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Abstract
Cellulose is a promising alternative material as a sorbent for the removal of pollutants. The availability of hydroxyl groups 
on cellulose allows for the application of various modification reactions for the development of novel sorbents with differ-
ent functional groups. In this work, a cellulose sorbent modified with N-methyl-glucamine was prepared and tested for the 
removal of boron. A batch adsorption process was used to further explore the boron sorption kinetics, isotherms, thermo-
dynamics, mechanism, and reuse of the prepared sorbent. It was found that the optimum sorbent dose for boron removal 
was 0.2 g/25 mL. Moreover, the initial pH of the solution was found to affect the removal rate and was found to be ≥ 4. The 
sorption of boron reached equilibrium within 60 min. The maximum sorption capacity was calculated to be 4.7 mg B/g sorb-
ent. The sorption process was found to be exothermic and the negative value of ∆S in the range of 30–60 °C is related to a 
decrease in randomness at the solid/solution interface during the sorption of boron on the sorbent. The sorption/regeneration 
experiments have shown that the removal rate of the sorbent remains the same over 5 cycles.
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Nomenclature
b	� Langmuir constant (L/mg)
C0	� Initial boron concentration in the solution (mg/L)
Ce	� Boron concentration in the solution at equilibrium 

(mg/L)
k1	� Pseudo-first-order rate constant (min−1)
k2	� Pseudo-second-order rate constant (g/mg min)
KF	� Freundlich adsorption constant
m	� Mass of the sorbent used in the experiment (g)
n	� Freundlich adsorption constant
Q0	� Maximum sorption capacity for Langmuir model 

(mg/g)

qe	� Amount of B sorbed onto sorbent at equilibrium 
(mg/g)

qt	� Amount of B sorbed onto sorbent at any time 
(mg/g)

r	� Removal efficiency (%)
R	� Universal gas constant (8.314 J/mol-K)
RE	� Regeneration efficiency (%)
T	� Absolute temperature (K)
t	� Time (min)
V	� Volume of solution (L)
ΔG°	� Standard free energy change (kJ/mol)
ΔH°	� Standard enthalpy change (kJ/mol)
ΔS°	� Standard entropy change (kJ/mol K)

1  Introduction

Although boron (B) is one of the essential nutrients for 
humans and plants, it has a toxic effect on plants when pre-
sent in excessive concentrations [1]. It is normally present 
in marine and groundwater but its concentration is propor-
tional to the surrounding geology. However, anthropogenic 
factors also increase its concentration in water [2]. Boric 
acid is used in a variety of industries including optoelec-
tronics, semiconductors, ceramics and borosilicate glass, 
B-containing fertilizers, herbicides, and insecticides [3]. 
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The B concentration in such wastes changed from micro-
grams per liter to milligrams per liter. The concentration of 
boron in wastewater from hydraulic fracturing was 123 mg/L 
[4], while in wastewater from liquid crystal displays, it was 
820 mg/L [5]. The World Health Organization (WHO) has 
set 2.4 mg/L as a guideline value for drinking water [6].

The various water treatment techniques such as boron-
selective resins, coagulation, membrane processes, and sorp-
tion processes used to remove boron and the advantages/
limitations of these methods have been studied by various 
groups [2, 7, 8].

The sorption process is one of the most efficient methods 
for removing boron at low concentrations. For this purpose, 
chelating resins, activated carbon, fly ash, and natural mate-
rials can be used [9]. The use of low cost, environmentally 
friendly, and abundant sorbents for water treatment has 
gained friction. The low cost, biodegradable, renewable, and 
modifiable properties make cellulose one of the materials 
with great potential for water treatment [10].

In recent years, various functional groups have been 
attached to cellulose and then used for contaminant removal. 
Parlak and Arar [11] used sodium periodate (NaIO4) and 
sodium metabisulfite (Na2S2O5) successively for the prep-
aration of sulfonated cellulose and then applied it for the 
removal of copper (Cu2+). The capacity of the sorbent pro-
duced was reported to be 8.2 mg Cu2+/g. The authors also 
pointed out that the sorption of Cu2+ is a fast kinetic and 
exothermic process [11].

Özdemir et al. [12] applied a two-pot oxidation process 
for the preparation of diacetate-containing cellulose and 
tested it for the removal of beryllium (Be2+). Oxidation of 
cellulose was achieved by sequential oxidation with NaIO4 
and sodium chlorite (NaClO2). The sorption of Be2+ reached 
equilibrium within 3 min. The capacity of the sorbent was 
reported to be 4.54 mg/g. The author also reported that 
0.1 M HCl or H2SO4 solutions can be used for the regenera-
tion of the sorbent loaded with Be [12].

Anirudhan et al. [13] prepared quaternary ammonium 
containing cellulose for the removal of chromium (Cr6+). 
The removal of Cr6+ reached equilibrium in 1 h. The capac-
ity of the sorbent was 123.60 mg/g, and the Cr-loaded 
sorbent was regenerated with 0.1 M NaOH solution [13]. 
However, to our present knowledge, there is no study on the 
preparation of N-methyl-glucamine containing cellulose by 
graft polymerization technique.

Graft polymerization is an attractive method that allows 
the surface of materials to be functionalized without greatly 
affecting the properties of the bulk [14]. Graft polymeriza-
tion, which is used for a variety of applications, has several 
advantages, such as ease of use, ability to impart different 
functionalities, tunable surface properties, compatibility 
and stability, relatively low cost, fast modification rates, 
and adjustable grafting percentages [14–16]. In our case, 

the grafting method allowed us to produce a sorbent with 
good stability and significantly improved the reusability of 
the sorbent.

In this work, an N-methyl-glucamine containing sorb-
ent for the removal of boron from an aqueous solution was 
prepared and investigated. The batch sorption parameters 
for boron removal were also studied. In addition, the sorp-
tion kinetics and sorption capacity of the sorbent as well 
as the thermodynamic parameters were calculated. In the 
final phase of the research, the optimum regenerant for the 
regeneration of the B-loaded sorbent was found.

2 � Experimental

2.1 � Chemicals and materials

Glycidyl methacrylate (GMA, 97%, Sigma-Aldrich) and 
N-methyl-d-glucamine (NMG, 99%, Acros) were used to 
prepare boron-selective cellulose. The crude cellulose sam-
ples were obtained from Denkim Kimya A.Ş. (Denizli, Tur-
key) and used without pretreatment. The aqueous solution of 
boric acid was prepared by appropriate dissolution of boric 
acid (H3BO3, Merck) in deionized water.

2.2 � Preparation of glycidyl 
methacrylate‑N‑methyl‑d‑glucamine monomer

The glycidyl methacrylate-N-methyl-d-glucamine (GMA-
NMG) monomer was prepared as described in [17]. Briefly, 
150 mL of 0.83 M NMG solution was prepared and added 
to the reaction cell. Then, 20.4 mL of GMA solution (97%, 
d = 1.042 g/mL) was slowly added to the NMG solution. 
The N2 gas was passed through the solution for 15 min. The 
reaction cell was placed in a silicone oil bath at 70 °C for 5 h 
with vigorous stirring. At the beginning of the process, the 
mixture was turbid and at the end of the reaction, a single 
clear phase was observed. The reaction between GMA and 
NMG is shown in Fig. 1a.

The product was rinsed with diethyl ether (3 times at 
50 mL) to remove unreacted GMA. A separatory funnel was 
used to separate the organic phase from the aqueous phase. 
The GMA-NMG monomer was in the aqueous phase.

2.3 � Preparation of GMA‑NMG‑tethered cellulose

Fifteen grams of crude cellulose and 150 mL of GMA-NMG 
were added to the reaction cell, and then, N2 gas was passed 
through this mixture. The initiator (0.3366 g K2S2O8) was 
added to the mixture and the reaction cell was placed in an 
oil bath at 70 °C for 24 h under N2 atmosphere to allow the 
reaction of the hydroxyl groups of cellulose with ethylene 
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groups. The reaction of cellulose with GMA-NMG is shown 
in Fig. 1b.

2.4 � Characterization of the prepared sorbent

Infrared spectra of crude and GMA-NMG containing cel-
lulose were determined using an infrared spectrometer 

(PerkinElmer, model One-B). The elemental composition 
of the crude and prepared sorbent was determined using an 
elemental analyzer (Leco, CHNS-932).

The determination of boron in the samples was measured 
spectrometrically as described in [18].

The removal efficiency (r) and capacity (q) of the sorb-
ent were calculated according to Eqs. 1 and 2, respectively.

Fig. 1   Preparation GMA-NMG 
monomer (a) and GMA-NMG-
tethered cellulose (b)
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3 � Results and discussion

3.1 � Characterization of the sorbent

The infrared spectrum of raw and modified cellulose is 
shown in Fig. 2. The peaks at 3263 cm−1 and 2924 cm−1 are 
attributed to the O–H and -CH3/-CH2 stretching vibrations, 
respectively. After modification of cellulose, a decrease in 
this transmittance was observed. The band at 1713 cm−1 
belongs to the C = O bending vibration. Glycidyl meth-
acrylate has C = O groups and the binding of the new C = O 
groups decreased the transmittance. A new peak appeared 
at 1557 cm−1 belonging to amine groups, indicating that 
GMA-NMG functional groups were successfully attached to 
cellulose. The peaks at 1028 cm−1 can be attributed to C-O 
stretching [11, 12, 19–21].

The elemental composition (carbon C, hydrogen H, 
nitrogen N, and oxygen O) of crude cellulose was found 
to be 41.89% C, 6.21% H, and 51.89% O, respectively. The 
nitrogen (N) was not observed in crude cellulose. In the 
case of GMA-NMG, the sorbent composition was found to 
be 44.08% C, 5.31% H, 48.62% O, and 1.99% N. After the 
introduction of GMA-NMG groups into cellulose, nitrogen 
was found in the elemental composition, supporting the 
results of FTIR and further proving the successful grafting 
of GMA-NMG onto cellulose. It was also observed that the 
mass fraction of oxygen decreased after modification, which 

(1)q = V
C
0
− Ce

m

(2)r =
C
0
− Ce

C
0

× 100

can be attributed to a lower oxygen mass ratio in the GMA-
NMG group.

3.2 � Effect of sorbent dose on boron removal

To find the optimal sorbent dose for boron removal, a series 
of experiments were performed. 25 mL of a boron-contain-
ing solution was contacted with different amounts of sorbent 
(0.1–0.3 g), where the boron concentration in the solution 
was 5 mg-B/L and the pH of the solution was 6. The varia-
tion of boron removal as a function of sorbent dose is shown 
in Fig. 3.

From Fig. 3, it can be seen that the increase in sorb-
ent dose resulted in an increase in the percentage of boron 
removal. It is known that the number of available functional 
groups is linearly proportional to the sorbent dose. When 
the sorbent dose was increased, the number of functional 
groups increased and so did the removal rate. Figure 3 also 
shows that the maximum removal rate was 69% for 0.2 g 
and further addition of sorbent did not change the removal 
percentage. Therefore, a sorbent dose of 0.2 g was deter-
mined to be the optimum dose and was used in further 
experiments. Experiments were also conducted with plain 
cellulose, and as can be seen in Fig. 3, the removal of boron 
was not observed. These results show that grafting of cel-
lulose improves the removal rate.

3.3 � Effect of initial solution pH on boron removal

In this series of experiments, 0.2 g of GMA-NMG-contain-
ing cellulose was contacted with 25 mL of boron-containing 
solution (5 mg-B/L) with different initial pH values of the 
solution. The results are shown in Fig. 4.

When the pH of the solution was adjusted to 2, 64% of 
the boron was removed from the solution. Increasing the 
pH of the solution to 4 increased the boron removal to 69% 

Fig. 2   FTIR spectrum of raw 
and modified cellulose

13084



Biomass Conversion and Biorefinery (2023) 13:13081–13090

1 3

and further increasing the pH to 10 did not change the boron 
removal rate. The removal of boron by a sorbent containing 
NMG is a two-step process [22]. First, boric acid dissociates 
into its anionic form, borate, and hydronium ions (Eq. 3), 
and in another step, the borate anion forms a chelate with the 
cis-diol of N-methylglucamine groups, as shown in Fig. 5.

The resulting H3O+ ions are sorbed by the ternary amine 
groups of the NMG [23]. The higher complexability of the 
N-methyl-d-glucamine group would be an electrostatic 
attraction between the borate anion and the quaternary 
ammonium group (after protonation of the ternary amine 
group of NMG) [24]. When the pH of the solution decreases, 

(3)H
3
BO

3
+ 2H

2
O ⇆ B(OH)−

4
+ H

3
O+

the equilibrium shown in Eq. 3 shifts to the left side, then the 
molecular form of boric acid occurs and thus the removal 
of boron decreases.

3.4 � Sorption kinetics

To find the optimum contact time for boron sorption, 8.0 g 
of sorbent was contacted with 1.0 L of a B-containing solu-
tion (5 mg-B/L, pH 6). The solution was mixed, and 10-mL 
samples were taken at specific time points. The changes in 
boron removal versus time are shown in Fig. 6.

As can be seen from Fig. 6, boron sorption reached a 
plateau after 60 min. The kinetic data are applied to pseudo-
first-order (Eq. 4) and pseudo-second-order (Eq. 5) kinetic 
models [25, 26].

Fig. 3   Effect of sorbent dose on 
boron removal
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Fig. 4   Effect of initial solution 
pH on boron removal
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The calculated kinetic data are summarized in Table 1. 
The regression coefficients (R2) of the pseudo-second-
order model were larger than those of the pseudo-first-
order model, indicating that the pseudo-second-order 
kinetic model was more appropriate for the kinetic data 
obtained.

(4)log
(

qe − qt
)

= log
(

qe
)

−
k
1
t

2.303

(5)
t

qt
=

1

k
2
q2
e

+
1

qe
t

Fig. 5   Chelation mechanism of 
boric acid with cis-diol active 
sites of N-methyl glucamine

Fig. 6   Removal of boron versus 
time
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Table 1   The calculated parameters of the pseudo-first- and pseudo-
second-order kinetic model

Kinetic model Parameter value

Pseudo first order k1 (min−1) 0.0285
qe (mg/g) 0.0795
R2 0.8647

Pseudo second order k2 (g/mg min) 0.2888
qe (mg/g) 2.1083
R2 0.9995
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3.5 � Sorption isotherms

0.2 g of sorbent was contacted with 25 mL of a boron-con-
taining solution. The boron concentration in the solution 
varied from 25 to 400 mg-B/L (at pH 6). The changes in the 
capacity of the sorbent compared to the initial boron con-
centration are shown in Fig. 7. As can be seen in Fig. 7, the 
sorbent capacity increased with increasing boron concentra-
tion, and finally, the sorbent capacity reached its maximum 
value.

The experimental sorption results are applied to the Lang-
muir and Freundlich isotherm models. The linear form of the 
Langmuir model is shown in Eq. 6 and that of the Freundlich 
model is shown in Eq. 7 [27].

The isotherm parameters were calculated and are shown 
in Table 2. The obtained sorption data showed a better agree-
ment with Langmuir’s isotherm model. This result shows 
that B sorbed on the prepared sorbent as a monolayer.

The capacity of the sorbent is compared with other sorbents 
reported in the literature, and the results are summarized in 
Table 3. The sorbent capacity varied from 0.16 to 199 mg/g. 
This difference could be due to the type of sorbent, its func-
tional group, modification steps, and composition of the sorb-
ent. For example, a similar work was carried out by Inukai 
et al. where the authors first modified cellulose with GMA and 
then further modified the epoxide groups of the grafted GMA 

(6)
Ce

Qe

=
1

bQ
0

+
ce

Q
0

(7)logQe = logKF +
1

n
logCe

with NMG [28]. The authors reported the adsorption capacity 
of their sorbent as 11.89 mg/g, which is higher than our sorb-
ent. However, their sorbent was tested for only three reuse 
cycles, and after the second cycle, the recovery percentage 
decreased to 98%, while in our case, the recovery percentage 
was almost 100% even after 5 cycles (see Sect. 3.7).

Kamcev et al. have prepared a sorbent containing two NMG 
functional groups at different locations of the sorbent, which 
increase the sorption capacity [34]. The use of different start-
ing materials that can bind more than one functional group can 
increase the removal capacity.

3.6 � Thermodynamic studies

Thermodynamic studies were performed by varying the solu-
tion temperatures (30, 40, 50, and 60 °C). 0.2 g of the sorbent 
was mixed with 25 mL of boron-containing solution (5 mg-
B/L, pH 6).

The changes in standard free energy (ΔG°), entropy (ΔS°), 
and enthalpy (ΔH°) were estimated using the following 
Eqs. 8–10 [42].

(8)ΔG = −RTlnKd

Fig. 7   Sorption isotherm for 
prepared sorbent
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Table 2   Isotherm model constants and correlation coefficients for the 
B sorption

Langmuir isotherm constants Freundlich isotherm constants

Q0 (mg/g) b (L/mg) R2 KF n R2

4.7136 0.0544 0.9988 1.1177 3.9471 0.9394
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The calculated enthalpy change (ΔH°) was found 
as − 25.87 kJ/mol. The negative values indicate that the sorp-
tion phenomena are exothermic. The entropy change was 
(ΔS°) − 0.097 kJ/mol K, which means the loss of vibrational 
and rotational freedom of the groups of OH in GMA-NMG 
was involved in complexation with the boron atom [43]. The 
calculated values of standard free energy change (ΔG°) were 
positive for all temperature changes, implying that the extent of 
sorption is limited [44]. This could be due to the complexation 
of boron especially with cis-diol groups.

3.7 � Regeneration and reuse of the sorbent

The regeneration process for the exhausted sorbent is the same 
as explained elsewhere [11]. The regeneration efficiency (RE, 
%) was calculated according to Eq. 11. The results are pre-
sented in Table 4. The results show that the sorbent can be 
regenerated with 0.5 M HCl or 0.5 M H2SO4 with efficiency 
more than 99%

(9)lnKd =
ΔS

◦

R
−

ΔH
◦

RT

(10)ΔG◦ = ΔH◦ − TΔS◦

(11)

RE(%) =
desorbedamountofBfromsorbent(mg)

sorbedamountofBontosorbent(mg)
× 100

The desorption and reuse tests of the prepared sorb-
ent were carried out. In this part of the experiments, 
the 0.2 g sorbent was contacted with 25 mL of a boron-
containing solution (5 mgB/L) for 1 h; then, the sorbent 
was removed from the solution and washed with deion-
ized water. Regeneration of the sorbent was performed 
with 0.5 M 25 mL H2SO4 solution. The sorbent was kept 
in contact with the H2SO4 solution for 1 h. Then, it was 
removed from the acidic solution and washed with NaOH 
solution (pH 12) to remove the excess of H2SO4 from the 
sorbent and convert the quaternary groups to the free base 
form. After washing with NaOH solution, the sorbent was 
washed with deionized water to remove excess alkali from 
the sorbent and then used for further sorption tests. The 
sorption regeneration performance of the sorbent is shown 
in Fig. 8. As can be seen from the figure, the performance 
of the sorbent did not change after 5 sorption cycles, which 
can be considered a promising advantage from the envi-
ronmental and economic point of view.

Table 3   Boron sorption 
capacities of different sorbents

Sorbent Maximum sorption 
capacity (mg/g)

Temperature 
(°C)

References

Calcined alunite 3.39 25 [29]
Magnesite and bentonite clay composite 4 - [30]
Calcium alginate gel beads 199 20 [31]
Neutralized red mud 30.12 25 [32]
Mg-Fe hydrotalcite
Mg–Al hydrotalcite

3.6
14

25 [33]

Porous aromatic framework PAF-1-NMDG
Porous aromatic framework P2-NMDG

18.38
10.87

25 [34]

Chelest Fiber GRY-HW fiber
Diaion CRB02 boron-selective resin
Diaion CRB05 boron-selective resin

18.52
13.18
17.45

25 [35]

Cellulose-based microsphere 12.4 25 [36]
Functionalized polyacrylonitrile 5.5 25 [37]
Fly ash agglomerates 0.16 25 [38]
Ionic liquid loaded cellulose nanocrystals 89.4 25 [39]
Powder cellulose-NMG
Fiber cellulose-NMG

11.89
11.89

- [28]

polyethylene (PE) non-woven fiber-NMG - [40]
Cellulose acetate-ribose
Cellulose acetate-NMG

17.6
32.4

25 [41]

Cellulose-GMA-NMG 4.71 25 This work

Table 4   Regeneration 
performance of different eluent

Regenerant Regeneration 
efficiency (%)

0.1 M HCl 98
0.5 M HCl  > 99
0.1 M H2SO4  > 99
0.5 M H2SO4  > 99

13088



Biomass Conversion and Biorefinery (2023) 13:13081–13090

1 3

4 � Conclusions

In summary, cellulose containing N-methyl-glucamine 
was prepared by a two-step process. In the first step, the 
glycidyl methacrylate-N-methyl glucamine monomer was 
synthesized, and in the second step, the monomer was 
attached to the cellulose. FTIR and elemental analysis 
confirmed the successful preparation of the sorbent. The 
results showed that optimal boron removal can be achieved 
at pH ≥ 4. The sorption reached equilibrium in 60 min. The 
maximum sorption capacity was found to be 4.7 mg B/g 
sorbent. Thermodynamic studies showed that the sorption 
of boron is exothermic and followed by a decrease in the 
randomness of the system. More than 99% of boron was 
desorbed during the regeneration process, and the sorbent 
can be used for at least five adsorption–desorption cycles.
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