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Abstract
How to dispose agricultural waste walnut green peel has been a hard nut to crack during the ripening season. Transforming 
walnut green peel into activated carbon as electrode materials for energy storage devices would be a potential avenue to reduce 
the caused environmental pollution. Here, activated porous biomass carbon was successfully prepared by a simple KOH two-
step activation of walnut green peel and applied in supercapacitors. Thereinto, the prepared carbon WGL-7 activated at 700 
ºC showed high specific surface area (1404.3 m2 g−1), abundant structural defects and pore structure, modest oxygen doping 
and wettability, and fast charge-transfer. The capacitance of WGL-7 modified electrodes could achieve 236 F g−1 at 0.5 A 
g−1 in 6 M KOH electrolyte, and its calculated energy density and power density were 31.8 W h kg−1 and 1003.5 W kg−1. 
The capacitance retention rate remained 94.4% after 3000 cycles at 10 A g−1. These results indicate that walnut green peel-
activated carbon as the electrode material of supercapacitor has great capacitive performance.
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1  Introduction

With the rapid development of the economy, the burning of coal 
and fossil resources has brought problems of environmental 
pollution and resource shortage. Therefore, it is urgent to find 
low-cost and green alternative energy [1–4]. Renewable energy 
sources, composed of wind and solar, tidal, and wave etc. are 
clean and can be converted into electrochemical energy  [5–9]. 
However, intermittence of these energies endows the develop-
ment of energy storage devices with significance. As one of 
them, supercapacitors show the advantages of high powerful 
density and specific energy, fast charging/discharging, excel-
lent electrochemical stability, and so on [10–14]. Carbon-based 
materials [15–17], metallic oxides  [18, 19], and conductive 
polymer  [20, 21] can be ideal electrode materials. Among them, 
porous carbon materials show excellent supercapacitor perfor-
mance because of their high specific surface area, outstanding 
chemical stability, and developed pore structure  [18, 22, 23].

Plant biomass is the only sustainable source of organic car-
bon for the time being. Therefore, the activated porous carbon 
materials from plant biomass have attracted much attention 
[24–30]. In general, specific surface area, aperture distribu-
tion, and functional groups on the surface of activated carbon 
are the main determining factors deciding the performance 
of their supercapacitors [31–34]. Activated carbon with high 
specific surface area and abundant aperture structures facili-
tate ion diffusion. Abundant carboxyl groups and hydroxyl 
groups benefit the wetting of electrodes [35–37]. The walnut 
green peel presents a kind of network structure, composed of 
glucose, naphthoquinones, terpenoids, and polyphenols  [38, 
39]. And the walnut green peel is rich in carbon elements and 
oxygen functional groups. This gives a strong hint that walnut 
green peel is a potential outstanding raw material to prepare 
activated porous carbon materials as supercapacitor electrodes. 
In addition, China’s annual output of accessible walnut green 
peel is more than 350,000 tons  [40, 41]. Therefore, making 
good use of walnut green peel is not only economical but also 
can effectively reduce environmental pollution.

In this paper, walnut green peel was used as the raw mate-
rial to prepare activated porous carbon in different activation 
temperatures by direct pyrolysis and KOH activation [25–30]. 
The intrinsic properties of these activated porous carbons were 
explored based on their morphology, composition, and pore 
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structure. Under the optimized annealing temperature, the pre-
pared activated porous carbon showed a high specific surface 
area of 1404.3 m2 g−1 and was demonstrated to show excellent 
electrochemical performance with a large specific capacitance 
(236 F g−1 at 0.5 A g−1) in 6.0 M KOH electrolyte in the three-
electrode system and had high capacitance retention rate, com-
parable to the previously reported activated carbons derived 
from biomass including poultry litter  [13], lotus leaf  [14], 
fungal hyphae  [16], wheat flour  [23], larch  [28], tobacco rod  
[31], lemon peel  [34], cotton  [42], baobab fruit shell  [43], 
pinecone  [44], walnut shell  [45], orange peel  [46], seaweed 
[47, 48], onion  [48], and rice straw  [49]. Table 1 showed their 
specific capacitance performance.

2 � Experimental

2.1 � Synthesis of activated porous carbon 
from walnut green peel

Walnut green peel was collected from the China University 
of Geosciences, Beijing, then washed, dried, and ground into 
powder. The walnut green peel powder was calcined under 
N2 at 500 ºC for 2 h to obtain the optimized pre-carboniza-
tion products (Fig. S1). The pre-carbonized walnut green peel 

powder and KOH were thoroughly mixed at a mass ratio of 
1:4. After that, the mixture was heated at 600, 700, and 800 
ºC for 2 h under N2/Ar to obtain three different carbonization 
products named WGL-6, WGL-7, and WGL-8 respectively. 
The products were rinsed to be neutral (pH = 7) and dried to 
be used. The synthetic process was displayed in Scheme 1.

2.2 � Electrochemical measurement

All electrochemical performance tests were performed on 
a CHI760E electrochemical workstation using a three-elec-
trode system in 6.0 M KOH electrolyte. Platinum and Hg/
HgO electrodes were used as the counter electrodes and ref-
erence electrodes, respectively. The working electrodes were 
prepared by coating WGLs, acetylene black, and PVDF on 
the nickel foam in a certain proportion.

3 � Results and discussion

SEM images in Fig. 1a, d, and h Fig. 2 exhibited the mor-
phology of WGL-6, WGL-7, and WGL-8. WGL-6 and 
WGL-7 showed a sheet-like morphology and the thickness 
of WGL-7 nanosheets were ~ 70 nm, while WGL-8 exhibited 
the agglomerated structure. TEM images further revealed 

Table 1   Specific capacitance 
of reported activated carbon of 
different biological wastes

Number Biomass Main elements Capacitance value References

1 Poultry litter C, O 229 F g−1 at 0.2 A g−1 [13]
2 Lotus leaf C, N, O 353.7 F g−1 at 0.5 A g−1 [14]
3 Fungal hypha C, N, O 279 F g−1 at 1 A g−1 [16]
4 Wheat flour C, O 161.4 F g−1 at 0.5 A g−1 [23]
5 Larch C, O, Si 254.0 F g−1 at 0.2 A g−1 [28]
6 Tobacco rod C, N, O 286.6 F g−1 at 0.5 A g−1 [31]
7 Lemon peel C, O 152.14 F g−1 at 10 mV s−1 [34]
8 Cotton C, O, P 278 F g−1 at 1 A g−1 [42]
9 Baobab fruit shell C, N, O 233.48 F g−1 at 1 A g−1 [43]
10 Pinecone C, O 185 F g−1 at 0.5 A g−1 [44]
11 Walnut shell C, O 169.2 F g−1 at 0.5 A g−1 [45]
12 Orange peel C, N, O 180.2 F g−1 at 1 A g−1 [46]
13 Seaweed C, O, Ca 226.3 F g−1 at 10 mV s−1 [47]
14 Onion C, O 179.5 F g−1 at 0.5 A g−1 [48]
15 Rice straw C, O 150.7 F g−1 at 0.1 A g−1 [49]

Scheme 1   The schematic 
diagram for activated carbon 
WGLs from walnut green peel
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the morphology of these carbon materials. TEM images of 
WGL-6, WGL-7, and WGL-8 were displayed in Fig. 1b, e,  
and i. The sheet-like morphology with abundant pores can 
be clearly observed in WGLs. Scattered graphitic structure 
domains of WGL-7 and WGL-8 can be indicated by obvi-
ous graphite layer fringes in high-solution TEM images 
(Fig. 1f, j), which can facilitate electrical conductivity of 
carbon materials and charge transfer in supercapacitors. Lat-
tice spacing value of ~ 0.32 nm corresponded to (002) plane 
of graphite  [42]. WGL-6 had no obvious graphite structure 
domain due to low calcination temperature (Fig. 1c), indicat-
ing that its low degree of graphitization element distribution 
of WGL-7 was investigated by energy dispersive spectrum 
(EDS) elemental mapping (Fig. 1e–f). Two elements, C 
(89%) and O (12%), were uniformly distributed in WGL-7.

The crystallite structure of WGL-6, WGL-7, and 
WGL-8 was demonstrated by X-ray diffraction (XRD) 
(Fig. 3a). They all showed a broad peak at 20 ~ 30° and 
a peak at 43°, corresponding to planes (002) and (100) 
of graphite  [50]. The XRD patterns indicated the limited 

graphitization of WGL-6, WGL-7, and WGL-8. Raman 
spectra analysis was performed and shown in Fig. 3b. Two 
significant peaks at ~ 1350 and ~ 1580 cm−1 were assigned 
to D band and G band of carbon  [29] and represented 
structural defects and graphite carbon structure, respec-
tively. The defects in WGL-6, WGL-7, and WGL-8 were 
evaluated by the calculated relative strength ratio (ID/IG). 
The ID/IG values of WGL-6, WGL-7, and WGL-8 were 
0.87, 0.91, and 0.93, which demonstrated that all the car-
bon materials possessed abundant structural defects after 
activation and calcination. Fourier transform infrared 
spectroscopy (FT-IR) spectra of WGL-6, WGL-7, and 
WGL-8 were shown in Fig. 4c . WGLs showed two sharp 
peaks at ~ 1230 and ~ 1035 cm−1, attributable to the C = O 
and C–O stretching vibrations  [43]. The absorption peaks 
at ~ 1390 cm−1 can be attributed to the –OH to bend vibra-
tions and peaks from ~ 1550 to ~ 1840 cm−1 were derived 
from the C = O and C = C in-plane vibration  []. FT-IR 
results indicated that WGLs had abundant hydroxyl groups 
and carboxyl groups.

Fig. 1   SEM image (a), TEM 
image (b), and HR-TEM image 
(c) of WGL-6; SEM image (d), 
TEM image (e), HR-TEM image 
(f) of WGL-7; SEM image (h), 
TEM image (i), and HR-TEM 
image (j) of WGL-8

Fig. 2   The elemental mapping 
images (a–c) of WGL-7
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The XPS survey spectra of WGL-6, WGL-7, and 
WGL-8 were shown in Fig. 3d. Only C 1 s and O 1 s peaks 
without other obvious impurities were observed. High-
resolution C 1 s XPS spectra were displayed in Fig. 3e. 
Three deconvolved peaks at 284.8, 286.2, and 289.0 eV 
corresponded to C–C, C–O, and C = O, respectively  [43, 
51]. The O 1 s spectra of WGL-6, WGL-7, and WGL-8 
in Fig. 3f  can be curve-fitted as three peaks at 531.4, 
532.5, and 533.8 eV, which were assigned to element O 
in bonds of C = O, C–O, and O = C–OH functional groups  
[43, 51, 52]. The C element contents of WGL-6, WGL-7, 
and WGL-8 were 85.7%, 87.0%, and 91.5%. And the O 
contents were 14.3%, 12.9%, and 8.5%, respectively. The 
element content based on XPS analysis of WGL-7 agreed 
with the EDS mapping results. It can be concluded that 
higher activation temperature contributed to the decrease 
of O content. It was acknowledged that O-functional 

content played an important role in the surface character-
istics of carbon-based materials. Therefore, contact angle 
tests (Fig. 4) were carried out to investigate their wettabil-
ity. The contact angles of WGL-6, WGL-7, and WGL-8 
showed in Fig. 4 were 111.7°, 112.8°, and 126.4°, respec-
tively. It was demonstrated that porous carbon WGL-6 and 
WGL-7 with more oxygen-containing functional groups 
exhibited higher wettability.

To determine the pore texture properties and specific sur-
faces area of WGL-6, WGL-7, and WGL-8, BET tests were 
performed. The nitrogen adsorption–desorption isotherms 
were shown in Fig. 5a. The isotherms exhibited a feature of 
type I and type IV isotherms, which demonstrated the pres-
ence of both micropores and mesopores in WGL-6, WGL-7, 
and WGL-8  [44, 52, 53]. The corresponding specific sur-
face areas of WGL-6, WGL-7, and WGL-8 were calculated 
to be 1159.7, 1404.3, and 1067.9 m2 g−1, respectively. The 

Fig. 3   XRD patterns (a), 
Raman spectra (b), Infrared 
spectra (c), XPS survey spectra 
(d), and high-resolution C 1 s 
(e) and O 1 s (f) XPS spectra of 
WGL-6, WGL-7, and WGL-8
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results verified that activation temperature of 700 ºC showed 
the highest surface area, which facilitated to enhance the 
specific capacitance. The pore size distribution (Fig. 5b) cal-
culated by density functional theory (DFT) methods further 

confirmed the presence of micropores and mesopores in 
WGL-6, WGL-7, and WGL-8, and the pore size was dis-
tributed at mainly between 2 and 10 nm. Based on the BET 
results, it can be predicted that all WGLs can be potential in 

Fig. 4   Contact angle test images 
of WGL-6 (a), WGL-7 (b), and 
WGL-8 (c)

Fig. 5   N2 adsorption–desorp-
tion isotherms (a) and pore size 
distributions (b) of WGL-6, 
WGL-7, and WGL-8

Fig. 6   CV curves of WGL-6 
(a), WGL-7 (b), and WGL-8 (c) 
at 5–60 mV s−1
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a prospective application because of their high specific sur-
face area and abundant apertures, and WGL-7 would exhibit 
the best super capacitive performance.

The electrochemical properties of carbon materials were 
measured by cyclic voltammetry (CV) scans and galvano-
static charge–discharge (GCD) tests. Figure 6a–c showed the 
CV curves of WGL-6, WGL-7, and WGL-8 at 5–60 mV s−1. 
All the curves exhibited the approximate rectangle feature, 
indicating that WGL-6, WGL-7, and WGL-8 showed typical 
electrochemical double layer capacitors (EDLC) behavior. 

Figure S2a-S2c gave the charge–discharge curves at 0.5–10 
A g−1 of WGL-6, WGL-7, and WGL-8. All curves presented 
a symmetrical triangle, indicating that WGLs had good 
capacitance reversibility. Figure 7a compared the CV curves 
of WGL-6, WGL-7, and WGL-8 at 5 mV s −1. A larger 
CV integrated area of WGL-7 indicated its better specific 
capacitance as supercapacitor electrode material. Figure 7b 
compared the charge–discharge curves of WGL-6, WGL-
7, and WGL-8 at 0.5 A g−1. The specific capacitances of 
WGL-6, WGL-7, and WGL-8 were calculated to 211, 236, 

Fig.7   CV curves at 5 mV s−1 
(a), GCD curves at 0.5 A g−1 
(b) of WGL-6, WGL-7, and 
WGL-8; c GCD curves of the 
WGL-7 at 0.5–10A g−1 in a 
two-electrode system; d the 
capacitance retention of WGL-7

Fig. 8   Nyquist diagrams (a), 
the relationship of the specific 
capacitance and the frequency 
(b), and corresponding 
equivalent circuit (c) of WGL-6, 
WGL-7, and WGL-8. Inset in 
(a) showed the Nyquist plots in 
high-frequency region
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and 185 F g−1, respectively. These results demonstrated that 
WGL-7-modified electrodes displayed the highest capaci-
tance at all current densities. When WGL-7-modified elec-
trodes were applied in a two-electrode symmetric capacitor 
(Fig. 7c), its specific capacitance reached 57.2 F g−1 at 0.5 
A g−1, where the energy density was 31.8 W h kg−1 and the 
power density was 1003.5 W kg−1. The cycle stability test 
of WGL-7 at 10 A g−1 was shown in Fig. 7d. After 3000 
cycles of charge–discharge, the capacitance retention rate 
of WGL-7 remained still about 94.4%.

To understand their impedance behavior performance, 
electrochemical impedance spectroscopy (EIS) tests were 
performed. Nyquist diagrams of WGL-6, WGL-7, and 
WGL-8 were displayed in Fig. 8a. In the high-frequency 
range, all WGLs showed small semicircles and their 
equivalent series resistance (ESR) were all less than 
0.1 Ω, illustrating the WGL-modified electrodes exhib-
ited low charge-transfer resistance and negligible series 
resistance. In the low-frequency region, the straight line 
of WGL-7 showed the maximum slope compared to 
WGL-6 and WGL-8, indicating that WGL-7 was more 
potential in capacitive performance. Figure 8b gave the 
capacitance-frequency plots of WGL-6, WGL-7, and 
WGL-8. Specific capacitances of WGL-6, WGL-7, and 
WGL-8 at the low-frequency of 0.01 Hz were 119, 146, 
and 114 F g−1, respectively. WGL-7 displayed the high-
est specific capacitance at the same frequency. The trend 
was in accordance with the results of CV and GCD tests. 
Nyquist diagrams can be fitted by the equivalent circuit 
shown in Fig. 8c.

4 � Conclusion

In summary, walnut green peel was successfully converted 
into activated carbon materials WGLs by the carbonization 
and KOH activation. WGLs showed high specific surface 
areas with abundant aperture and structural defects, and 
were potential in supercapacitors. Among them, WGL-7 
activated at 700 ºC had the highest specific surface area 
(1404.3 m2  g−1) as well as modest oxygen doping and 
wettability. EIS tests also showed WGL-7 exhibited fast 
charge-transfer and potential application in capacitive per-
formance. The capacitance of WGL-7-modified electrodes 
achieved 236 F g−1 at 0.5 A g−1 and showed excellent 
cycle stabilization in 6 M KOH electrolyte. The study 
demonstrated that converting walnut green peel into acti-
vated porous carbon as electrode materials for supercapac-
itor provided a potential avenue to reduce environmental 
pollution caused by walnut green peel and maximize its 
value.
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