.02/h 0.67 ± 0.09 mg 
VSS/mg CH4

FTIR,  H1 NMR, 
GC–MS

[19]

Bacillus safensis 
EBT1

Sugarcane bagasse 16 s rDNA 0.16 Differential scan-
ning calorim-
etry (DSC);  H1 
NMR; TGA; 
TEM

[82]

Bacillus pumilus Sugarcane bagasse 16 s rDNA H1 and  C13 NMR; 
TGA; TEM; 
FTIR

[29]
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limited nutrients for biomass growth and accumulation 
[60]. From the point of view of the overall production cost 
of PHB, this approach can eliminate the requirements of 
additional energy and chemical reagents. While bio-energy 
production remains an essential priority for anaerobic waste-
water treatment systems, it is possible to achieve similar 
productivity for PHB only by maintaining high biomass 
concentration. Therefore, bio-solids in such bioreactors are 
characterized with high growth rate, yield and density [19]. 
This indicates the possibility of achieving simultaneous pro-
duction of bioplastics and bio-energy, which is, however, 
dependent on the prevailing environment established in 
wastewater/sludge treatment facilities.

In addition to the supply control on carbon source, recent 
studies have mentioned a few operational controls on other 
substrates towards achieving simultaneous production of 
bio-energy and bioplastics. In a recent study by Dinesh 
et al. [92], simultaneous production of hydrogen and PHB 
was achieved from acid-treated rice straw and rice husk. 
The induced environmental stress caused by oxygen-limited 
conditions for Bacillus species resulted in a decrease in pH 
owing to the acidification (through pyruvate formate-lyase 
and formate dehydrogenase systems). The resulting for-
mate and acetyl-CoA were directed to the PHB production 
based on the prevailing nutrient stress conditions. Some of 
the purple non-sulphur reducing bacteria (PNSB) are also 
capable of hydrolysing propionate to acetate, leading to the 
formation of acetyl-CoA which serves as the prime pre-
cursor in the PHB synthesis [72]. In addition, some of the 
PNSB strains such as Rhodopseudomonas palustris RG31 
and WP3-5 are capable of producing hydrogen gas simulta-
neously through the extended metabolic pathway.

The degradation of PHB results in accumulation of non-
toxic R-3-hydroxybutyric acid which finds application in 
biomedical field, especially as drug carrier to blood [84]. 
Miao et al. [100] observed that the degradation kinetics of 
PHB resembles first-order kinetics across all SBRs. During 
degradation, the internal PHB hydrolysis rate becomes the 
rate-limiting step compared to the oxygen utilization rate.

4.4  Biodegradability and end‑of‑use options 
for PHB

The biodegradability of various bioplastics under simulated 
landfill conditions was investigated by many scientists ear-
lier [101–104]. By employing anaerobic digested sludge, 
they found that natural aliphatic polyester such as poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHB/HV; 92/8, 
w/w) degraded within 20 days of cultivation, while synthetic 
aliphatic polyesters such as poly-lactic acid, poly(butylene 
succinate) and poly(butylene succinate-co-ethylene succi-
nate) did not degrade at all in 100 days [105]. Finelli et al. 
[106] reported that blending of PHB with ethyl cellulose in 
activated sludge and in enzymatic solution could degrade 
the PHB completely.

It is inevitable that in the absence of external carbon 
source, the pre-accumulated PHB molecules inside the 
microbes could be employed for cell synthesis and simul-
taneous denitrification [107]. It is commonly observed in 
SND batches with associated oxygen uptake and nitrous 
oxide emission [108]. In general, it was observed that the 
degradation of PHB in an SBR is independent of the type 
of electron acceptor and solids retention time [109]. One 
common reason for decrease in PHB accumulation (or 

Fig. 3  Configurations for the 
combined selection of PHA 
storing biomass and nitrogen 
removal from sludge reject 
water by applying the aerobic/
anoxic feast/famine regime and 
nitrogen removal via nitrite in 
a single stage reactor (redrawn 
from [13])
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degradation of PHB) can be attributed to the change in 
stage of electron acceptor, especially when high aeration 
is provided [110]. It is also observed that when the domi-
nant composition shifted from PHB to PHV, the amount 
of generated hydrogen decreased from 51.2 to 41.1 mL/g 
VSS even under the same PHA level (around 130 mg/g 
VSS) indicating the PHB decomposition [73]. Brzezinka 
et al. [111] isolated typical activated sludge bacteria of 
Aeromonas and Rhodococcus genus to degrade PHB and 
their co-polymers. They observed that the respiratory 
activity of microorganisms is different for a variety of 
biopolymers depending significantly on the type of poly-
mer. The highest oxygen consumption was noted in the 
presence of PCL (280  mgO2/L after 7 days of incubation) 
while the lowest was in PLA (220  mgO2/L after 7 days 
of incubation).

4.5  Economic considerations of PHB utilization 
from wastewater

It is strongly anticipated that the cost of production of 
PHB can be curtailed by employing mixed cultures and 
cheap substrates derived from waste organic matter. This 
will reduce the cost of sterilization and sterile fermen-
tation during the mass production of PHB. As reported 
by da Costa et al. [112], the use of mixed cultures from 
wastewater for fermentation followed by downstream 
treatment with alkali could reduce the cost by 28%, 
global warming potential by 44% and non-renewable 
energy usage by 32%. Apart from the cost of substrate, the 
next important cost factor is the efficient extraction and 
recovery of produced polymer. The total cost of produc-
tion of PHB as a bioplastic depends on the availability of 
carbon and nutrient sources (substrates), performance of 
microorganisms (growth, yield, productivity), facilitation 
of operating conditions such as pre-treatment and con-
ditioning of feed materials (e.g. waste activated sludge, 
industrial effluent, other organic wastewater), conditions 
of fermentation (pH, temperature, aeration, hydraulic and 
biochemical process control, etc.) and extraction (separa-
tion and purification). Based on the cost of production of 
PHB from the available substrates, it can be inferred that 
waste-based substrates can be invariably economical and 
sustainable (Table 4).

5  Challenges and future scope

• In short, the major challenges in sustainable PHB produc-
tion from wastewater include high cost of production, 
short of reliable and flexible technology, limited market 
supply of bioplastics, low consumer awareness, lack of 

unified bioplastics labelling method, the end-of-life man-
agement of bioplastics and the induced bio-toxicity. As 
of now, the real-time applications of PHB are limited due 
to the lack of cost-effectiveness in the production process 
in spite of its high potentiality. This poses a severe obsta-
cle in the growth and scale-up of PHB production at the 
industrial level. Carbon source, one of the major players 
in the production of PHB, contributes to about 50% of 
the total cost of production. Thus, more focus is needed 
in producing low-cost substrates to produce PHB in mass 
quantity.

• One major challenge in using wastewater originating 
from various organic industries is the lack of growth 
controlling nutrients which will directly affect the pro-
duction and accumulation of PHB. The PHB accumula-
tion capacity of specific strains, however, is always high 
in standard medium when compared to the wastewater 
sludge. This inherent issue could be solved to a large 
extent by providing sufficient enrichment at the growing 
stage.

• It is widely reported that feasible productivity of PHB 
from mixed activated sludge culture with a variety of 
organic nutrients may be much less compared to the 
outputs from pure cultures growing in isolated standard 
medium due to the complex nature of the wastewater. 
While attempting to utilize the emerging carbon and 
nutrient sources for PHB production, it is more likely 
that the target species may not be able to digest some 
of the substrates in their raw form which necessitates 
additional pre-treatment steps to convert them to easily 
degradable organics. Naranjo et al. [114] reported that 
thermal, acidic or enzymatic pre-treatments are neces-
sary to convert cellulose and hemicelluloses from banana 
peel to simple sugars.

• Since wastewater sludge (be in aerobic or anaerobic) 
preferably promotes cell growth, PHA accumulation 

Table 4  Comparison of market price for PHB from various sources

Substrate Crop 
yield (t/
ha)

PHB yield (t/ha) Market 
price 
(USD/t)

References

Crop-based substrate
Wheat 2 1.1 215 [113]
Corn 5.8 3 148 [113]
Waste-based substrate
Cheese whey - 0.33 22 [14]
Cane molasses - 0.42 52 [14]
Pure substrate
Acetic acid - 0.38 156 [14]
Glucose - 0.38 130 [14]
Ethanol - 0.5 100 [14]
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is comparatively less in all reported studies. Moreover, 
the stored PHB also undergoes breakdown in response 
to the exhaustion of limiting nutrients in the sludge. 
Hence, proper sludge pre-treatment becomes a necessity 
to enhance the bio-availability of carbon as well as PHB 
production.

• Usage of anaerobic granular sludge as seed for preparing 
aerobic granular sludge has invoked research attention to 
improve the mechanical and morphological properties of 
the PHB produced [79]. This also suggests utilization of 
aerobic co-composting as an alternative method for pro-
ducing granular sludge capable of producing PHB [33, 
115].

• One peculiar case is the possibility of simultaneous pro-
duction of PHB and extracellular polymeric substances 
(EPS) under abundance of glucose and ammonium sul-
phate by selective species such as Ralstonia eutropha 
ATCC 17,699 [69]. Based on the stoichiometric and 
food-microorganism conditions, it is important to estab-
lish proper carbon-nutrient ratios (C:N:P) for wastewa-
ters having varying carbon sources in order to control the 
processes of biomass growth and PHA production [71].

• It is important to enhance the preservation characteris-
tics of PHB especially in the absence of external carbon 
source during wastewater degradation. Theoretically, it 
is important to control the PHB preservation by varying 
proportion of PHB derivation from acetate, rather than 
directly improving PHB synthesis rate. This can also 
achieve better control on excess biomass production, 
thereby enhancing the PHB content and productivity.

• The utilization of leachate from the organic fraction of 
municipal solid waste for PHB production seems still 
challenging owing to the complexities associated with 
enrichment of suitable microbes. One practical solution 
could be to introduce the leachate to a selected species 
(P. acidivorans) established on a standard medium.

• Apart from the wise selection of feedstock, genetic modi-
fications and blending of productive strains are emerg-
ing as the biotechnological solution for enhancing PHB 
productivity [12]. In addition, blending of manufactured 
nano-materials (MNM) in waste activated sludge can 
be a good option for simultaneous PHB production and 
enhanced biological phosphorous removal under anoxic 
conditions [116].

• One challenge with the structural features of produced PHB 
is that crystalline structure of PHB homopolymer may lead 
to some mechanical behaviour which may not render it 
compatible to various production processes [117].

• Another aspect which needs attention is the microbial 
strain used for the production of PHB. Mixed microbial 
cultures can help in reducing the cost of production [12]. 
Thus, studies can be carried in these aspects so that scale-
up of PHB processes can be easily understood. Moreo-

ver, research in improving the microbial strain employ-
ing genetic engineering and molecular tools can lead to 
efficient carbon utilization and enhanced PHB production. 
Hence, innovative research from biotechnology can aid in 
obtaining high cell biomass yield with high PHB output.

6  Conclusion

The present study reviewed remarkable research advance-
ments in the field of production, application and end-of-life 
applications of PHB in the recent past. We realize that the 
real-time applications of PHB are limited due to the lack of 
cost-effectiveness in the production process in spite of its high 
potentiality. The futuristic production systems for PHB suffer 
technically from the fundamental fact that it is produced in a 
survival mode as a secondary metabolite rather than in pro-
portion to the active biomass growth rate. The study strongly 
recommends proper sludge pre-treatment, which becomes a 
necessity to enhance the bio-availability of carbon from waste 
activated sludge as well as PHB production. Hence, special 
attention is required to ensure the PHB production in a scale 
suitable for industrial applications. It is strongly anticipated 
that the cost of production of PHB can be curtailed by employ-
ing mixed cultures and cheap substrates derived from waste 
organic matter. The research findings highlighted existing chal-
lenges and provided some potential research areas to further 
the industrial production of bioplastics in order to pose as a 
prime alternative to the conventional plastics.
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