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Abstract
We have examined performance of various machine learning (ML) methods (artificial neural network, random forest, support 
vector-machine regression, and K nearest neighbors) in predicting the kinetics of hydrothermal carbonization (HTC) of cel-
lulose, poplar, and wheat straw performed under two different conditions: first, isothermal conditions at 200, 230, and 260 °C, 
and second, with a linear temperature ramp of 2 °C/min from 160 to 260 °C. The focus of this study was to determine the 
predictability of the ML methods when the biomass type is not known or there is a mixture of biomass types, which is often 
the case in commercial operations. In addition, we have examined the performance of ML methods in interpolating kinetics 
results when experimental data is available for only a handful of time-points, as well as their performance in extrapolating 
the kinetics when the experimental data from only a few initial time-points is available. While these are stringent tests, the 
ML models were found to perform reasonably well in most cases with an averaged mean squared error (MSE) and R2 values 
of 0.25 ± 0.06 and 0.76 ± 0.05, respectively. The ML models showed deviation from experimental data under the conditions 
when the reaction kinetics were fast. Overall, it is concluded that ML methods are appropriate for the purpose of interpolat-
ing and extrapolating the kinetics of the HTC process.
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1 Introduction

Hydrothermal carbonization (HTC) is a thermochemical 
conversion process in which hot, pressurized, and subcriti-
cal form of residual moisture is used as a reaction medium 
for the conversion of wet biomass and sludges to carbon 
and a nutrient-rich solid product called hydrochar, process 
liquid with high total organic content, and a gaseous product 
containing primarily carbon dioxide [1–3]. Hydrochar, the 
main product of HTC, has been used as a solid fuel—due 

to high percentage of fixed carbon [4], additive for biofuel 
pellets [5], adsorbent medium — due to high density of 
surface functional groups [6], carbon materials for anaero-
bic bioreactor [7], electrode materials — due to their high 
conductivity [8], fertilizer — due to condensed nutrients 
[9], and many more. Meanwhile, HTC process liquid can be 
converted to energy by anaerobic digestion [10] and wet air 
oxidation [11], and into liquid fertilizer [12], depending on 
the feedstock type.

In the HTC process, the reaction temperatures range from 
180 to 280 °C and the pressure is usually increased above 
saturation pressure to keep water in its liquid state during 
HTC. The reaction times vary from 1 min to 18 h [2, 7, 
13]. HTC process is understood to be slightly exothermic, 
releasing 0.74–1.1 MJ/kg of heat depending on the type of 
biomass [14]. During the HTC process, hydrolysis of biopol-
ymers occurs first to produce sugar monomers, which then 
undergo dehydration into sugar derivatives followed by a 
series of complex reactions namely condensation, aromati-
zation, and polymerization to produce hydrochar [1]. HTC 
reaction kinetics for an individual biopolymer (e.g., carbo-
hydrates, proteins, hemicelluloses, cellulose, and lignin) 
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vary extensively and in most cases, their reaction kinetics 
are interfered directly with other reaction kinetics or indi-
rectly by secondary products produced from separate reac-
tions [15]. Moreover, like any other reaction, HTC reaction 
kinetics are affected by catalysts [16]. In fact, homogeneous 
catalysts (e.g., organic acids or bases) have been used to 
increase the selectivity of a specific product from HTC [17, 
18]. A catalyst was not used in the experiments that are con-
sidered for machine learning (ML) modeling in this work. 
Since catalysts alter the reaction kinetics, an ML-based pre-
dictive model should be re-trained on new experimental data 
if a catalyst has been added or replaced in the experiments.

An impediment in the scale-up and commercialization of 
the HTC process is that feed from different sources varies 
in composition, and so there is a lack of predictability of the 
optimum conditions for carrying out the HTC process and 
the properties of the hydrochar thus formed [19]. HTC pro-
cess involves a large number of complex chemical reactions, 
as well as physical transformations of the biomass constitu-
ents. These changes, along with the different partitioning 
tendencies of chemical species between the solid and the 
liquid phases, render mechanistic modeling of the process 
quite challenging. In this work, we have applied various 
machine learning methodologies to model the experimental 
kinetics of HTC of three different biomass types at different 
reaction conditions.

ML refers to a class of algorithms that have the ability to 
learn from experience (data) to perform a task (e.g., predict-
ing the outcome of an experiment), and improve their per-
formance on the task as they gain more experience [20, 21]. 
Supervised ML algorithms are first trained on some data, 
called the training set, and then the trained ML algorithms 
are used to make predictions for unseen data [21]. Some 
popular supervised ML algorithms are random forest (RF), 
artificial neural network (ANN), support vector-machine 
regression (SVR), and K nearest neighbors (KNNs). Li et al. 
implemented SVR and RF methods to develop ML models 
to predict fuel characteristics (yield, heating value, energy 
recovery, energy density, etc.) of various feedstocks after 
HTC and pyrolysis treatment [22]. In another work, a multi-
task prediction model using ANN was developed to predict 
hydrochar properties based on feedstock properties as well 
as HTC conditions [23]. Kardani et al. modeled the conver-
sion of feedstock as a function of feedstock composition 
and operating conditions using various ML techniques [24].

The goal of this study was to evaluate various ML 
approaches to predict the kinetics of feedstocks hydrother-
mally carbonized at different reaction temperatures and times. 
Experimental data previously published by our group is the 
basis of this study [15]. The experimental data includes three 
feedstocks namely cellulose, poplar, and wheat straw that 
were hydrothermally carbonized in a 5-gal reactor in two 
different modes: isothermal and dynamic. In the isothermal 

runs, three reaction temperatures (200, 230, and 260 °C) were 
studied for 0–480 min. In the dynamic runs, the experiments 
were performed with a temperature ramp of 2 °C/min going 
from 160 to 260 °C, and samples were collected every 5 min. 
Although various physicochemical analyses were reported in 
the published paper [15], here we have focused on the elemen-
tal analysis (CHNS) for this ML study. Ultimate analysis of 
hydrochars provides elemental carbon, hydrogen, sulfur, and 
nitrogen content. Oxygen content is calculated by the differ-
ence method. None of the feedstocks that were studied in these 
experiments contain significant amounts of sulfur and nitro-
gen. Performing kinetics based on hydrogen is expected to be 
difficult, as subcritical water is used for HTC, which facilitates 
hydrolysis and dehydration reactions. Therefore, carbon is the 
best choice for the kinetics study, as carbon content was found 
as high as 70% of the hydrochar. However, reaction order can-
not be established based on elemental composition, and so this 
study did not predict the specific reaction orders.

Specifically, we have studied three different scenarios 
wherein the application of ML modeling is envisioned to 
be practically useful. The first scenario, termed Kinetics, 
is the simplest case where the entire kinetics of nitrogen, 
sulfur, and hydrogen are included as features to predict the 
kinetics of carbon during the HTC process. The second sce-
nario, termed Interpolation, is a more stringent test of ML 
modeling. In Interpolation, kinetics data of only the initial, 
middle, and last time-points of an experiment are included 
as features in the model and the kinetics data for all the 
intermediate time-points are predicted. The rationale for this 
scenario is that since the HTC process occurs at high tem-
peratures and pressures, it is not feasible to collect a large 
number of samples at frequent time points. Therefore, the 
Interpolation modeling methodology will help in enhancing 
the kinetics data by providing estimates of the weight per-
cent of carbon at the intermediate time points. The third sce-
nario, termed Extrapolation, is another stringent test of ML 
modeling. In this scenario, the kinetics data of the first three 
time-points are included as features in the model and the 
kinetics for the entire HTC experiment are then predicted. 
The rationale is that for biowastes of different compositions, 
it is costly and time-consuming to run the HTC experiment 
for the entire duration. Therefore, the Extrapolation mod-
eling methodology will be useful for predicting the kinetics 
of an HTC process provided a short duration experimental 
run has been performed.

2  Material and methods

2.1  Data preprocessing

The first step is to ensure that there are no missing and 
incorrect values in the data [25, 26]. As shown in Table 1, 
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our dataset includes 1 categorical and 5 numerical fea-
tures. The experimental data has three different biomass 
types: cellulose, poplar, and wheat straw. For each biomass 
type, there are four different experiments: three experi-
ments are done in isothermal conditions and one experi-
ment is done with a constant temperature ramp. Overall, 
there are 12 experiments. The dataset has 132 data-points 
from all the experiments. The ranges of the numerical fea-
tures are listed in Table 1. The categorical feature specifies 
the type of the experiment performed: isothermal or 
dynamic. The categorical feature was converted to an indi-
cator or dummy feature. All numerical features were 
scaled to the z-score of a standard normal distribution. 
Z-score for a feature value is obtained by subtracting the 
mean of the feature and then dividing the result by the 
standard deviation of the feature [26]. To capture the 
Arrhenius effect on the kinetics, exp

(

273+230

273+T

)

 was used as 
a feature in lieu of T, where T is the temperature in K. 
Biomass type was removed from the dataset so that the 
trained ML model is agnostic to the type of biomass.

2.2  ML modeling strategies

The weight percent of elemental carbon in the HTC system 
was considered as the target variable or the label for ML 
modeling. The experimental data included three different 
types of biomasses: cellulose, poplar, and straw. Gener-
ally, biowaste is a mixture of different biomass types. So, 
a successful ML strategy should be able to make good 
predictions of the kinetics of the HTC process without 
the knowledge of the constituent biomass type. Therefore, 
the information of biomass type was removed, that is, was 
not included as a feature during the ML modeling. We 
studied three different scenarios of ML modeling: Kinet-
ics, Interpolation, and Extrapolation. These scenarios, and 
rationale for studying them, are discussed in detail in the 
introduction section.

2.3  ML implementation details

The performance of supervised ML models is a function of 
the selected hyperparameter values [27]. So, the first step 
was to determine the optimum set of hyperparameters for 
each of the ML models studied (SVR, RF, ANN, KNN). 
Once each ML model was optimized, the performance of 
the optimized ML models was compared to select the best 
model for a given application. The selected ML model was 
then used to make predictions of the experimental data. The 
implementation of these steps is discussed in detail below.

Hyper-parameter tuning. The ranges of the hyperparam-
eters for each ML algorithm are listed in Table S1 (Sup-
porting Information). Performance of the ML algorithms 
was evaluated by calculating the mean squared error (MSE) 
between the predicted and the experimental values of the 
label as the evaluation metric. Generally for implementing 
ML methodologies, dataset is split randomly into training 
and testing sets. In this work, we are interested in predict-
ing the entire kinetics of an experiment. So, the approach 
of randomly splitting the dataset in training and testing set 
is not suitable. Since the experimental data comprises of 
12 different experiments, the best ML model was evalu-
ated by performing a 12-fold cross-validation with each 
HTC experiment considered as a fold. So, one experiment 
is completely hidden, and the remaining 11 experiments are 
utilized for training the ML models. In the case of stochastic 
ML algorithms, ANN, and RF, the 12-fold cross-validation 
was iterated 50 times to ensure robustness of results. Only 
the hyperparameters that are understood to have the largest 
effect on the performance of the ML algorithms were studied 
while choosing suggested default values of the other hyper-
parameters. As an example, for ANN, the activation function 
was set to Relu; Adam solver was used for the optimization 
of weight vectors; and the learning rate was set to 0.001 [28]. 
Figure 1 compares the performance of the ML algorithms 
with different sets of hyperparameters for the Kinetics mod-
eling scenario. Similar comparison of the performance for 
the Interpolation and Extrapolation scenarios are shown in 
Fig. S1 and S2 of the supplementary material, respectively. 
In the case of ANN (Fig. 1A), it was observed that increas-
ing the number of hidden layers, nHLs, worsened the perfor-
mance when the number of neurons, nNeurons, in each layer 
was 2. When the number of neurons was increased beyond 2, 
no improvement in the MSE was observed with the increase 
in nHLs. A similar trend was observed in Fig. S1(A). In 
Fig. S2(A), the performance of ANN was found to worsen 
with the increase in nHLs. This is expected as the total num-
ber of neurons and the connections between them geometri-
cally increase with the increase in the nHLs, and so, the con-
nections get sub-optimally trained when the training dataset 
is not large. The SVR model was implemented using the 
Gaussian Radial Basis Function kernel. The hyperparameter 

Table 1  Details of input variables (features) used in the modeling of 
kinetics of biomasses. Nitrogen, sulfur, and hydrogen content were 
hidden in the prediction data for the Interpolation and the Extrapola-
tion scenarios for all but three time-points in the data set

Description Range Unit Type

Experiment type (Isothermal, 
Dynamic)

 − Categorical

Temperature [160–260] °C Numerical
Time [0–480] min Numerical
Nitrogen content [0.0–2.0] % Numerical
Sulfur content [0.0–1.0] % Numerical
Hydrogen content [4.0–7.0] % Numerical
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gamma, γ is the inverse of the standard deviation of the 
Gaussian functions used in the kernel. For the SVR model 
(Fig. 1B), the performance was found to be worst for the 
smallest and largest values of γ (0.001 and 1.0), which is 
understandable as a small value of γ makes the Gaussian 
spread large, so that accuracy of the prediction decreases. A 
large value of γ makes the Gaussian function sharply peaked 
so that the training data is overfitted. Figure 1B shows that 
in general, the performance worsened with the increase in 
the cost, which is the regularization parameter of SVR. A 
large value of the cost may result in overfitting of the train-
ing data. γ = 0.1 and cost = 5 were found to be the optimum 
values of the hyperparameters. In the case of Interpolation 
and Extrapolation scenarios, a smaller value of γ (= 0.001) 
and a larger cost (= 100) were found to be optimum. In the 
case of RF model (Fig. 1C), the best performance, that is 
lowest MSE, was observed when the fraction of features 
to be split for making decision trees was set to 1.0. Beyond 
100 trees, no improvement in the performance was observed 
and so the RF model with 100 trees was optimum. For the 
Interpolation and Extrapolation scenarios, the performance 
of the RF model did not improve beyond 10 trees. In the 
case of KNN (Fig. 1D), a monotonically decreasing trend of 
the MSE was obtained, implying that the number of neigh-
bors = 7 is the optimum choice. For the Interpolation and 
Extrapolation scenarios, the number of neighbors = 3 and 

7 respectively were found to be optimum. Furthermore, it 
was found that applying distance-based weights to the label 
values of the neighbors resulted in a slight improvement 
in the performance. Once the optimum set of hyperparam-
eters for each ML model was determined, the performance 
of these models was compared against each other for the 
three scenarios (Fig. 2). Table 2 lists the hyperparameters 
of the optimum ML models. It was found that RF is the best 
model for the Kinetics scenario, whereas SVR is the best 
model for both Interpolation and Extrapolation scenarios. 
The best performing ML model for each scenario was cho-
sen for further data analysis.

3  Results and discussion

In all the ML models studied, we hid the information of 
biomass type from the models. The rationale for hiding this 
information is that in practical applications, we may not 
have a single biomass type in the biowaste but a mixture 
of biomass types. Different biomass types have significant 
differences in their microscopic structure and composition, 
and thus, they are expected to demonstrate different kinetics 
behavior. Therefore, hiding the information of biomass type 
make it quite challenging to predict the kinetics.

Fig. 1  Performance of A artifi-
cial neural network (ANN), B 
support vector-machine regres-
sion (SVR), C random forest 
(RF), and D K nearest neigh-
bors (KNN) for the prediction 
of carbon content for different 
values of the hyperparameters 
for the Kinetics scenario. The 
error bars are standard deviation 
of predictions on 50 independ-
ent iterations for ANN and RF. 
Similar figures for Interpolation 
and Extrapolation scenarios 
are provided in the supporting 
information
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Figure 3 compares the ML predictions of weight percent 
of carbon with the experimental results of the HTC process 

for the three biomass types wherein the temperature of the 
HTC was ramped up at a constant rate of 2 °C/min from 
160 to 260 °C. The Kinetics scenario, modeled using the RF 
model, matches the experimental results quite well for all the 
biomass types studied, except in the case of HTC of straw at 
temperatures above 230 °C where the prediction is above the 
experimental values (Fig. 3C). The RF model overpredicts 
the results of straw at high temperatures because the isother-
mal HTC experiments performed at temperatures of 230 °C 
and 260 °C (discussed later) show a higher weight percent of 
carbon as compared to the experimental results in Fig. 3C. 
Compared to cellulose, which does not contribute to the 
HTC reaction until 230 °C [13], extractives and hemicellu-
loses in straw start the HTC reaction as early as 180 °C [29]. 
Therefore, the reaction kinetics of straw showed an increase 
of reactivity from 180 °C. For the same reason, the Interpo-
lation scenario, modeled using SVR, slightly overpredicts 
the weight percent of carbon at higher temperatures for the 
HTC of cellulose (Fig. 3A), whereas its prediction is quite 
good for the poplar biomass (Fig. 3B). In the case of straw 
biomass, the prediction of the Interpolation scenario is quite 
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Fig. 2  Comparison of the performance of the best ML models for 
each scenario. The best ML model for Kinetics was RF (nTR 100, 
mFF 1.0), for Interpolation was SVR (γ 0.001, cost 100) and for 
Extrapolation was SVR (γ 0.001, cost 10). The error bars are standard 
deviation of predictions on 50 independent iterations  for ANN and 
RF

Table 2  Optimum values of 
the hyperparameters along 
with their MSE are reported. 
Note that the reported MSE are 
the average of 50 independent 
iterations for the ANN and RF 
models

Scenarios ↓ ANN SVR RF KNN
nHLs nNeurons γ cost nTR mFF K weights

Kinetics 3 10 0.1 5 100 1.0 7 distance
MSE 0.414 ± 0.034 0.471 0.301 ± 0.005 0.353
Interpolation 3 8 0.001 100 10 0.8 3 uniform
MSE 0.327 ± 0.067 0.192 0.266 ± 0.018 0.440
Extrapolation 1 6 0.001 10 50 0.7 7 distance
MSE 0.346 ± 0.026 0.299 0.410 ± 0.009 0.348

A B C

Fig. 3  Comparison between the predicted and the experimentally 
reported carbon content during the dynamic HTC of A cellulose, B 
poplar, and C straw. In these experiments, temperature was varied at 
a constant rate of 2 °C/min. ML models used for Kinetics, Interpola-
tion, and Extrapolation scenarios were RF (nTR 100, mFF 1.0), SVR 
(γ 0.001, cost 100), and SVR (γ 0.001, cost 10), respectively. The 

error bars for kinetics scenario are standard deviation of predictions 
on 50 independent iterations. Overall MSEs of the ML predictions 
are as follows: A Kinetics: 0.052, Interpolation: 0.056, Extrapolation: 
0.320; B Kinetics: 0.044, Interpolation: 0.035, Extrapolation: 0.026; 
and C Kinetics: 0.204, Interpolation: 0.050, Extrapolation: 0.009
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good. Interestingly, the Extrapolation scenario, modeled via 
SVR, matches the experimental results of poplar and straw 
quite well. In the case of cellulose, it slightly overpredicts 
the experimental results for higher temperatures. It should be 
noted that since the biomass type is hidden from the model, 
the ML model is unable to recognize that cellulose is rela-
tively inert until 230 °C and then reacts with very fast kinet-
ics [15], and therefore, the ML model predicts a continuous 
increase in carbon with the increase of HTC temperature that 
causes the observed discrepancy between the experimental 
results and ML predictions. It should be mentioned here that 
the trained ML model is applicable for the specific heating 
rate of 2 °C/min, and we have not tested the performance of 
this model on a different heating rate. For a different heating 
rate, one may need to re-train the ML model.

Figure 4 compares the ML predictions and results of iso-
thermal HTC of cellulose at different temperatures. In the 
experiments, it is observed that the reaction proceeds slowly 
at 200 °C so that not much increase in the weight fraction of 
carbon is observed as a function of time (Fig. 4A). The ML 
prediction from the Kinetics scenario matches the experi-
mental results quite well. The ML prediction from the Inter-
polation scenario also shows a good match to the data, but 
predicts a slightly faster kinetics. The Extrapolation scenario 
overpredicts the weight fraction of carbon. For the extrapola-
tion scenario, there is no information on the kinetics at later 
times and with the biomass type hidden, the predictions are 
solely based on the kinetics observed in the training data. 
Cellulose being relatively inert at 200 °C justifies this obser-
vation. In Fig. 4B, the kinetics of HTC of cellulose at 230 °C 
is shown. A significant increase in the weight percent of car-
bon is observed after 40 min, implying that the reaction gets 

initiated at this temperature. The Kinetics scenario is able to 
capture the initiation of the reaction as the information about 
the weight percent of other elements (N, S, H) are provided 
as inputs. However, both the Interpolation and Extrapolation 
scenarios fail to capture the initiation of the reaction and so 
deviate from the observed kinetics. Figure 4C shows the 
kinetics of HTC of cellulose at 260 °C. At 260 °C, the HTC 
reaction occurs rapidly and so the weight percent of carbon 
is close to 70% within the first few minutes of the reaction 
and then gradually increases with time. The Kinetics sce-
nario captures the kinetics quite well whereas the Interpo-
lation and Extrapolation scenarios underpredict the weight 
percent of carbon. Figure 5 shows the kinetics of isothermal 
HTC of poplar at 200 °C, 230 °C, and 260 °C. At 200 °C, 
the reaction has sluggish kinetics and a gradual increase in 
the weight percent of carbon is observed over time. All the 
three scenarios are able to capture the kinetics quite well at 
this temperature. At 230 °C and 260 °C, much faster kinet-
ics are observed and some mismatch in the predictions of 
the ML models are observed even though the correct trends 
are captured. Figure 6 shows the isothermal HTC of straw 
at the three temperatures. The slow kinetics at 200 °C is 
captured well by the ML models. At higher temperatures, the 
ML models show the correct trend but there are show some 
deviations from the experimental results. Figure 7 shows 
parity plots of the three scenarios for all the experiments. 
The overall R2 for the Kinetics, Interpolation, and Extrapo-
lation scenarios is 0.70, 0.82, and 0.71, respectively. This 
shows that the trained ML model worked reasonably well in 
the predictions for these three scenarios.

In Fig. 8, the relative importance of kinetics of N, S, and 
H, time, and temperature for predicting the weight percent of 

A B C

Fig. 4  Comparison between the predicted and the experimentally 
reported values of carbon content during the isothermal HTC of cel-
lulose biomass at A 200  °C, B 230  °C, and C 260  °C. ML models 
used for Kinetics, Interpolation, and Extrapolation scenarios were RF 
(nTR 100, mFF 1.0), SVR (γ 0.001, cost 100), and SVR (γ 0.001, cost 
10), respectively. The error bars for kinetics scenario are standard 

deviation of predictions on 50 independent iterations. Overall MSEs 
of the ML predictions are as follows: A Kinetics: 0.002, Interpola-
tion: 0.084, Extrapolation: 0.431; B Kinetics: 0.098, Interpolation: 
1.205, Extrapolation: 2.365; and C Kinetics: 0.403, Interpolation: 
0.166, Extrapolation: 0.018
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carbon for the Kinetics scenario is shown. To determine the 
significance of each feature, the value of that feature was ran-
domly permuted to break the relationship between the model’s 
prediction and the feature. The importance of a feature was 
measured by calculating the increase in the model’s predicted 
MSE after permuting the feature [30]. A feature is “impor-
tant” if shuffling its values increases the prediction error. This 
process was repeated for all features independently and the 
performance of the model was estimated by calculating the 

MSE of the model’s prediction. For the Kinetics scenario, it 
appears that the features of Time and Temperature are rela-
tively less important. However, such a conclusion is mislead-
ing. Both Time and Temperature affect the percentages H, N, 
and S. Therefore, the kinetics of H, N and S, in effect, capture 
the relationship of time and temperature and percentage of 
carbon. As shown in Fig. 8, the weight percent of hydrogen is 
a good predictor of the kinetics of carbon.

A B C

Fig. 5  Comparison between the predicted and the experimentally 
reported values of carbon content during the isothermal HTC of pop-
lar biomass at A 200 °C, B 230 °C, and C 260 °C. ML models used 
for Kinetics, Interpolation, and Extrapolation scenarios were RF (nTR 
100, mFF 1.0), SVR (γ 0.001, cost 100), and SVR (γ 0.001, cost 10), 
respectively. The error bars for kinetics scenario are standard devia-

tion of predictions on 50 independent iterations. Overall MSEs of 
the ML predictions are as follows: A Kinetics: 0.033, Interpolation: 
0.012, Extrapolation: 0.007; B Kinetics: 0.272, Interpolation: 0.099, 
Extrapolation: 0.163; and C Kinetics: 1.325, Interpolation: 0.399, 
Extrapolation: 0.090

A B C

Fig. 6  Comparison between the predicted and the experimentally 
reported values of carbon content during the isothermal HTC of straw 
biomass at A 200 °C, B 230 °C, and C 260 °C. ML models used for 
Kinetics, Interpolation, and Extrapolation scenarios were RF (nTR 
100, mFF 1.0), SVR (γ 0.001, cost 100), and SVR (γ 0.001, cost 10), 
respectively. The error bars for kinetics scenario are standard devia-

tion of predictions on 50 independent iterations. Overall MSEs of 
the ML predictions are as follows: A Kinetics: 0.072, Interpolation: 
0.016, Extrapolation: 0.012; B Kinetics: 0.286, Interpolation: 0.079, 
Extrapolation: 0.033; and C Kinetics: 0.853, Interpolation: 0.111, 
Extrapolation: 0.112
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4  Conclusions

In this work, we have explored the applicability of ML meth-
ods in predicting the kinetics of the HTC process of various 
biomasses. For this modeling, the information about biomass 
type was kept hidden from the ML models, so that one can 
represent practical scenarios where one is either interested 
in determining the kinetics of HTC of a new biomass type 
or when there is a mixture of various biomass types to be 
analyzed. We modeled three different scenarios, termed as 
Kinetics, Interpolation, and Extrapolation. In the Kinetics 
scenario, the weight percent of carbon was predicted, while 
the time-dependent weight percent of nitrogen, sulfur, and 
hydrogen were made available as input features. The Inter-
polation scenario was more stringent, wherein the weight 
percent of all elements were hidden, but their values at the 
initial, final, and middle time-point were made available to 
the ML model. The third scenario, Extrapolation, was even 

more stringent, wherein the weight percent of the elements 
were made available only for the first three time-points. 
We found that the trained ML models performed reason-
ably well for predicting the kinetics in the case of dynamic 
experiments, that is, the experiments in which the tempera-
ture of the reactor was increased at a fixed rate in time with 
an average mean squared error (MSE) of 0.09 ± 0.1. The 
Interpolation and Extrapolation scenarios showed deviation 
in the predictions when the kinetics were fast, such as for 
cellulose at 230 °C, for which the MSE was found to be 
1.20 and 2.36, respectively. In the case of straw, which rep-
resented a mixture of biomasses, the ML prediction showed 
some deviation from experimental data with the reported 
MSEs of 0.85, 0.11, and 0.11 for the Kinetics, Interpola-
tion, and Extrapolation scenarios, respectively. To the best 
of our knowledge, these three ML modeling scenarios have 
not been investigated in any prior study of the HTC process. 
In a previous work, focused on predicting fuel properties of 
products obtained from HTC using ML, the reported  R2 was 
≈ 0.90 [22]. In another work, the final yield of HTC prod-
ucts upon varying reaction conditions and biomass type was 
modeled via ML methods and the predictions were reported 
to have R2 > 0.95 [24]. The three scenarios studied in this 
work are more stringent applications of ML as compared 
to the previous studies and so our overall  R2 range from 0.7 
to 0.8. A disadvantage of this study was that the number of 
experimental data points was not large. Nevertheless, it is 
concluded that ML models are useful in modeling the HTC 
kinetics of various biomass types. ML models can be used 
for interpolating the kinetics data derived from experiments. 
Furthermore, these models are also useful for extrapolat-
ing the kinetics to longer times. It is recommended that for 
biomasses that show faster kinetics, more experimental data-
points should be collected for accurate predictive modeling.
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Fig. 7  Parity plots comparing the experimental and predicted val-
ues of percent carbon for all experiments for the three scenarios: A 
Kinetics, B Interpolation, and C Extrapolation. Symbols codes: 

filled = dynamic experiments, hollow = isothermal experiments; 
blue = cellulose, green = poplar, red = straw; and circle = 200 °C, dia-
mond = 230 °C, square = 260 °C
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Fig. 8  Relative importance of the features in predicting the carbon 
content of different biomasses. Kinetics of hydrogen has the most sig-
nificant impact on the performance of ML models. Since the kinet-
ics of nitrogen, hydrogen and sulfur are hidden from the Interpolation 
and Extrapolation scenarios, their prediction of the experimental data 
showed deviations for the cases when the kinetics were fast
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