
Published online: 21 February 2022/

Biomass Conversion and Biorefinery (2022) 12:4683-4699

Vol.:(0123456789)1 3

https://doi.org/10.1007/s13399-022-02363-x

REVIEW ARTICLE

Developments in smart organic coatings for anticorrosion 
applications: a review

Deepa Thomas1 · Reshmy R1,2 · Eapen Philip1 · Raveendran Sindhu3 · Sarah B. Ulaeto4 · Arivalagan Pugazhendhi5,6 · 
Mukesh Kumar Awasthi7 

Received: 24 November 2021 / Revised: 14 January 2022 / Accepted: 17 January 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Metal corrosion is one of the key challenges for materials scientists. This natural process creates loses in a variety of industries 
and necessitates enormous efforts to mitigate its effects. Organic coatings are still the most commonly utilised technique 
for protecting metallic materials against corrosion. They have opened a new field of research for obtaining coatings with better 
performance, lifetime, and customized features. While they have excellent anticorrosive characteristics, they must be updated 
by more environment friendly technology. As a result, there is a need to develop new and more cost-effective methods for 
creating and applying smart and environmentally friendly organic coatings to reduce corrosion. Anticorrosion research and 
implementations have progressed as a result of the functionality gained from these coatings at the metal-solution interface in 
harsh conditions. Smart coatings can react quickly to changes in the environment, cure coating flaws, and prevent additional 
corrosion. They possess better anticorrosion potential than the traditional anticorrosive coatings. This review discusses 
self-healing, corrosion sensing, anti-fouling, self-cleaning and anti-microbial organic coatings. It also provides a discussion 
on selected groups of smart anticorrosive organic coatings such as bio-based and water-borne epoxy resins, hyper branched 
polyesters and waterborne and bio-based polyurethanes. Moreover, this review outlines different approaches for applying 
organic coating. Finally, protection mechanisms of organic coatings are summarized.
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1 Introduction

Lapses due to corrosion have severe consequences from 
both a human life and economic perspective, including the 
safety risks and plants outages. Corrosion inhibition for 
metal structures is an important step in extending the life 
and dependability of metal components in service [1, 2]. 
In recent years, corrosion experts have focused their efforts 
on surface functionalization of steel structures [3–6]. It is 
concerned with the inclusion of additional characteristics 
to certain materials in order to meet precise criteria. There 
are a variety of ways to protect metallic assets, but one of 
the most successful is to employ anticorrosion coatings 
[7, 8]. Corrosion inhibition coatings are typically used as 
functional barriers in a variety of settings, including pro-
longed contact with water, burying in soils, being exposed 
to ultraviolet radiation in industrial regions and air pollution 
[9]. Corrosion protection coatings can be classified as inor-
ganic [10–12], organic [13–16], and hybrid [17–20] coatings 
(Fig. 1).
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The coating a reactive metal’s outer layer with an organic 
coatings is a smart strategy to avoid corrosion while also 
obtaining other surface qualities without compromising 
mechanical characteristics. They are the most extensively 
used way for protecting metallic surfaces from corrosion, 
and they are especially important in transportation and infra-
structure [21]. They provide protection by preventing the 
entry of hostile substances, such as water and oxygen, from 
reaching the coating/support interface, and hence are the first 
barrier coatings. They are made up of a complex blend of 
pigments, polymers, corrosion inhibitors, binders, fluid car-
riers and other additives. Pigments play a variety of roles in 
coating performance. The polymeric binder plays a crucial 
role in the coating's adherence to the substrate [21].

Emissions of volatile organic coatings are a serious 
health danger for workers as well as a long-term pollution 
threat to the environment. Ozone-depleting emissions like 
chlorinated fluorocarbons are particularly noticeable [22]. 
Over the years, chromate-based coatings such as primers 
and pigments have shown to be the most efficient corrosion 
protection solution. They must, however, be replaced with 
more ecologically friendly technology due to environmental 
and human health issues. As a result, there is more sup-
port and development of high-performance smart anticor-
rosive coatings for a wide range of industries [23, 24]. In the 
last few decades, extensive research has been conducted in 
order to develop new smart and green corrosion protection 
systems which has resulted in a massive search for water-
based substitutes [25–27]. Volatile organic solvent emissions 
have been reduced through the use of exhaust air engineering 

controls, reduced paint usage through high transfer effi-
ciency application methods, and the creation of novel coat-
ing formulas. The use of novel solvent less resins, the emer-
gence of high-performance aqueous coatings, and heat-cured 
electrostatic powder coating are also examples of innovative 
formulations [28–30]. Examples of smart coatings include 
self-cleaning and super hydrophobic, antimicrobial, corro-
sion sensing, self-healing, and antifouling coatings [12]. The 
applications of smart organic coatings in various fields are 
depicted in Fig. 2 and are discussed in the following section.

The smart coat category is a well-known inhibitory prod-
uct in the coatings business. These smart coatings, which 
contain inhibitors as well as other additives, reflect improve-
ments in the corrosion inhibition characteristics as well as 
its multifunctional and environmentally beneficial features. 
When they come into contact with a severe environment, 
they have auto-responsive characteristics.

This review discusses self-healing, corrosion sensing, 
anti-fouling, self-cleaning and anti-microbial organic coat-
ings. It also discusses bio-based and water-borne epoxy 
resins, hyper-branched polyesters, and waterborne and 
bio-based polyurethanes, among other smart anticorrosive 
organic coatings. Furthermore, this review discusses various 
methods for applying organic coatings. Finally, the organic 
coating’s protective mechanisms are summarised.

2  Types of anticorrosive organic coating

Organic coatings are used for a variety of reasons, includ-
ing protection, aesthetics and practical functions including 
anti-fouling. They help constructions last longer by provid-
ing resistance to humidity, weather, abrasion, and chemi-
cals. They have toughness and aesthetic appearance. The 
efficiency of organic coatings is affected by the mechanical 
characteristics of the smart coating technique, the kind 
and quantity of suspended inhibitors, pre-treatment of the 
surface of a metal, adherence of the coating towards the 
bottom of metal base, and the other additives that limit 
substrates corrosion[31]. The major characteristics of 
organic coatings are shown in Fig. 3. They are classified 
into three broad categories namely architectural coatings, 
product coatings and special purpose coatings. Paints and 
varnishes used in houses and buildings are called archi-
tectural coatings. These paints are less costly. Latex-based 
coatings (dispersions of polymer particles in a suspend-
ing medium, usually water) account for the majority of 
architectural coatings. Industrial/product coatings are 
applied to a broad range of objects, including appliances, 
automobiles, magnet wires, metal cans, furniture, chewing 
gum wrappers, and so on. Due to the different nature of 
product needs and hence types of coatings required, there 

Fig. 1  Major types and examples of anticorrosion coatings
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is much more research and development in this market 
segment. Coatings for marine applications, aircraft, and 
maintenance coatings for bridges, chemical plants, storage 
tanks and other structures are examples of special purpose 
coatings. Major types of organic coatings are discussed in 
the following section Fig4.

2.1  Self‑healing organic coatings

In recent years, the capacity of coatings to self-heal is a 
desirable aspect of corrosion inhibitor compounds. They 
are made by incorporating active inhibitory chemicals into 
polymer coatings through a technique that entails the pro-
gressive discharge of inhibitors from torn coating [32]. To 

Fig. 2  Applications of ecof-
riendly anticorrosive organic 
coatings

Fig. 3  Characteristics of smart 
organic coatings for versatile 
applications
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retain mechanical qualities and prevent corrosion, the poly-
mer matrix is intelligently healed once a damage happens. 
The chemical composition of the self-healing coatings deter-
mines its functionality. Inhibitors containing groups like as 
free radicals, aromatics, − OH, -SH, -C = C, -C = O-, −  NH2, 
-COOH, -S–S-, -Si–O are used as active agents in micro 
and nanoforms. To incorporate self-healing qualities, two 
ways are available: intrinsic and extrinsic procedures. Addi-
tives are incorporated in the polymer coating after a trigger 
is applied in extrinsic strategy [33–35]. Additives such as 
corrosion inhibitors, capsules, hollow fibres, and vascular 
networks can offer extrinsic regeneration. As a result of the 
mechanical impact, the capsules shatter, releasing the heal-
ing agents, subsequently polymerize to create a protective 
film and restore its barrier property. The sol–gel procedure 
was used to create environmentally benign, self-healing, and 
highly effective anticorrosive coatings from poly(methyl 
methacrylate) and cerium oxide nanoparticles(NPs). The 
nanoscale dispersion of cerium oxide NPs into a poly(methyl 
methacrylate) matrix provided excellent anticorrosive effi-
ciency and durability [36].

Because of their potential to store active anions, con-
ductive polymers like poly pyrrole and poly aniline have 
sparked considerable interest in the field of protective coat-
ings. The healing process is accomplished when conductive 
polymers are reduced by the released anions. The capacity 

of conductive polymers to self-heal and their environmental 
friendliness make them potential candidates to for replac-
ing conventional hexavalent chromium coatings. Polyaniline, 
when combined with molybdate ions, hinders iron disso-
lution. Polyalinine has oxidising characteristics that cause 
steel passivation, and when combined with tetraoxomolyb-
date ions, self-healing can be obtained. The polyaniline-
molybdate ion composite is an oxidizer that protects the 
substrate against anodic galvanic corrosion [37]. Fluorine 
resin coating made of a copolymer of vinyl ether and pol-
ychloro-trifluoroethylene has self-healing abilities. Its self-
healing ability can be further improved by adding titanium 
or zinc powder. The added metal powder enables faster the 
manufacturing of corrosion resistant coatings [38]. By incor-
porating 8-hydroxyquinoline into poly(ethyleneimine) and 
poly(styrene sulphonate)coating, the protective qualities can 
be improved [39].

The intrinsic technique makes use of the polymer resins’ 
ability to heal on their own, without the need for external 
assistance when there is a crack on the surface of coating, 
is utilized. Dynamic reversible bonds, including reversible 
covalent and non-covalent bonds, are used in the intrinsic 
self-healing mechanism. The intrinsic chemical linkages 
and physical conformations of the polymer networks in the 
coating matrices are recovered to heal these coatings. In con-
trast to inhibitor-based systems, their healing effectiveness 

Fig. 4  Pictorial representation 
of anticorrosion mechanism of 
different types of coatings
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is in principle independent of the metal substrate. The 
Diels–Alder process was used to create an intrinsic mend-
able epoxy system with bifunctional adducts, which has 
shown to be particularly promising in corrosion resistant 
coatings area [40].

Natural ingredients like healing agents can be used to 
fill these capsules, which are considered an excellent green 
manufacturing method. Henna leaf extract has strong cor-
rosion resistance. Henna leaves extract with acrylic coating 
was said to provide effective protection [41]. As greener cor-
rosion inhibitors, several researchers employed oils such as 
linseed oils [42], tungoil [43], sunflower oil [44], and neem 
oil [45]. With the help of ambient oxygen, these natural oils 
oxidase, forming a film of polymerized dried oils that pro-
tects the coated surface even more.

Microcapsules made of GO can be used as strengthening 
healing capsules. Scratches on hot-dip galvanised steel sur-
faces were healed by microcapsules containing GO-linseed 
oil in waterborne PU coatings [46]. Epoxy coatings over 
mild steel incorporating GO/polysterene capsules with 8-HQ 
inhibitors can be employed as cheap self-healing anticorro-
sion compounds [47]. Metal parts used in undersea vehicles 
could be effectively protected by a graphene oxide(GO) 
incorporated mesoporous silicon dioxide layer nanosphere 
structure modified with tannic acid [48].

The use of renewable resources to create self-healing 
UV-curable coatings is crucial for environmental conserva-
tion and long-term growth. UV-curable coatings of biologi-
cal origin with significant reparability solely with the help 
of heating be a substantial step forward in the long-term 
development of organic coatings. UV-curing coating films 
based on 2-furoic acid-glycidyl methacrylate and itaconic 
acid-glycidyl methacrylate showed outstanding self-healing, 
easily repaired, and remodelable properties [27].

2.2  Corrosion sensing organic coatings

They are typically pH-responsive coatings that must be 
exposed to oxygen reduction after an oxidative corrosion 
response. The commencement of corrosion on the alloys 
and metals covered with it is accompanied by an increase 
in pH at the location. Because of oxidation at high pH 
levels, some colour changing dyes or chemicals in the film 
matrix of these coatings fluoresce or change colour. The 
color shift or fluorescence is observable when the corrod-
ing species reacts with the matrices, which are usually 
transparent [49]. Anticorrosive species and additives are 
included in microcapsules within the colour dyes. They are 
also pigments designed to release anticorrosive species in 
the event of damage or when they detect the presence of 
corroding species without causing visible colour changes. 
For this purpose, hydroxyquinolines [50], schiff bases 

[51], phenolphthalein [52], fluorescein [53], 7-amino-
4-methylcoumarin [32], bromothymol blue [54], and 
7-diethylamino-4-methylcoumarin [55] have all been com-
bined with the base coatings and inhibitory additives. This 
corrosion detecting indicator is best positioned near to the 
substrate in the primer layer and covered with a transpar-
ent topcoat. Nanotechnology has recently been applied in 
the development of corrosion sensing coatings and paints, 
which are designed to reduce the expense of maintaining 
specific buildings and structures made of metallic materi-
als. Nanocapsules containing colour dyes, pigments and 
pH-sensitive additives preferably with a transparent top 
layer, have also been reported [56].

MOFs (Metal–Organic Framework) can produce 
strongly cross-linked epoxy/MOF composite coatings 
due to their high affinity interactions with inorganic and 
organic chemicals, which can modify the anti-corrosion 
properties of the epoxy coatings. Epoxy coatings contain-
ing modest levels of certain stimuli-responsive MOF nano-
containers also offer a barrier layer on the metal against 
corrosive media, and thereby protect the metal from fur-
ther corrosion by managing the amount of released cor-
rosion inhibitors [57]. It was discovered that acrylic poly-
mer modified with phenanthroline can change colour after 
forming a complex with ferrous ions and can be utilised to 
detect corrosion at the metal-coating interface in neutral 
or near neutral pH circumstances [58].

The dispersion of nano sensors based on mesoporous 
silica nanocapsules in organic coatings introduced to metal 
substrates permits a highly delicate fluorescence recogni-
tion of the onset of metal dissolution, near to substrate 
flaws. As a result, this fascinating approach opens up new 
possibilities [59]. Corrosion inhibition of aluminium alloy 
substrate is achieved using anion-exchanging hydrotalcite 
chemicals distributed in organic resins. This component 
also gives the coating the ability to detect environmental 
changes that are a precursor to substrate corrosion [60]. 
Another corrosion-sensing method comprises an indica-
tor interacting with metal ions freed during the corrosion 
process or low pH level at the anodic site of corrosion, 
where the metal dissolution happens, causing a change in 
the probe’s fluorescence.

By adding corrosion indicator chemicals into coating 
formulations, several authors have investigated techniques 
for corrosion prevention in aluminium and steel. Li and 
Calle have developed a microcapsule-carrying paint that 
exposes colour changes at triggered corrosion sites, lead-
ing to initial detection [61]. Meilun as examined the poten-
tial of smart anti-corrosive coatings for aluminium sub-
strates. Smart anti-corrosive coatings are a relatively new 
technology that is critical in environments that prioritise 
safety, operability, and reliability [62].
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2.3  Anti‑fouling organic coatings

Marine biofouling costs the maritime industry a lot of money 
and generates a lot of issues. As a result, there is a high need 
for eco-friendly antifouling technology. Antifouling coat-
ing is a classic method of preventing marine biomass or 
creatures from adhering to surfaces. Antifouling is caused 
by a chemical reaction of responding fluid with the compo-
nent surface. This type of coating is particularly important 
for the microbial driven corrosions of alloys and metals in 
aquatic environments. It promotes biological growth, which 
results in increased coating weight, decline of hydrodynamic 
characteristics and machine utilization, reduced speed and 
manoeuvrability, increased energy consumption, bio-entity 
cross contamination, and subsequent harm to coatings on 
ships. Organic coatings’ corrosion resistance and antifouling 
efficacy in maritime conditions have been greatly improved 
because to extensive study. An antifouling coating can also 
be applied to the top to prevent the attachment or formation 
of a biofilm or some fouling.

Fouling-resistant coatings can be made in two ways [63]. 
One is Chemically active or antifouling coatings, which 
work through preventing micro- and macro-fouling on the 
coating surface by restricting or lowering the settlement 
of the marine organisms employing the chemically active 
substances called biocides. Traditional biocides like  Cu2O, 
CuO, and ZnO are still in use. To eliminate the biofoulings; 
the biocide incorporated in the coating is slowly exposed 
and released. Meanwhile, the biocide-depleted surface layer 
of the coating is polished/removed to reveal a new coating 
surface with enough biocide. To boost their anti-biofouling 
effectiveness, they were converted into NPs [64]. Many pre-
viously used biocides have been banned or will be outlawed 
as a result of rising environmental concerns, spurring the 
development of new biocide-releasing coatings. Antibiotics, 
inorganic ions, compounds and quaternary ammonium com-
pounds are among the new ecologically friendly additives or 
biocides [65, 66].To avoid potential pollution of the environ-
ment, it is critical that the additives be extremely effective 
and fouling-selective. It only takes a very modest addition to 
make a significant difference. Some organic biocides that are 
harmless have been proposed. They are predicted to hasten 
the decomposition of biofoulant protein molecules, prevent-
ing or slowing the creation of the pre-conditioning fissure 
[67]. Serine protease can be encapsulated and utilized in a 
sol–gel coating and applied to a stainless steel surface for 
up to 9 months to keep the enzyme active against biofilm 
formation [68].

Foul-release coatings, on the other hand, are developed 
like that fouling microorganisms have only a weak con-
nection to the surface, allowing them to be released by the 
small hydrodynamic forces produced by a flowing vessel. 
Fouling-releasing coatings are environmentally acceptable 

biocide-free antifouling option. Many research efforts have 
significantly shifted towards biocide-free, foul-releasing 
coatings which don't leach toxic compounds in the aquatic 
environments. Silicone-based polymers, for example, can 
be used to create a fouling-releasing coating that easily 
releases attached bio-fouling from the coated surface. The 
self-cleaning and antifouling properties of a composite poly 
(dimethysiloxane) covering containing  SiO2-ZnO NPs have 
been described. The coatings, on the other hand, are expen-
sive and ineffective in practise[69].

Another option is to use a brush made of hydrophilic 
polymer. Due to entropic repulsion, a hydrophilic polymer 
“brush” can hinder protein adhesion, preventing the creation 
of a biofilm for biofouling attachment. One of the most often 
utilised hydrophilic polymers is polyethylene glycol. Using 
atom transfer radical polymerization to graft polyethylene 
glycol brushes on a substrate surface, polyethylene glycol 
-based coatings can be made from self-assembled monolay-
ers. As a result, the surface’s resistance to protein attach-
ment increases as the density of the grafted polyethylene 
glycol and its chain length grows [70]. Some antifouling 
coating researchers are interested in the biomimetic attach-
ment of polyethylene glycol to diverse substrates. Polyeth-
ylene glycol conjugated to a trimeric catecholate surface has 
been produced and immobilised on  TiO2 and stainless steel 
to prevent the adsorption of human blood and germs [71]. 
Poly-cationic antibacterial compounds made by quaternary 
tertiary amine groups with alkyl halides also have antifoul-
ing properties, as the extremely positively charged polymer 
chains can harm bacteria's negatively charged cell mem-
branes. They can be used to generate antibacterial surfaces 
by incorporating them into polymers, dendrimers and parti-
cles on a variety of substrates [72]. Yuan et al. used the ring 
opening reaction of a star-like poly (glycidylmehacrylate) to 
create hydroxyl-rich cationic derivatives, which they used to 
create an antibacterial and antifouling coating [73].

Antifouling biocides can be made from natural com-
pounds derived from marine microbes [74], aquatic plants 
[75], seaweeds [76], marine animals [77], terrestrial sources 
[78]. They have the benefit of being more specific than heavy 
metals and are compatible with biological systems. Xu et al. 
developed 5-octylfuran-2(5H)-one (butenolide), an environ-
mentally friendly antifoulant generated from Streptomyces 
spp. and showed solid antifouling action by limiting the 
larval settling of important fouling sort bryozoans and bar-
nacles [79].

2.4  Self‑cleaning organic coatings

Hydrophilic, hydrophobic, and super hydrophobic are the 
three types of self-cleaning coatings. A hydrophilic coating 
causes water to spread over the surfaces, carrying dirt and 
other impurities away. The surface contact angle between 
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the liquid drop and the solid material is what determines 
the self-cleaning activity. Water’s behavior on surfaces, the 
preventing of flaws or imperfections on surface which could 
cause the coating to peel off as water enters, are all important 
considerations for effectively applying these coatings. The 
wettability and water contact angle of a solid coated surface 
are influenced by its geometric structure, chemical composi-
tion, roughness, and energy.

Hydrophilic coatings require polymers with superior film 
forming capabilities, as well as flexibility, toughness, and 
other features, so that a minor amount is required to give 
coatings with better mechanical attributes like toughness and 
optical transparency. Because of its favourable physical and 
chemical properties,  TiO2 is a well-established key compo-
nent of hydrophilic coatings. The contact angle shift of water 
droplet with the dirt on the substrate has been attributed to 
 TiO2's photocatalytic and hydrophilic properties in a self-
cleaning coat [80]. Anti-UV, self-cleaning and anti-bacterial 
paints are made with nano  TiO2. Water droplets bead off of 
a fully healed surface, collecting up dirt and other surface 
impurities along the way [81].

The intrinsic chemical characteristics and surface micro-
structures of a material surface determine its hydrophobicity. 
The hydrophobic qualities of hydrophobic coatings result in 
water droplets and other surface contaminants spinning off 
healed surface, leaving the surface dry and clean. Surface-
treated  Al2O3 NPs help in the increase of hydrophobicity and 
scratch resistance [82].

Super hydrophobic coatings have sparked much inter-
est in both basic research and industrial applications. Sur-
faces possess rough topology with small surface energy 
will have super hydrophobic wetting qualities in general. In 
recent investigations on metal corrosion protection, super 
hydrophobic surfaces have been identified as a significant 
technical accomplishment. Super hydrophobic surfaces can 
reduce the interaction between metal substrates and aque-
ous corrosive species by minimising water contact area and 
time or generating extra air barrier coatings, resulting in 
enhanced anticorrosive performance. Using modified silica 
particles in polystyrene, Power et al. demonstrated a viable 
technique for developing super hydrophobic coatings with 
self-cleaning and anticorrosion properties [83]. Vinyl trieth-
oxysilane-based aqueous coatings are super hydrophobic, 
self-cleaning, and self-repairing [84]. Selim et al. developed 
an anti-fouling and self-cleaning silicone/β-MnO2 nanorod 
composite with a super hydrophobic coating [85].

Self-cleaning coatings with biocidal qualities are created 
by mixing nano-Ag and nano-TiO2 into the painting layer. 
Biocidal coatings incorporating biocides into NPs were cre-
ated, and they are designed to deliver biocides once they are 
required. As a result, their biocidal efficacy lasts longer. Poly-
mer based low-surface energy coatings have also been touted 
as self-cleaning coatings suitable for glass exteriors. NPs were 

employed to make transparent coatings that did not interfere 
with light passing through the glass [86].

2.5  Anti‑microbial organic coatings

To prevent implant-related infection, antibacterial coatings 
are applied to device surfaces. Antibacterial agents, such as 
antibiotics, bioactive compounds, and inorganic antimicrobial 
agents, are released by active coatings into the environment. 
Among the available coating techniques and technologies for 
surface modification and treatment, it is desirable to include 
biocidal materials as an effective and flexible strategy for 
regulating microbial adherence, colonisation, and biofilm 
formation on surfaces. Protective polymeric coatings made of 
vegetable oil and Ag NPs can provide a strong barrier against 
moisture, corrosive acids and aggressive chloride ions. Silver, 
copper oxide and zinc oxide were previously employed to gen-
erate antimicrobial nanocomposite coatings. Patil et al. created 
antibacterial and anticorrosive poly urethane coatings using 
silver doped chicken egg-shell hydroxyapatite NPs. It was 
cost-effective, environmentally friendly, and long-lasting, with 
good anticorrosion properties and bacterial resistance against a 
variety of microorganisms[87].The research and development 
of non-toxic corrosion inhibitors is critical. The use of organic 
and inorganic fillers has been shown to increase the mechani-
cal and barrier properties of coatings. El Fattah et al. found 
that adding chitosan to an epoxy coating increased corrosion 
resistance and antibacterial activity. Chitosan also improved 
the hardness, adherence, and impact strength of epoxy coat-
ings while lowering their abrasion resistance. The addition of 
chitosan to epoxy coatings improved the epoxy coating's alkali, 
acid, and solvent resistance [88]. Epoxies, epoxy-polyurethane 
and epoxy-polyols coatings made from linseed and Ponga-
miaglabra seed oils are antimicrobial and corrosion-resistant 
[89].

For bacteria and corrosion prevention, Xu et al. used aque-
ous epoxy coatings containing poly m-aminophenol—GO 
on metal surfaces. The study make use of antibacterial and 
corrosion inhibiting properties of poly m-aminophenol. The 
composite has been shown to have antibacterial and anticor-
rosion properties [90]. Super hydrophobic coatings based on 
basalt salt and epoxy resin were created by Zheng et al. for use 
in severe marine environments. The developed coating has out-
standing antibacterial and corrosion resistant properties [91].

3  Selected groups of smart anticorrosive 
organic coatings

3.1  Bio‑based and water‑borne epoxy resins

Epoxy coatings are organic polymers made by combining 
epoxy resins with co-reactants/hardeners/curatives which 
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can include a wide range of compounds such as Lewis 
acids or bases, polyamines, acid anhydrides or in a chemi-
cal reaction. They have been applied in a variety of excel-
lent characteristics of coatings due to their heat and water 
repellent, chemical stability, and great metal adhesion [92]. 
Epoxy resins provide higher surface coverage and anticor-
rosive activity than basic organic corrosion inhibitors due to 
their macromolecular composition. During metal-inhibitor 
interactions, the polar functional groups on the periphery 
of epoxy resins serve as adsorption centres [93]. Several 
epoxy resins have been employed as anti-corrosive coating 
materials in both pure and cured forms, particularly for car-
bon steel in acidic and saline environments. In the offshore 
industry, epoxy coating techniques are commonly employed 
as anti-corrosion solutions. Coats with excellent abrasion, 
chemical resistance and good barrier property are made with 
epoxy-based paints. It is usually applied as part of a multi-
layer system that includes a primer, two or three intermedi-
ate layers, and a topcoat. The durability,viscosity, adherence, 
solvent resistance, flexibility, and substrate wetting of an 
epoxy coating are all determined by the molecular weight 
of the epoxy resin [15].

The types of epoxy and curing agent used have a big 
impact on the qualities of the cured resins. The curing agents 
that are now in use are derived from petroleum. Further-
more, several popular curing agents, such as polyamides, 
isophorone diamine, other polyamines and anhydrides are 
toxic before curing, posing additional environmental and 
health risks [16].

Extensive research has been conducted around the world 
to develop safe and secure epoxy resins and curing agents’ 
derived sustainable bio based sources [94]. Plant oils have 
piqued attention as polymer building blocks due to their low 
cost, environmental friendliness, and ease of epoxidation, 
resulting in bio-based epoxy resins [95]. Catechins, sac-
charides, cardanols, tannins, lignin, terpenes, and rosins are 
important among the renewable resources [96]. Plant oils 
are commonly used in thermoset resins due to their high 
amount of carbon–carbon double bonds, which provide 
excellent polymerization handles. Starting with vegetable 
oils like soybean oil and castor oil, the manufacturing of bio-
based epoxy resins is attracting a lot of interest. Epoxy resins 
based on linseed oil has become prominent in thermoset 
uses as a consequence of global push to develop bio-based 
epoxy resins for coatings applications [97]. Epoxy resins 
of saccharide have also been extensively studied in coating 
applications [96].

Liquid epoxy resin or solid epoxy dispersion are used 
in water-borne epoxy coating technology. It takes advan-
tage of water as a low-cost catalytic solvent for delivering 
greater molecular weight epoxy polymers with low viscosi-
ties. They have good permeability and are frequently utilised 
in industrial applications as coatings and adhesives. They 

have been widely used to protect metals against corrosion. 
Using aqueous dispersions to deliver these resins draws 
attention to extending the paint pot life. Additionally, when 
water is utilised as the solvent, paints can be applied more 
easily [98]. The key benefits of this method are the minimal 
organic solvent content and great adherence to the inter-
mediate coat and substrates. They also have superior abra-
sion resistance, better dry performance, are simple to mix, 
and have a minimal odour. Hydrophobic epoxy resin and 
hydrophilic amine based curing agent make up the majority 
of recently developed aqueous epoxy coating systems. The 
epoxy resin in these waterborne epoxy systems is in the form 
of well distributed hydrophobic phase in water [99]. Galgoci 
et al. created an aqueous epoxy resin system that included a 
non-ionic stabilised solid-type resin dispersion and an amine 
curing agent. The system has minimal volatile organic com-
ponents, dries faster, hardens faster, and resists chemicals 
and aquatic environments well [100]. Fluorinated graphene 
modified aqueous epoxy resin has been shown to have better 
barrier characteristics, which adds to improved corrosion 
resistance [101]. Modification of waterborne epoxy resins 
with dopamine grafted metal- organic framework results in 
the enhancement of corrosion resistance and water resistance 
characteristics of epoxy resins [102]. Wang et al. developed 
a 3D network filler from stacking fly ash, GO, and multi-
walled carbon nanotubes with the use of a silane coupling 
agents to improve the anti-corrosion performance and wear 
resistance of aqueous epoxy coatings. The modification 
enhances multi-dimensional cross-linking reactions between 
filler and filler, resin and filler, and resin and resin, which 
improves the cross linking ability of the water-based resin 
[103]. The corrosion resistance of waterborne epoxy resins 
doped with hexagonal boron nitride and strontium zinc phos-
phate was improved. This is owing to the synergetic effect of 
hexagonal boron nitride's physical barrier role and strontium 
zinc phosphate's inhibition [104].

3.2  Hyper branched polyesters

Hyper branched polyesters have sparked a lot of interest in 
recent years because of the relatively new and low-cost tech-
nology. They are frequently employed as promising resins 
for lowvolatile organic coatings formulation and protec-
tion against severe corrosive conditions. Hyper branched 
polyester is a three-dimensional dendritic polyester with 
a significant branched structure that can be employed as 
a surface modification to manage the inorganic–organic 
interface between the filler and the polymer matrix [105, 
106]. Multiple active terminal functional groups of hyper 
branched polyester can make intimate contact with the 
polymer matrix, acting as a bridge between the two inter-
faces, enhancing filler dispersibility and interaction bond-
ing and therefore coating performance [107]. They have a 
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high density of functional end capping groups, which could 
be used as cross-linking sites for curing agents to create 
desirable crosslinking. The mechanical toughness of such 
strongly cross-linked coatings is predicted to be exceptional. 
They have numerous important qualities, including an inter-
nal cavity, strong reactivity, reduced melting, low solution 
viscosity, and good solubility, attributable to their adjustable 
size and non-entangled globular structures. These features, 
in general coating practise, denote effective flow paired with 
low solvent content to produce products that are chemically 
resistant, durable, and easy to clean [108].

In the field of coatings, the most commonly investigated 
highly branching polymers are primarily two: UV curable 
coatings based on hyper branched aliphatic polyesters and 
hyper branched polyester-amides. The catalysed esterifica-
tion of the hydroxyl end-groups with acid chloride or anhy-
dride is a simple way to convert a hyperbranched hydroxyl-
functional polyester to a thermoset resin structure [109].

For corrosion protection, aqueous organosilane–polyester 
coatings were developed utilising methyltrimethoxysilane, 
polyester resin and 3-glycidoxytrimethoxysilane.The addi-
tion of organosilane into the polyester boosted the coatings' 
electric resistance, toughness, and hydrophobicity, resulting 
in improved corrosion resistance [110]. To make low-vola-
tile organic coatings and recycle PET materials, Ikladious 
et al. developed alkyd resins based on glycolyzed PET waste 
and different aliphatic hyper branched polyesters with fatty 
acid [111]. A Sacha inchi oil-based alkyd resin was cre-
ated by Hadzich et al. The combination of penterythritol 
and Sacha inchi oil improved anticorrosion behaviour and 
adhesion qualities in extreme environments, according to the 
findings [112]. Bat et al. developed a hyper branched fatty 
acid-based resin with excellent metal adhesion, adaptability 
and wear resistance [113]. Ashish et al. created an aqueous 
anti-corrosive coating made of a hyper-branched polyester 
polymer with excellent adhesion, strong cross-link density, 
and corrosion resistance [114].

3.3  Waterborne and bio‑based polyurethanes

Polyurethanes (PU) have a wide range of applications due to 
their unique characteristics, including coatings, adhesives, 
and sealants, and recent research has focused on understand-
ing the chemistry and physics of PUs. They are organic 
polymers that are formed by combining a monoglyceride, a 
polyol, and a diisocyanate to make urethane oil or urethane 
alkyd. When compared to typical alkyd resins, PU-based 
combinations provide a superior anticorrosive coating [115]. 
They are applied toimprove the appearance, lifetime, scratch 
resistance, and corrosion resistance of items. PU adhesives 
and sealants offer strong bonding and tight sealing. These 
adhesives have the benefit of developing “green strength” 
quickly, which means the material offers an initial bond 

before it fully cures. The rising need for high-performance 
PU coatings at a rational price has opened up a whole new 
world of possibilities for studying and constructing PU 
backbones with various architectures [116]. For low-volatile 
organic, weather-resistant coatings, Naik et al. developed a 
hyper branched urethane alkyd polymer. In the field of low-
pollution weather-resistance coatings, these moisture-cured 
resins can be employed as a binder ingredient [117].

The development of waterborne PU is the initial step 
toward creating non-volatile solvent-free, non-polluting, 
and sustainable coating systems. In addition, aqueous PU 
has good mechanical, physical, and anticorrosion character-
istics. They adhere to a variety of surfaces, including glass 
and polymeric fibres, with ease. Polyurethanes, in general, 
are hydrophobic and water insoluble. As a result, they must 
be changed in order to disperse in water, such as by add-
ing ionic groups and/or non-ionic hydrophilic regions to the 
polymer structure [118]. Solvent-free approach was used to 
make waterborne polyurethane dispersions from various 
polycarbonate diols [119], m-di-(2-isocyanato propyl) ben-
zene and carboxylic diols [120]. The production of well-dis-
persed graphene reinforced aqueous PU composite coatings 
was reported by Li et al. The ability of graphene-reinforced 
PU coatings to build a network in the PU matrix that pre-
vents foreign molecules from permeating can be attributed 
to their better anticorrosive performance [121].

The design of greener chemical methods to replace petro-
leum-based products such as diisocyanates and diols is a 
difficult task. As a result, starch, lignin, cellulose, vegeta-
ble oils and fats are being investigated as a means of gen-
erating polymers from sustainable natural materials. They 
have esters and carbon double bonds that can be modified 
to make polyols, resulting in bio-based PUs. As corrosion 
inhibitors, Marathe and colleagues blended natural polyol 
and polyester from neem oil with quinoline. Quinoline was 
encapsulated in a micro-reservoir, which allowed it to over-
come the drawbacks of adding it directly to a coating layer. 
The study reported that addition an corrosion inhibitor to 
neem oil-based smart PU coatings improves their anticorro-
sive properties [122]. Functional soybean oil-based polyols 
are another green resource for PU coatings [123]. Cashew 
nut shell liquid was successfully used as a precursor in the 
production of bio-based PU coatings. Cardanol, a phenolic 
compound produced from cashew nut shell liquid, comprises 
a reactive phenolic group and an aliphatic double bond that 
could be tailored to create novel functional materials for 
coating applications [124].

Tensile strengths, hardness, flexibility, adherence, and 
water resistance are all advantages of terpene-based polyols 
(derived from turpentine) that can be cross linked with poly-
isocyanate to make PU coatings. PU coatings have also been 
developed using eucalyptus tar compounds and castor oil 
[125]. Siyanbola et  al. developed an environmentally 
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acceptable approach to synthesise carbon NPs from Euca-
lyptus globulus leaves to enhance a castor oil-based PU 
coating. The composite outperforms the neat PU coating in 
terms of mechanical, hydrophobicity, thermal and anticor-
rosion properties [126].

4  Approaches for applying organic coating

Painting, powder coating, electrophoretic coating, and 
sol–gel coating are different approaches for applying organic 
coatings. The advantages and disadvantages of different 
types of organic coatings are depicted in Table 1.

4.1  Painting

The first stage in painting is to choose an alkali-resistant 
primer, which could be polyvinyl butyral, vinyl epoxy, 
acrylic, baked phenolic or polyurethane. Pigments such as 
chromate and titanium dioxide have been used to improve 
corrosion resistance. This is the simplest and most customiz-
able way of applying a coating. Its main drawbacks are the 
need for organic solvents and the multi-step process [127].

Standard methods used for painting to structural steel-
work include application by brush, roller, traditional air 
spray and airless spray. Brush application, in its original 
form, creates extremely strong shearing forces between the 
liquid paint and the substrate. This substantially aids the 
intimate wetting of the steel surface, resulting in enhanced 

dry paint film adhesion. Roller application is significantly 
faster than brushing and is used for big flat surfaces, but it 
requires the paint to have the right rheological qualities. It is 
therefore not a recommended application method for coating 
awkward corners, bolt heads, and so on. In spray drying, 
the paint is atomized into fine droplets and sprayed onto the 
covered surface, where the droplets link together to form 
a continuous coating. Air spraying or airless spraying can 
be used to atomize the material. This method can be used 
to apply solvent-free compounds like two-pack commodi-
ties that can be blended right at the spray gun nozzle while 
being applied. In order to produce the best outcomes, costly 
equipment and highly experted labours are required [128].

4.2  Powder coating

Powder coating is a solids-based coating that is applied as 
a dry powder and then heated to form a film. It uses a solid 
binder and pigment application process. When heated, the 
solid binder melts, bonds the pigment, and when cooled, 
forms a pigment coating. Powder coatings have become 
increasingly popular in recent years, and the demands for 
functional powder coatings have gradually increased [129]. 
Electrostatic powder spraying, flame spraying of thermo-
plastic powders and fluidized bed spraying are the most 
common methods for powder coating. In most cases, the 
electrostatic spray procedure is the most flexible and versa-
tile of these processes. Following heat fusion, the powder 
is usually attached to the substrate as a film [130]. Because 

Table 1  Advantages and disadvantages of different approaches of organic coating

Technique Merits Demerits Industry

Painting Improved corrosion resistance
Simplest
Customizable

Need organic solvents
Multi-step processes

Marine industry,
Construction

Powder coating Does not need solvents
Environmental friendly
Easy powder recovery

High temperature
Optimization of formulation is important
Coating may be thick due to extremely dried pow-

der application
Incompatible with some substrates

Aerospace,
Pharmaceuticals

Electrophoretic deposition Quick formation time
Simple apparatus
Extremely flexible,
Easily customized for a given purpose,
Wide range of substrate selections
No need of binder

Complicated electrical regulations needed Automotive,
Metal industry

Sol–gel coating Green technology
No waste formation
No need of washing
Low processing temperature
Finished thin films can be easily formed 

without requirement of machining or 
melting

High adhesion to substrates
High chemical and thermal stability

Mechanical deposition process have a thickness 
limit

Textile industry, 
Food industry
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the powder coating technique do not need solvents, it was 
appealing from an environmental standpoint; excess pow-
der could theoretically be collected and recycled, allowing 
product usage to approach 100%. This technology also has 
high economic benefits, energy savings, and performance 
advantages, as well as the elimination of hazardous waste 
[131]. Powder coating, on the other hand, has several draw-
backs. The powder must be completely dry, the coating 
should be thick, coating recessed portions is challenging, 
and an extreme heat is required, which may be incompatible 
with particular substrates [132].

4.3  Electrophoretic deposition

It is basically a two-step procedure. Under an electric field, 
charged particles suspended in a liquid migrate towards the 
electrode in the first step. The particles deposit on the elec-
trode in the second step, creating a moderately dense homo-
geneous film. An appropriate heat-treatment such as firing 
or sintering is frequently required as a post- electrophoretic 
deposition processing step. Cathodic electrophoretic deposi-
tion and anodic electrophoretic deposition are the two types 
of electrophoretic deposition [133].

In a typical electrophoretic coating process, surface treat-
ment is essential. It has a big impact on the coating’s quality 
and performance. In industry, wet silane and phosphating are 
the most commonly used pretreatments for electrophoretic 
coating [134, 135].

Electrophoretic deposition has the advantages of a quick 
formation time, a simple apparatus, a wide range of substrate 
shapes, and no need for binder breakdown because the green 
coatings includes few or no organics. In comparison to other 
progressive coatings procedures, the method is extremely 
flexible, allowing it to be simply customised for a given pur-
pose. However, the procedure necessitates intricate electrical 
regulation [136, 137].

5  Sol–gel coating

In this process, a solid phase is created by the gelation 
of the colloidal suspension. It can be dried to form a dry 
gel state, which employed to eliminate unreacted organic 
byproducts, stabilise the gel into densify it, or add crystal-
linity. The following are some of the benefits of employing 
sol–gel coatings: The temperature of the processing is kept 
low, usually near room temperature. Because liquid pre-
cursors are employed, coatings can be formed on complex 
forms and thin films can be produced without the require-
ment for machining or melting. Green coating technologies 
are used to generate the sol–gel films. Compounds which 
does not introduce impurities to the ultimate product are 
used as starting components. There is no waste produced 

during the creation of sol–gels, and there is no need to wash 
them. Further advantages include the product’s broad range 
of formulations, excellent adhesive to the substrate, as well 
as chemical and thermal stability [138, 139]. However, 
mechanical deposition processes such as dipping, spin-
coating, and spraying have a tiny thickness limit, which is a 
key limitation of sol–gel technology [140].

6  Protection mechanism of organic coatings

Anticorrosive coatings are classed based on the mechanisms 
that protect a metal against corrosion. Corrosion can take 
several forms, depending on the systems, design of materials 
and engineering, environments, and other factors. Anticorro-
sive coatings include three fundamental defensive processes. 
To a large extent, the processes of the three types of coatings 
are similar, but the primary difference is in the nature of the 
pigments and substrates, as shown in Fig. 4.

6.1  Barrier coatings or impermeable coatings

Barrier protection is regarded as the most common form of 
protection mechanism. It works by preventing hostile spe-
cies like water, ions, gases, and electrons from entering the 
surface. This can be accomplished by adding pigments to 
the coating or using a chemical conversion layer. This sort 
of coating is commonly employed on immersed structures 
and can be utilised as a topcoat, primer or intermediate. 
When the binder is made up of macromolecules with a stiff 
structure, a significant cross linking, or crystalline chain seg-
ments, it acts as a physical barrier to diffusion. However, the 
solid structure and toughness of the coating may cause it to 
become brittle, resulting in a loss of mechanical capabilities. 
The additions of barrier pigments prolong the diffusion paths 
of the invading species. Barrier coatings, such as epoxy, are 
widely used and have been shown to efficiently prevent cor-
rosion until coating faults occur. Pits or holes in the coating 
form as a result of mechanical shocks or age, and this is 
when the coating fails. Through flaws, the corrosive species 
assaults the underlying metal, increasing the exposed surface 
and thereby speeding up the corrosion process [11].

When graphene and its derivatives are integrated into 
organic coatings, they have the ability to act as an efficient 
barrier against the diffusion of corrosive materials including 
 H2O,  O2, and Cl [141]. In addition, the alignment of gra-
phene and its derivatives in the polymer matrix contributes 
corrosion resistance. Organic–inorganic nanocomposites 
based on traditional epoxy, polyurethane, and acrylic com-
ponents mixed with ceramic nanofillers including ceria, sil-
ica, and zirconia demonstrated excellent barrier properties, 
preserving steel and aluminium alloys for longer periods of 
time. The addition of inorganic nanofillers to the organic 
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matrix results in a thick, homogeneous nanocomposite that 
acts as a diffusion barrier, limiting water absorption and 
ionic species diffusion to a very small amount. Epoxy res-
ins with GO-ZrO2 attachment offer superior barrier protec-
tion. Because of their high aspect ratio, 2D sheet structure, 
and homogenous dispersion in the epoxy matrix, studies 
have shown that sheets like GO-ZrO2 hybrids can provide 
an additional barrier layer to impede electrolyte permeation 
and provide good barrier protection [142].

Organic–inorganic hybrids such as PMMA-SiO2 [143], 
epoxy-SiO2 [144], and polyurethane-SiO2 [145] coatings, all 
of which use silica as an inorganic phase, have recently been 
investigated for their structural and anticorrosive capabilities 
on metallic alloys. The scientific community and industry 
have paid close attention to their exceptional performance as 
a passive barrier with great corrosion resistance and durabil-
ity. On a molecular or nanoscale, covalent conjugation of the 
organic and inorganic phases produces novel materials with 
distinct characteristics. The polymeric phase of this nano-
composite material serves to hermetically seal the structure, 
avoiding the passage of corrosive species like chloride ions, 
water, and oxygen, while also giving the coating a hydropho-
bic property. The ceramic phase, which leads to the forma-
tion of crosslinked silica nodes, compresses the polymeric 
chain segments and creates covalent Si–O-M connections at 
the film/metal contact, ensuring long-term adhesion [146].

6.2  Inhibitive coatings

Unlike impermeable based coatings, inhibitive coatings pre-
vent corrosion by the interacting with environment to form a 
protective layer on the surface of the metal. The study of any 
chemical substance's inhibitory efficacy in corrosion inhibi-
tor coatings is focused with the substance directly, which is 
usually employed as an inhibitor, rather than just as a paint 
addition. If the coating includes corrosion resistant pig-
ments or chemical compounds that hinder chemical or elec-
trochemical metal corrosion, this mechanism is activated. 
A leaching mechanism is used for active protection. This 
is a complicated process in which the inhibitor is liberated 
from the coating and migrates to corroding sites, passivat-
ing the substrate in the coating defect area [147]. Inhibitory 
pigments are mostly inorganic salts that are water soluble to 
a certain degree. Because pigments have a poor solubility, 
they can only be released slowly if the coating has flaws. 
They are mostly used in industrial sectors where there is a 
high risk of atmospheric corrosion and they are not meant to 
be submerged in water or buried in soil. This type of coating 
is usually used as a primer because it is only useful if soluble 
components may react with the metal. Calcium plumbate, 
lead cyanamide, dibasic lead phosphite, lead silicochromate, 
zinc chromate, zinc phosphate, and zinc tetraoxichromate 
are examples of inhibitive anticorrosive pigments. These 

anticorrosive pigments only protect in the presence of water, 
either through their water-soluble fractions or through water-
soluble reaction products with certain binders, implying that 
their anticorrosive abilities are only formed in the presence 
of water. Anticorrosive pigments, with the exception of zinc 
phosphate and zinc dust, have a number of drawbacks, one of 
which is that they can be harmful to health. These pigments 
have been subjected to stringent requirements in terms of 
handling, application, storage, and disposal [11].

The addition of lithium salts to epoxy coatings improves 
their corrosion resistance. Lithium salts were studied as a 
possible alternative for hexavalent chromium in organic 
coatings and as a leachable corrosion inhibitor. Active cor-
rosion inhibition was demonstrated by the creation of a pro-
tective layer in a damaged area when coatings containing 
lithium carbonate or lithium oxalate were applied [148]. 
According to studies, lithium ions were incorporated into 
PMMA-silica nanocomposites, resulting in a thick, highly 
cross-linked hybrid network that acts as a diffusion barrier 
against corrosive species. A self-healing mechanism was 
proposed, which describes the development of a protective 
layer of redox reaction products induced by lithium ions, 
which blocks the corrosion process not only in localised 
defects (pits), but also in artificially damaged zones, extend-
ing the durability of the PMMA-silica coatings significantly. 
PMMA-silica hybrids modified by lithium constitute a novel 
class of costeffective functional coatings that have the poten-
tial to substitute the harmful hexavalent chromium-conver-
sion procedure now employed to protect metallic structures 
against corrosion [149].

In the PMMA-cerium oxide have been shown to be par-
ticularly promising materials for protective coatings due to 
their superior resistance to corrosion, active self-healing 
potential, and environmental friendliness. The detailed stud-
ies showed that Ce ions act as self-healing agents, forming 
insoluble cerium oxide and hydroxide species in the scratch 
track as a result of reactions between leached cerium ions 
and hydroxyl groups, preventing the corrosion process from 
progressing and thus extending the coating lifetime [36].

6.3  Sacrificial coatings

For corrosion prevention, they depend on the galvanic cor-
rosion principle. The substrate is covered with an alloy 
and metal that is electrochemically higher active than the 
substrate. For the corrosion protection of steel structures, 
coatings made with metallic zinc powder are widely used. 
Because they require an electrical contact between the sub-
strate and the sacrificial metal to be effective, these coat-
ings are only used as primers. The advantages of sacrificial 
metallic coatings include cathodic protection with barrier 
properties, onsite spraying and repair capabilities, quick 
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handling after application, low cost, and great mechanical 
resistance[150].

7  Conclusion and future perspectives

Because of growing concern that fossil fuels are a serious 
environmental problem, all countries must adopt cleaner and 
more environmentally friendly industry and transportation 
technology. Corrosion is a major problem for most indus-
tries around the world because it results in disasters and 
substantial financial loss. Corrosion-inhibiting coatings are 
typically used as functional barriers in a variety of condi-
tions, including constant water immersion, burying in soils, 
being exposed to ultraviolet radiation in commercial sec-
tors, hot abrasive liquids, and air pollution. Over the last 
two decades, new expectations for significant technological 
innovation with greater performance, as well as environ-
mental issues, have pushed the emergence of novel coating 
systems in the paint industry forward. Organic coating is a 
popular corrosion protection method because it offers an 
effective barrier to corrosive media. Thus the functionaliza-
tion of organic coatings can lead to significant advancements 
in the field of anticorrosive coatings and modify their prop-
erties for specific applications. The industry's task is to keep 
or modify properties at a fair cost while also addressing the 
need for environmentally friendly coatings. Due to the deple-
tion of non-renewable feedstock, the production of bio-based 
eco-friendly organic coatings from sustainable resources 
employing green solvents is a new topic of research. The 
development of more efficient coating system technolo-
gies has a promising future, because to recent technological 
breakthroughs in inspection methodologies and a greater 
understanding of corrosive conditions. An adequate inter-
disciplinary engineering approach is necessary to produce 
high-quality coatings with multi-functional characteristics.
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